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Our purpose in this paper is to solve exactly the Fokker-Planck-Kramers equation of a charged particle (heavy-ion) embedded in a fluid
and under the influence of mechanical and electromagnetic forces. In this work the magnetic field is assumed to be constant and pointing
along any direction of a Cartesian reference frame; the mechanical and electrical forces are both space-independent, but in general time-
dependent. Our proposal relies upon two transformations of the Langevin equation associated with the charged particle’s phase-space(r,u).
The first one is a fixed rotation which transforms the(r,u)-coordinates into other(r′,u′)-coordinates, and makes it possible to re-orientate
the magnetic field along an appropriate direction (say along thez′-axis). The second one is a time-dependent rotation which transforms the
(r′,u′)-coordinates into other(r′′,u′′)-coordinates, in which the resulting Langevin equation strongly resembles that of ordinary Brownian
motion in the presence of external forces. Under these circumstances, the Fokker-Planck-Kramers equation can immediately be solved in the
(r′′,u′′) phase-space, following our methodology developed in Ref. [Phys. Rev. E76 (2007) 021106].

Keywords:(FP) Fokker-Planck; (FPK) Fokker-Planck-Kramers.

Nuestro proṕosito en este artı́culo consiste en resolver de manera exacta la ecuación Fokker-Planck-Kramers de una partı́cula con carga
eléctrica (íon pesado) inmersa en un fluido y bajo la influencia de fuerzas mecánica y electromagńetica. En este trabajo se supone que el
campo magńetico constante apunta en cualquier dirección de un sistema de referencia Cartesiano; las fuerzas mecánica y eĺectrica son ambas
independientes de la posición pero en general dependientes del tiempo. Nuestra propuesta se basa en dos transformaciones de la ecuación de
Langevin asociada al espacio fase(r,u) de la part́ıcula cargada. La primera, es una rotación fija que transforma las coordenadas(r,u) en
otro sistema de coordenadas(r′,u′), la cual permite una re-orientación del campo magńetico a lo largo de una dirección apropiada (digamos
a lo largo del ejez′). La segunda, es una rotación que depende del tiempo, la cual transforma las coordenadas(r′,u)′ en otro sistema de
coordenadas(r′′,u′′) donde la ecuación de langevin resultante es muy semejante a la del movimiento Browniano ordinario en presencia de
fuerzas externas. Eńestas circunstancias, la ecuación de Fokker-Planck-Kramers se puede resolver de forma inmediata en el espacio fase
(r′′,u′′), siguiendo nuestra metodologı́a desarrollada en la Ref. [Phys. Rev. E76 (2007) 021106].

Descriptores:(FP) Fokker-Planck; (FPK) Fokker-Planck-Kramers.

PACS: 05.40.-a; 02.50.-r

1. Introduction

Very recently, we solved both the Fokker-Planck (FP) and
Fokker-Planck-Kramers (FPK) equations corresponding to a
heavy ion embedded in a fluid in the presence of external
fields [1]. In that work the magnetic field has been consid-
ered, for simplicity, as a constant vector pointing along the
z-axis of a Cartesian reference frame, that isB = (0, 0, B);
the mechanical and electrical forces are in general time-
dependent only. The same considerations for the mechani-
cal and electromagnetic forces were assumed by Simões and
Lagos (SL) [2] to solve the same Fokker-Planck-Kramers
equation, by combining both Czopnik and Garbaczewski’s
(CG) [3] “rotated” Stokes force and Ferrari’s [4] gauge. As
established in Ref. 2, the method of solution relies upon a
transformation of the FPK equation into a similar field-free
equation, in a similar manner to that advanced by Ferrari [4].
Accordingly, the solution to this type of field-free equation
is obtained by applying CG’s strategy, which simply consists

in proposing a Gaussian distribution function for the corre-
lation functions of the appropriate variables. Similar studies
on anisotropic plasma diffusion has been proposed in Ref. 5.
Our aim in this work is now to extend the proposal in Ref. 1
to the situation in which the constant magnetic field is al-
lowed to point along any direction in a Cartesian reference
frame, that isB = (Bx, By, Bz). We have given a prelim-
inary study of this problem in Ref. 6, in which our main
attention was focused on computing thex, y, andz mean-
square displacements of the charged particle. In this work, to
solve the FPK equation with a constant magnetic field point-
ing along an arbitrary direction, we proceed as follows. We
apply two successive transformations to the Langevin equa-
tion associated with the heavy ion’s phase-space(r,u). The
first one consists in a fixed rotation which transforms the
Langevin equation, given in the original space(r,u), into an-
other Langevin equation for the(r′,u′) phase-space. In this
transformed space we will show that the original magnetic
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field is allowed to point along one of the axes of the trans-
formed Cartesian reference frame (say along thez′-axis). In
this sense, the Brownian motion of a charged particle in a
magnetic field pointing along any direction is equivalent to
that situation for which that magnetic field is re-orientated
along thez′-axis. On the other hand, trying to solve the FPK
equation in this transformed space is a difficult task, due to
the coupling between the resulting equations. To avoid these
difficulties we perform a second transformation the Langevin
equation, which consists in a time-dependent rotation and
makes it possible to pass from the(r′,u′) phase-space to
another(r′′,u′′) phase-space, in which the behavior of the
embedded particle is similar to that of the ordinary Brownian
motion under the action of an external, non-magnetic field.
It is in this second transformation that we can calculate the
solutions to the FPK equation, following the same strategy
as Ref. 1. An important point we wish to comment on here
is that, in order to to attain the aforementioned objectives, it
is necessary for the statistical properties of the transformed
fluctuating forces to remain identical to that of the original
one, which is the case if the latter satisfies the properties of
Gaussian white noise (GWN). From the fundamental solu-
tion to the FPK equation, it is possible to calculate the funda-
mental solution to the Fokker-Planck (FP) equation in theu′

velocity-space.

2. The Langevin equation of a heavy ion in the
presence of external forces

The Langevin equation describing the diffusion process of a
charged particle embedded in a fluid in the presence of elec-
tromagnetic (via Lorentz force) and mechanicalFmec forces
can be written in the phase-space as

ṙ = u , (1)

u̇ = −βu +
q

m
u×B +

q

m
E +

Fmec

m
+ A(t) , (2)

whereq denotes the charge of the particle of massm and the
fluctuating forceA(t) satisfies the properties of a GWN with
zero mean value and correlation function

〈Ai(t)Aj(t′)〉 = 2λ δij δ(t− t′) , (3)

whereλ = β k
B
T/m is the noise intensity andk

B
is the

Boltzmann constant. Fmec and E are, in general, both
space-independent and time-varying external forces. The
magnetic field is assumed to be a constant vector point-
ing along any direction of a Cartesian reference frame,
that is B = (Bx, By, Bz). If we define the acceleration
a(t) ≡ [Fmec(t) + qE(t)]/m, the Langevin equation for the
velocity reads

u̇ = −β u +Wu + a(t) + A(t) , (4)

whereW is a real antisymmetric matrix given by

W =




0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0


 , (5)

whose elements are defined asΩi = qBi/mc, this being
known as theLarmor frequency. Subindexi may have val-
ues 1, 2, or 3, which represent the coordinatesx, y, andz,
respectively. By means of an appropriate change of variable,
the Langevin equations (1), (3) can be transformed in such a
way that the magnetic field is allowed to point along a priv-
ileged direction. This change in variable isr′ = RT

r, such
that ṙ′ = u′ and therefore

u′ = R
T

u , (6)

whereRT

is the transpose of the rotation matrixR and
W′ = RTWR is another antisymmetric matrix (both are ex-
plicitly given in Appendix A of Ref. 6), such that

R =




−Ω1Ω3

Ω′√Ω2
1
+Ω2

2

Ω2√
Ω2

1
+Ω2

2

Ω1
Ω′

−Ω2Ω3

Ω′√Ω2
1
+Ω2

2

−Ω1√
Ω2

1
+Ω2

2

Ω2
Ω′

Ω2
1
+Ω2

2

Ω′√Ω2
1
+Ω2

2

0 Ω3
Ω′




, (7)

and

W′ =




0 Ω′ 0
−Ω′ 0 0
0 0 0


 , (8)

with

Ω′ 2 = Ω2
1 + Ω2

2 + Ω2
3 = q2 B′ 2/m2c2

andB′ 2 = B2
1 + B2

2 + B2
3 is the square modulus of the ex-

ternal magnetic fieldB. Thus, in the(r′,u′) phase-space, the
original Langevin equations are transformed into

ṙ′ = u′ , (9)

u̇ ′ = −β u′ +W′u′ + a′(t) + A′(t) , (10)

where the quantities

a′(t) = R
T

a(t), A′ = R
T

A(t) , (11)

evidently represent a rotation of both forces, the externala(t)
and the fluctuating forceA(t), respectively. We can observe
that the second term of Eq. (10) can also be written as a cross
product, so thatW′u′ = (q/mc)u′ ×B′. In this caseB′ can
be visualized as an external magnetic field pointing along the
z′ axis, that isB′ = B′ k̂′, whereB′ has already been de-
fined and̂k′ is the unitary vector along thez′-axis. Therefore,
for any constant magnetic field pointing along any direction,
it is possible to re-orientate, by means of rotation (6), that
magnetic field along thez′ direction, giving as a result the
Langevin equation (10) which is then equivalent to Eq. (4).
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So, Eqs. (9), (10) represent a coupled system of equations
in the(x′, y′)-plane and independent of thez′-coordinate, for
which the Langevin equation is the same as that of an or-
dinary Brownian motion in the presence of an external force
a′z′(t). In the following section, we shall solve the FPK equa-
tion associated with Eqs. (9), (10) and once this fundamental
solution is determined, we can obtain the solution to the FP
equation in theu′ velocity-space, without needing to solve
the FP equation explicitly.

3. The associated Fokker-Planck-Kramers
equation

Equations (9), (10) can also be written as

ṙ′ = u′ , (12)

u̇′ = −Λ′u′ + a′(t) + A′(t) . (13)

The associated FPK equation for the transition probability
densityP ′(r′,u′, t|u′0, r′0) of velocity u′ and positionr′ at
time t, given thatu′ = u′0 and r′ = r′0 at time t = 0 is
then [1,9]

∂P ′

∂t
+ u′ · gradr′P

′ + a′ · gradu′P
′ =

divu′(Λ′u′P ′) + λ∇2
u′P

′ (14)

subject to the initial condition

P ′(r′,u′, 0|u′0, r′0) = C1 δ(r′ − r′0)δ(u
′ − u′0) , (15)

with C1 a constant. Just as in Ref. [1], the solution to Eq. (14)
is not easy to calculate due to the coupling term given in
the first term of the right-hand side. To proceed further we
transform the Langevin equations (12) and (13) into another
phase-space(r′′,u′′) by means of the following change of
variables:

ṙ′′ = u′′, u′′ = e−W
′tu′ . (16)

In this new velocity-space, the above Langevin equations re-
duce:

ṙ′′ = u′′ , (17)

u̇′′ = −βu′′ + a′′(t) + A′′(t) , (18)

where

a′′(t) = R′ −1(t)a′(t), A′′(t) = R′ −1(t)A′(t) . (19)

R′(t) = eW
′t is an orthogonal rotation matrix given by

R′(t) =




cosΩ′t sinΩ′t 0
− sinΩ′t cosΩ′t 0

0 0 1


 (20)

such thatR′ T

(t) = R′ −1(t), i.e. the transpose is equal to its
inverse; thereforeR′ −1(t) = e−W

′t. The Langevin equa-
tions (47) and (18) display a strong resemblance to those

associated with the ordinary Brownian motion in the pres-
ence of an external forcea′′(t), which in this case is noth-
ing but a time-dependent rotation of the external forcea′(t).
Similarly, A′′(t) accounts for a time-dependent rotation of
the fluctuating forceA′(t). It can be shown that the corre-
sponding FPK equation for the transition probability density
P ′′(r′′,u′′, t|u′′0 , r′′0) of the velocityu′′0 and positionr′′0 at
time t, given thatu′′ = u′′0 and r′′ = r′′0 at time t = 0,
is [1,9]

∂P ′′

∂t
+ u′′ · gradr′′P

′′ + a′′ · gradu′′P
′′ =

β divu′′(u′′P ′′) + λ∇2
u′′P

′′ , (21)

together with the initial condition

P ′′(r′′,u′′, 0|u′′0 , r′′0) ≡ δ(u′′ − u′′0)δ(r′′ − r′′0) . (22)

The solution to Eq. (21) is very similar to that given in Ap-
pendix B of Ref. 1. Thus, if we define

P ′′(R′′,S′′) ≡ P ′′(r′′,u′′, t|u′′0 , r′′0),

the fundamental solution to Eq. (21), with the initial condi-
tion (22), can be written as

P ′′(R′′,S′′) =
1

8π3(FG−H2)3/2

× exp
{
− (F |S′|2 − 2H R′′ · S′′ + G|R′′|2)

2(FG−H2)

}
, (23)

with the variables

S′′ = u′′ − e−βt(a′′ + u′′0) , (24)

R′′ = r′′ − r′′0 − Γ′′u′′0 − a′′ , (25)

such that

Γ′′ = β−1 (1− e−βt) , (26)

a′′(t) =

t∫

0

e−Λ′s a′′(s) ds , (27)

a ′′(t) =

t∫

0

eβsa′′(s) ds . (28)

The parametersF , G, andH are given by

F =
λ

β3
(2β t− 3 + 4e−βt − e−2βt) , (29)

G =
λ

β
(1− e−2βt) , (30)

H =
λ

β2
(1− e−βt)2 . (31)
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In a similar way to in Ref. 1, to return to the phase-space
(r′,u′), we introduce the variablesS′ andR′ such that

S′ = u′ − e−Λ′t(a′ + u′0) (32)

R′ = r′ − r′0 − Γ′ u′0 − a′ , (33)

where now

Γ′ = Λ′−1 (1− e−Λ′t) , (34)

a′(t) =

t∫

0

e−Λ′s a′(s) ds , (35)

a′(t) =

t∫

0

eΛ′s a′(s) ds , (36)

and

Λ′−1 =




β
Ω′ 2+β2

Ω′
Ω′ 2+β2 0

− Ω′
Ω′ 2+β2

β
Ω′ 2+β2 0

0 0 1
β




. (37)

The transformation betweenS′′ andS′, R′′ andR′ can be es-
tablished through the associated transformation between the
variablesu′′ andu′, r′′ andr′. According to Ref. 1, it can be
shown that such transformations are given by

u′′ − e−βt(a′′(t) + u′′0)

= e−W
′t[u′ − e−Λ′t(a′(t) + u′0)] , (38)

and

r′′ − β−1

t∫

0

a′′(s) ds− I′′2

= β−1 e−W
′t Λ′

(
r′ − Λ′−1

∫ t

0

a′(s) ds− I′2

)
. (39)

Therefore

S′′ = e−W
′t S′, R′′ = e−W

′t Λ′R′ . (40)

So, the transformation between bothP ′′ andP ′ is given by
P ′ dS′dR′ = P ′′ dS′′dR′′, where the volume element trans-
forms asdS′dR′ = J dS′′dR′′. According to Eq. (40) it can
be shown that

P ′ =
(

β2 + Ω′ 2

β2

)
P ′′ . (41)

The constantC1, given in the initial condition (15), will then
be equal toC1 = (β2 + Ω′ 2)/β2.

To return to the phase-space(r′,u′), let us denote the
quantity x̂′ as any vector in thex′y′-plane andP̂ ′ as the

TPD describing the diffusion process in the same plane. So
R̂′ = (R′1, R

′
2) and Ŝ′ = (S′1, S

′
2); R′3 andS′3 are thez′-

components of vectorsR′ andS′, respectively. Under these
circumstances, it can shown that

|S′′|2 = |Ŝ′|2 + S′ 23 , (42)

|R′′|2 = C1 |R̂′|2 + R′ 23 , (43)

S′′ ·R′′ = Ŝ′ · R̂′ +
Ω′

β
(Ŝ′ × R̂′)z′ + S′3R

′
3 , (44)

where(Ŝ′× R̂′)z′ = (S′1R
′
2−S′2R

′
1) is thez′-component of

the cross product and

Ŝ′ ≡ û′ − e−Λ̂′t (â′ + û′0) , (45)

R̂′ ≡ r̂′ − r̂′0 − Γ̂′ û′0 − â′ , (46)

S′3 ≡ u′z′ − e−βt(a′z′ + u′0z′) , (47)

R′3 ≡ z′ − z′0 − β−1(1− e−βt)u′0z′ − a′z′ . (48)

Λ̂′ represents a2× 2 matrix andΓ̂′ = Λ̂′−1 (1− e−Λ̂′t). Ac-
cordingly, if Eqs. (45)-(48) are substituted into Eq. (23), it
can be shown that the solution to the FPK equation (14) can
be written as the product of two independent TPD’s, that is

P ′(R′,S′) = P̂ ′(R̂′, Ŝ′)P ′z′(R
′
3, S

′
3) , (49)

such that

P̂ ′(R̂′, Ŝ′) ≡ P̂′(r̂′, û′, t|r̂′0, û′0) , (50)

P ′z′(R
′
3, S

′
3) ≡ P ′(z′, u′z′ , t|z′0, u′oz′), (51)

where

P̂ ′(R̂′, Ŝ′)

=
C1

4π2(FG−H2)
exp

{
− [

F |Ŝ′|2 − 2H R̂′ · Ŝ′

−2
Ω′

β
H(Ŝ′ × R̂′)z′+C1G|R̂′|2]/2(FG−H2)

}
(52)

is the planar TPD describing the diffusion process of a Brow-
nian charged particle across the magnetic field under the ac-
tion of a planar external forcêa′(t), with P̂ ′(r̂′, û′, 0|û′0) =
C1 δ(r̂′ − r̂′0)δ(û′ − û′0) as the initial condition. The TPD
P ′z′ , being equal to

P ′z′(R
′
3, S

′
3) =

1
[4π2(FG−H2)]1/2

×exp
{
− (FS′ 23 − 2HR′3S

′
3+GR′ 23 )

2(FG−H2)

}
, (53)

describes the diffusion process along thez′-axis, i.e. paral-
lel to the magnetic field, in the presence of an external force
a′z′(t) with the initial condition

P ′z′(z
′, u′z′ , 0|z′0, u′0z′) = δ(z′ − z′0)δ(u

′
z′ − u′0z′).
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This TPD is the same as that of ordinary Brownian motion in
the presence of an external forcea′z′(t) without the influence
of the magnetic field, as expected.

The immediate consequences of Eqs. (52) and (53) are
the following:

(a) The planar velocity-space fundamental solution
P̂ ′(Ŝ′) and the fundamental solutionP ′z′ can be calculated
from the integrals

P̂ ′(Ŝ′) =
∫

P̂ ′(R̂′, Ŝ′) dR̂′ , (54)

P ′z′(S
′
3) =

∫
P ′z′(R

′
3, S

′
3) dR′3 . (55)

The former integral yields

P̂ ′(Ŝ′)=
β

2πλ(1−e−2βt)
exp

{
− β |Ŝ′|2

2 λ(1− e−2βt)

}
(56)

and the latter

P ′z′(S
′
3)=

(
β

2πλ(1−e−2βt)

)1/2

exp
{
− βS′23

2λ(1−e−2βt)

}
(57)

so that the product of Eqs. (56) and (57) leads to the same
fundamental solution to the Fokker-Planck equation in theu′

velocity-space, that is

P ′(S′) ≡ P ′(r′,u′, t|r′0,u′0) = P̂ ′(Ŝ′)P ′z′(S
′
3),

such that

P ′(S′)=
(

β

2πλ(1−e−2βt)

)3/2

exp
{
− β|S′|2

2 λ(1−e−2βt)

}
. (58)

(b) Similarly, in the configuration spacer′ the planar-
spatial TPD̂P ′(R̂′) and spatial TPDP ′z(R

′
3) defined by

P̂ ′(R̂′) ≡ P̂ ′(r̂′, t|r̂′0, û′0) (59)

P ′z′(R
′
3) ≡ P ′(z′, t|z′0, u′0z′) , (60)

can be calculated through the integrals

P̂ ′(R̂′) =
∫

P̂ ′(Ŝ′, R̂′) dŜ′ (61)

P ′z′(R
′
3) =

∫
P ′z′(R

′
3, S

′
3) dS′3 . (62)

After a long but straightforward algebra they reduce to

P̂ ′(r̂′, t|r̂′0, û′0)= β

2π D′
e(2β t− 3 + 4e−βt − e−2βt)

×exp
{
−β|r̂′ − r̂′0 − Λ̂′−1(1− e−Λ̂′t)û′0 − â′|2

2 D′
e(2β t− 3 + 4e−βt − e−2βt)

}
, (63)

whereD′
e = D β2/(Ω′ 2 + β2) represents a rescaling of the

Einstein diffusion constant (D = λ/β2 = kBT/mβ) and

P ′z′(R
′
3)=

1
[2πD(2β t− 3 + 4e−βt − e−2βt)/β]1/2

× exp
{
−β (z′−z′0 − β−1(1−e−βt)u′0z−a′z′)2

2D(2βt− 3 + 4e−βt − e−2βt)

}
. (64)

Clearly, the configurational fundamental solution is
P ′(r′, t|r′0,u′0) = P̂ ′(R̂′)P ′z′(R

′
3).

(c) For any other initial velocity distributionf ′(u′, 0), a
more general probability distribution, corresponding to the
solution to the FP equation, can be calculated through the
following integration

f ′(u′, t) =
∫

u′0

f ′(u′0, 0) P ′(u′, t|u′0) du′0 . (65)

If we choose, in the originalu velocity-space, the particu-
lar case of an initial Maxwellian velocity distribution of the
charged Brownian particle at a temperatureT0 different from
the equilibrium temperatureT , and with an assigned mean
velocity 〈u〉0, then

f(u, 0) =
(

m

2π k
B
T0

)3/2

exp
{
− m|u− 〈u〉0|2

2k
B
T0

}
. (66)

The initial distribution for the transformedu′ velocity-space
can be constructed using the transformation (5). In this case it
can be shown that|u− 〈u〉0|2 = |u′ − 〈u′〉0|2 and therefore
the initial distribution in the transformed space has exactly
the same form as Eq. (66), but with the velocityu replaced
by u′. So, a more general solution to the FP equation after
integration of Eq. (65) will be

f ′(u′, t) =
(

m

2π k
B
Tt

)3/2

× exp
{

m |u′ − e−Λ′t(a′(t) + 〈u′〉0) |2
2k

B
Tt

}
, (67)

where

Tt = T

[
1−

(
1− T0

T

)
e−2βt

]
. (68)

We note that, asT0 → 0, f(u′, 0) = δ(u′ − u′0) with
u′0 = 〈u′〉0 and temperatureTt = T (1 − e−2βt). In this
casef(u′, t) reduces to the fundamental solution (58). On
the other hand, ifBx = 0 andBy = 0, then the Larmor fre-
quency isΩ′ = qB/mc, with B being the modulus of the
magnetic fieldB = (0, 0, B). In this case, Eq. (67) reduces
to the same probability density obtained by Ferrari [8] by an-
other method. A more general solution forf(r,u, t) is still
under study.
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4. Conclusions

For a constant magnetic fieldB = (B1, B2, B3) it is possible
to show, by means of transformation (6), that the Langevin
equations (1), (2) formulated in the(r,u) phase-space are
equivalent to those given by Eqs. (9), (10) in the(r′,u′)
phase-space. It is also shown that in the transformed space
r′, the magnetic field is visualized as another vector point-
ing along thez′-axis of the Cartesian reference frame,i.e.,
B′ = (0, 0, B′), whereB′ 2 = B2

1 + B2
2 + B2

3 = B2; that
is, the modulus of the transformed magnetic field is equal to
that of the original magnetic field. The equivalence between
the two sets of equations is also due to the fact that the noise
termA′(t) has the same statistical properties of GWN as the
original noiseA(t).

To solve the FPK equation in the transformed(r′,u′)
phase-space, a second transformation given by Eq. (16) was
required. In this case, we observe in Eq. (18) that the effects
of the magnetic fieldB′ are transferred to both the external

a′(t) and fluctuatingA′(t) forces. Eqs. (17) and (18) have
the same algebraic structure as that of the ordinary Brown-
ian motion where we have shown that the fluctuating force
A′′(t) has the same statistical properties of GWN asA′(t).
In the(r′′,u′′) phase-space, the solution to the FPK equation
is found immediately. To return to(r′,u′) phase-space we
use the transformation (40) to obtain the fundamental FPK
solution given by Eq. (49). From the latter we can calculate
the fundamental FP solution as shown in Eq. (58).

Eq. (67) is a more general solution to the FP equation.
It has been calculated by assuming a Maxwellian initial dis-
tribution function, such as that given by Eq. (66). A more
general solution to the FPK equation has not been found yet.
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