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Our purpose in this paper is to solve exactly the Fokker-Planck-Kramers equation of a charged particle (heavy-ion) embedded in a fluid
and under the influence of mechanical and electromagnetic forces. In this work the magnetic field is assumed to be constant and pointing
along any direction of a Cartesian reference frame; the mechanical and electrical forces are both space-independent, but in general time
dependent. Our proposal relies upon two transformations of the Langevin equation associated with the charged particle’s phase-space

The first one is a fixed rotation which transforms flreu)-coordinates into othefr’, u’)-coordinates, and makes it possible to re-orientate

the magnetic field along an appropriate direction (say alongtais). The second one is a time-dependent rotation which transforms the
(r’,u’)-coordinates into otheir”, u”’)-coordinates, in which the resulting Langevin equation strongly resembles that of ordinary Brownian
motion in the presence of external forces. Under these circumstances, the Fokker-Planck-Kramers equation can immediately be solved in th
(r",u’) phase-space, following our methodology developed in Réfy§. Rev. £6(2007) 021106).

Keywords:(FP) Fokker-Planck; (FPK) Fokker-Planck-Kramers.

Nuestro propsito en este axtulo consiste en resolver de manera exacta la egondébkker-Planck-Kramers de una pemnia con carga
eléctrica (bn pesado) inmersa en un fluido y bajo la influencia de fuerzagmury electromagdrtica. En este trabajo se supone que el
campo magatico constante apunta en cualquier diréoale un sistema de referencia Cartesiano; las fuerzaamoeegy eéctrica son ambas
independientes de la posici pero en general dependientes del tiempo. Nuestra propuesta se basa en dos transformaciones de tleecuaci
Langevin asociada al espacio faseu) de la paricula cargada. La primera, es una robexcfija que transforma las coordenadasu) en

otro sistema de coordenadas, u’), la cual permite una re-orientaci del campo maggtico a lo largo de una diredr apropiada (digamos

a lo largo del ejex’). La segunda, es una rotanique depende del tiempo, la cual transforma las coorderfadas’ en otro sistema de
coordenadasr’”, u’) donde la ecuadin de langevin resultante es muy semejante a la del movimiento Browniano ordinario en presencia de
fuerzas externas. HEgstas circunstancias, la ecuatide Fokker-Planck-Kramers se puede resolver de forma inmediata en el espacio fase
(r",u"), siguiendo nuestra metodolagdesarrollada en la RefPhys. Rev. &6 (2007) 021106].

Descriptores:(FP) Fokker-Planck; (FPK) Fokker-Planck-Kramers.

PACS: 05.40.-a; 02.50.-r

1. Introduction in proposing a Gaussian distribution function for the corre-
lation functions of the appropriate variables. Similar studies
Very recently, we solved both the Fokker-Planck (FP) andon anisotropic plasma diffusion has been proposed in Ref. 5.
Fokker-Planck-Kramers (FPK) equations corresponding to @ur aim in this work is now to extend the proposal in Ref. 1
heavy ion embedded in a fluid in the presence of externalp the situation in which the constant magnetic field is al-
fields [1]. In that work the magnetic field has been consid{owed to point along any direction in a Cartesian reference
ered, for simplicity, as a constant vector pointing along theframe, that isB = (B,, B,, B.). We have given a prelim-
z-axis of a Cartesian reference frame, thaBis= (0,0, B);  inary study of this problem in Ref. 6, in which our main
the mechanical and electrical forces are in general timeattention was focused on computing they, andz mean-
dependent only. The same considerations for the mechanquare displacements of the charged particle. In this work, to
cal and electromagnetic forces were assumed by&mand  solve the FPK equation with a constant magnetic field point-
Lagos (SL) [2] to solve the same Fokker-Planck-Kramersng along an arbitrary direction, we proceed as follows. We
equation, by combining both Czopnik and Garbaczewski'sapply two successive transformations to the Langevin equa-
(CG) [3] “rotated” Stokes force and Ferrari's [4] gauge. As tion associated with the heavy ion’s phase-space). The
established in Ref. 2, the method of solution relies upon dirst one consists in a fixed rotation which transforms the
transformation of the FPK equation into a similar field-free | angevin equation, given in the original spdeeu), into an-
equation, in a similar manner to that advanced by Ferrari [4]other Langevin equation for the’, u’) phase-space. In this

Accordingly, the solution to this type of field-free equation transformed space we will show that the original magnetic
is obtained by applying CG’s strategy, which simply consists
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field is allowed to point along one of the axes of the trans-whereW is a real antisymmetric matrix given by
formed Cartesian reference frame (say along:thaxis). In

this sense, the Brownian motion of a charged particle in a W ?2 %3 _QQ2 5
magnetic field pointing along any direction is equivalent to o _Q 3 _a 01 ’ ®)
1

that situation for which that magnetic field is re-orientated 2

along thez’-axis. On the other hand, trying to solve the FPK whose elements are defined Qs = ¢B;/mc, this being
equation in this transformed space is a difficult task, due tkknown as thd_armor frequency Subindex; may have val-

the coupling between the resulting equations. To avoid thesges 1, 2, or 3, which represent the coordinateg, and z,
difficulties we perform a second transformation the Langevinvespectively. By means of an appropriate change of variable,
equation, which consists in a time-dependent rotation anghe Langevin equations (1), (3) can be transformed in such a
makes it possible to pass from tiie/, u’) phase-space to way that the magnetic field is allowed to point along a priv-

another(r”, u”) phase-space, in which the behavior of thejleged direction. This change in variabler’s= R’ r, such
embedded particle is similar to that of the ordinary Brownianthati’ = u’ and therefore
motion under the action of an external, non-magnetic field.

It is in this second transformation that we can calculate the u =R u, (6)
solutions to the FPK equation, following the same strategy

T . .
as Ref. 1. An important point we wish to comment on hereWhereR is the transpose of the rotation matrik and

! T H 1 H H -
is that, in order to to attain the aforementioned objectives, itwlj_ T R, WR, IS anothjr antlsfymrfnetrlc m?]tn;]( (both are ex
is necessary for the statistical properties of the transformeBliCitly given in Appendix A of Ref. 6), such that

fluctuating forces to remain identical to that of the original -2,0, Q, Q
one, which is the case if the latter satisfies the properties of Y R AV R
Gaussian white noise (GWN). From the fundamental solu- PN N 0
tion to the FI_DK equation, it is possible to calculat_e th_e funda- R — Q/\/ng fgz \/QZiQ? <. )
mental solution to the Fokker-Planck (FP) equation imihe v v
velocity-space. Q2402 0 Q,
/2402 Iz
2. The Langevin equation of a heavy ion in the 2"
presence of external forces 0 Q0
wW=[- 0 of, (8)
The Langevin equation describing the diffusion process of a 0 0 0
charged particle embedded in a fluid in the presence of elegg;ip,
tromagnetic (via Lorentz force) and mechaniggl.. forces )
can be written in the phase-space as AV2=024+Q2+0Q%2=¢B" /m?c?

andB’? = B? + B3 + B? is the square modulus of the ex-
ternal magnetic fiel®8. Thus, in thgr’, u’) phase-space, the
original Langevin equations are transformed into

r=u, (1)

Fmec
= —put LuxB+ LE+ 2 LA®W), (2
m m m

i =, ©)
whereq denotes the charge of the particle of masand the cr / ' / /
fluctuating forceA (t) satisfies the properties of a GWN with 0= —fu’+ W' +a'(t) + A'(t), (10)
zero mean value and correlation function where the quantities
(Ai()A; () = 2X6;; 6(t —t') 3) al(t)=R a(t), A'=R A(t), (11)

_ . ) ) evidently represent a rotation of both forces, the extex(¥g!
where\ = [k, T/m is the noise intensity andl, is the 54 yhe fluctuating forca (1), respectively. We can observe
Boltzmann constant. Fr,.. and E are, in general, both . the second term of Eq. (10) can also be written as a cross
space-independent and time-varying external forces. Th(fﬁ)roduct, so thaW'u’ = (¢/me)u’ x B. In this casdB’ can

magnetic field is assumed to be a constant vector pointye g alized as an external magnetic field pointing along the
ing glong any direction of a Carteslan reference fr_ameZ, axis, that isB’ = B'Kk’, where B’ has already been de-
thatisB = (B, By, B.). If we defme_ the ac_celeraﬂon fined andk’ is the unitary vector along the-axis. Therefore,
a(t) = [Fiec(t) + ¢E(?)]/m, the Langevin equation for the ¢ 4y constant magnetic field pointing along any direction,
velocity reads it is possible to re-orientate, by means of rotation (6), that
magnetic field along the’ direction, giving as a result the
u=—fu+Wu+ta(t) + A(l), (4)  Langevin equation (10) which is then equivalent to Eq. (4).
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So, Egs. (9), (10) represent a coupled system of equatioressociated with the ordinary Brownian motion in the pres-
inthe (2’, y')-plane and independent of thecoordinate, for  ence of an external force&’(t), which in this case is noth-
which the Langevin equation is the same as that of an oring but a time-dependent rotation of the external faite).
dinary Brownian motion in the presence of an external forceSimilarly, A’ (t) accounts for a time-dependent rotation of
a’, (t). In the following section, we shall solve the FPK equa- the fluctuating forceA’(¢). It can be shown that the corre-
tion associated with Egs. (9), (10) and once this fundamentadponding FPK equation for the transition probability density
solution is determined, we can obtain the solution to the FFP”(r”, u”, t|uf, r(;) of the velocityu] and positionr{ at
equation in then’ velocity-space, without needing to solve time ¢, given thatu” = uf andr” = rj at time¢ = 0,
the FP equation explicitly. is[1,9]
/!

3. The associated Fokker-Planck-Kramers ;- +u”-grady P" +a” - grad, . P" =

equation

Bdivyr (0’ P") + AV, P", (21)

u’’

Equations (9), (10) can also be written as . o .
together with the initial condition

P=u, (12)

i =~ + (1) + A1) 1z PO Or) = 6 - u)se - x). (22)

The associated FPK equation for the transition probabilityThe solution to Eq. (21) is very similar to that given in Ap-

density P’'(r', u’, t|u, rj) of velocity u’ and positionr’ at pendix B of Ref. 1. Thus, if we define

time ¢, given thatu’ = uf, andr’ = r{ at timet = 0 is P'R”,S") = P'(" ", tjull,v!),

then [1,9]
oP' , P , QP — the fundamental solution to Eq. (21), with the initial condi-
o Tuwoera v+ agrad, P = tion (22), can be written as
. 2
divy (A/U/P/) +A vu’P/ (14) P"(R",8") = !

- 8w (FG — H2)3/2

(F‘S/|2 —92H R// . S// + GlR//|2)
X exp{ — (PG — H7) , (23)

subject to the initial condition

P, 0, 0uf,ry) = C16(r —rp)d(u’ —up), (15)

with C a constant. Just as in Ref. [1], the solution to Eq. (14) ith th bl
is not easy to calculate due to the coupling term given in™! € variables

the first term of the right-hand side. To proceed further we "Bt I
transform the Langevin equations (12) and (13) into another §7=u" - "M@ +up), (24)
Dhésgl-spaC&”, u”’) by means of the following change of R’ =1 —r —T"ull - P (25)
variables:
P—— u’ = e~ Wty (16) such that
In this new velocity-space, the above Langevin equations re- I =p"11-e"), (26)
duce: ¢
P = u//’ (17) j(t) = /eiA/s ﬁ(s) ds, (27)
i = —pu” +a’(t) + A"(1), (18) p
where a’(t) = / eP*a’(s) ds. (28)
0

a’(t) =R ~1(t)a'(t), A'(t) =R ~HH)A'(t). (19)

R/(t) = e"'t is an orthogonal rotation matrix given by The parameters’, ¢, and I are given by

cosQt sinQt 0 F= i(gﬁt_3+4e—ﬁt_e—2ﬁt), (29)
R'(t) = [ —sinQ't cosQ't 0 (20) B°
0 o G = %(1 —e 2Py, (30)
such thalR’ " (£) = R’ ~1(¢), i.e. the transpose is equal to its
inverse; therefor®’ —1(¢t) = ¢~W'*. The Langevin equa- H— i(l — e P2, (31)
tions (47) and (18) display a strong resemblance to those B2
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In a similar way to in Ref. 1, to return to the phase-spacelPD describing the diffusion process in the same plane. So

r’,u’), we introduce the varia an such that I = , andS’ = ,S5); an are thez’'-
'’ introd h iablé®’ andR’ such th R " RY ds S1,5%); R and S hez’
. y Ae— . components of vectoR’ andS’, respectively. Under these
S'=u —e (@' +up) (32)  circumstances, it can shown that
R’:r’—ré—F’uB—?, (33) 18”2 = |§/\2_|_S£’f7 (42)
where now R"]>=C, |R/)? + R, (43)
I Ar=1¢q _ —At ~ ~ O ~ ~
[ = A7 (=m0, (34) S" R'=§ R +--(§xR). +S4R,, (44)
ﬂ 343
t
al(t) = / e No@(s)ds, (35)  where(S' x R/)., = (S| R} — S4R)) is thez’-component of
5 the cross product and
t & — Nt
o , S'=u'—e (a’ +u'y), (45)
a(t) = /eA *a’(s)ds, (36) R
0 f{\/EI/‘\/—I/‘\/O—f‘\/l/l\/()—Q, (46)
and Sy =ul, — e Ptal, +up,), (47)
Q' —
azrr e O Ry=2 —z2— 71— e PYup, —al.. (48)
Nl=|-gisn 25 0f- (37) A’ represents @ x 2 matrix andl” = A1 (1 — e~ A't). Ac-
cordingly, if Egs. (45)-(48) are substituted into Eq. (23), it
0 0 % can be shown that the solution to the FPK equation (14) can

) be written as the product of two independent TPD’s, that is
The transformation betweet andS’, R” andR/’ can be es-

tablished through the associated transformation between the P'(R',S') = P'(R,S")P./(R}, S%), (49)
variablesu” andu’, ¥’/ andr’. According to Ref. 1, it can be

shown that such transformations are given by such that
_ DRI SN =PI O 4
u//_e—ﬁt(a//(t)+ug) P(R,S)_P(r,u,t\ro,uo), (50)
/ ry— P (Ry, S = P2, ul, t|z),ul ), 51
— e—W t[u/ . e—A t(a/(t) + ué))]? (38) z ( 3 3) (Z Uy |ZO Uoz ) ( )
where
and e~~~
¢ P/(R/,S)
v — ! /a"(s) ds — 1} Cy ~ —~
= — [FIS'? -2HR/ - S
0 12 (FG — H?) eXp{ P18
, ¢ QO ~ —~
=p e WitN (r’ — A"l/ a'(s)ds — 1’2) . (39) —ZﬁH(S’ X R’)Z/+01G|R’|2}/2(FG — H2)} (52)
0
Therefore is the planar TPD describing the diffusion process of a Brow-
. Wt ar . Wty nian charged particle across the magnetic field under the ac-
ST=e" 778, R'=e¢"TAR. (40) tion of a planar external force (), with P/(r', 0, 0[w'y) =

C16(r' —1'o)6(w — u/o) as the initial condition. The TPD

. S
So, the transformation between ba®{ and P’ is given by P, being equal to

P’ dS'dR’ = P" dS"dR”, where the volume element trans-
forms asdS’dR’ = J dS"”dR”. According to Eq. (40) it can 1

/ / AN
be shown that Pz (Ra, 53) = [4n2(FG — H2)]'/2
6% + Q’2> (FS? — 2H R, S4+GRL?)
P = P 41 _ 3 3~3 3
(ﬁQ (41) xexp{ 2FC - 1Y) } , (53)
The constan’;, given in the initial condition (15), will then  describes the diffusion process along thexis, i.e. paral-
be equal ta0; = (8% + Q'2) /3. lel to the magnetic field, in the presence of an external force

a’, (t) with the initial condition
To return to the phase-spa¢e/,u’), let us denote the R . ., , .
quantity x’ as any vector in the’'y’-plane andP’ as the P (2 us, 0129, ugr) = 0(2" — 20)0(ul — ug)-
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This TPD is the same as that of ordinary Brownian motion inwhereD,,
the presence of an external forgg(t) without the influence

of the magnetic field, as expected.

The immediate consequences of Egs. (52) and (53) are

the following:

(@ The planar velocity-space fundamental solution
P’(S') and the fundamental solutiaR,, can be calculated

from the integrals

(S = / PR, S dR, (54)
PL(S%) = / P (R, S5) dRY . (55)
The former integral yields
5 8 BIS'>
PI(8)= 2\ (1—e—20t) eXp{ a1 — ey O

and the latter

(S g v B¢
P)=(miem) oo | ©)

= D 3?/(2'? + %) represents a rescaling of the
Einstein diffusion constant’{ = \/3% = k,T/m{3) and

1
/ /N_
~ [2rD(28t — 3 + 4e Bt — e=26t) / 3]1/2
B~z — B (e~ yup,—aly)?
X exp{ 2D(20t — 3+ de—Bt — ¢—20t) . (64)
Clearly, the configurational fundamental solution is
P’ (I‘ t|r0,u0) P/(R/)P/ (RS)

(c) For any other initial velocity distributioff’ (u’,0), a
more general probability distribution, corresponding to the
solution to the FP equation, can be calculated through the
following integration

(0, t) /fuo,

If we choose, in the originah velocity-space, the particu-
lar case of an initial Maxwellian velocity distribution of the
charged Brownian particle at a temperatiiyedifferent from
the equilibrium temperatur@, and with an assigned mean
velocity (u)o, then

(', tlug) duj . (65)

so that the product of Eqgs. (56) and (57) leads to the same

fundamental solution to the Fokker-Planck equation imthe

velocity-space, that is

P'(S") = P'(v', U, try,up) = ﬁ(SA’)PZ’/(Sé),

such that

(S )= 8 v oIs'P
Pt a0

(b) Similarly, in the configuration spac€ the planar-
spatial TPDP’(R’) and spatial TPDP,(R}) defined by

PI(RY) = P/(r/, t|r)o, o) (59)
PL(Ry) = P'(2 |z}, up..) (60)
can be calculated through the integrals
PI(R)) = / P/(S',R/)dS (61)
P.,(RY) / P..(RY, 84)dSy . (62)

After a long but straightforward algebra they reduce to

p

ﬁ\ /t / /
(I‘ |I' O;uO) om DI(2,6t—3+4e ﬁt_e—Qﬁt)

xexp{—

o~

,8|I/‘\/—I/‘\/0—K171(1—6 u()—a’|2 (63)
2DL(20t — 3+ de Bt — ¢—20t) ’

77\\’15)

m|u

— (uo?
T } (66)

m 3/2
f0)= (5 ew] -
The initial distribution for the transformed’ velocity-space
can be constructed using the transformation (5). In this case it
can be shown that1 — (u)o|> = |u’ — (u’)o|? and therefore
the initial distribution in the transformed space has exactly
the same form as Eq. (66), but with the veloaityeplaced
by u’. So, a more general solution to the FP equation after
integration of Eq. (65) will be

m 3/2
1t _
flu ) = (2kaTt>

" exp{mu, —S‘A;]ia’T(f) + (u')o) |2}7 (67)

T,
T, = T[l - <1 - 7?>e2ﬁt} .

We note that, agy, — 0, f(u’,0) = 6(u’ — up) with

u, = (u')y and temperaturd; = T(1 — e~25*). In this
casef(u’,t) reduces to the fundamental solution (58). On
the other hand, i3, = 0 andB, = 0, then the Larmor fre-
quency isQ)’ = ¢B/mec, with B being the modulus of the
magnetic fieldB = (0,0, B). In this case, Eq. (67) reduces
to the same probability density obtained by Ferrari [8] by an-
other method. A more general solution fffr, u,t) is still
under study.

where

(68)
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4, Conclusions a’(t) and fluctuatingA’(t) forces. Egs. (17) and (18) have
o o ) the same algebraic structure as that of the ordinary Brown-
For a constant magnetic fiell = (B1, B, Bs) itis possible  jan motion where we have shown that the fluctuating force
to show, by means of transformation (6), that the LangevinA//(t) has the same statistical properties of GWNAHSt).
equations (1), (2) formulated in th, u) phase-space are |, the(r”, u”) phase-space, the solution to the FPK equation
equivalent to those given by Egs. (9), (10) in the,u’) s found immediately. To return t@’, u’) phase-space we
phase-space. It is also shown that in the transformed spag@e the transformation (40) to obtain the fundamental FPK
r’, the magnetic field is visualized as another vector pointsg|ution given by Eq. (49). From the latter we can calculate
ing along thez’-axis of the Cartesian reference frame,,  the fundamental FP solution as shown in Eq. (58).
B’ = (0,0,B'), whereB'? = B} + B3 + B = B? that Eq. (67) is a more general solution to the FP equation.
is, the modulus of the transformed magnetic field is equal tq; has peen calculated by assuming a Maxwellian initial dis-
that of the original magnetic field. The equivalence betweenyipution function, such as that given by Eq. (66). A more

the two sets of equations is also due to the fact that the noisganeral solution to the FPK equation has not been found yet.
term A’(t) has the same statistical properties of GWN as the

original noiseA (t).
To solve the FPK equation in the transform@d,v’)  Acknowledgments
phase-space, a second transformation given by Eq. (16) was
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