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We solve the time-dependent Sétinger equation in one and two dimensions using the finite difference approximation. The evolution

is carried out using the method of lines. The illustrative cases include: the particle in a box and the harmonic oscillator in one and two
dimensions. As non-standard examples we evolve two solitons and show the time-dependent solitonic behavior in one dimension and the
stabilization of an atomic gas model in two dimensions. The codes used to generate the results in this manuscript are freely available under
request, and we expect this material could help students to have a better grasp of the solution of partial differential equations related to
dynamical systems.

Keywords:Finite difference methods; computational techniques; &stlinger equation.

Resolvemos la ecuamni de Schidinger dependiente del tiempo en una y dos dimensiones usando diferencias finitas. Laregallleva

a cabo usando el @odo defiineas. Los casos ilustrativos incluyen: la farfa en una caja y en un potencial de osciladorcarico en
unay dos dimensiones. Como ejemplos poco comunes presentamos ladevdiidios solitones y mostramos la dependencia temporal del
comportamiento solinico en una dimen&n y la estabilizadin de un modelo de gastaico en dos dimensiones. Lo8digos usados para
generar los resultados en este manuscrito se encuentran disponibles a la meior, petgperamos que este hecho ayude a los estudiantes
a adquirir un mejor entendimiento de la sofutide ecuaciones diferenciales parciales relacionadas con sisteimascdis,

Descriptores:Método de diferencias finitagdnicas computacionales; ecu@atide Schiedinger.

PACS: 02.70.Bf; 02.70.-c

1. Introduction Thus, numerical solutions to PDEs should be made available
] . ] . to any student, as a tool for tackling problems with approxi-
Numerical methods have been very important in basic remate methods that could help explain experimental results or

search on physics. Nowadays partial differential equationgroyide predictions of theoretical branches of physics.
(PDEsSs) related to main stream problems involve the use of
numerical solutions to PDEs. As examples we mention afew: This is expected to be the first of a series of papers in
which we illustrate the solution of PDEs and provide the
1) numerical relativity, related to the set of highly non- code. In this first manuscript we present the numerical solu-
linear systems of coupled differential equations of gen-ion to Schiddinger’s equation in various situations: one and
eral relativity, which have to be solved under very gen-two dimensions for classical problems whose solutions are
eral symmetry conditions in order to predict the profile known, employing the finite difference (FD) method, and us-
of gravitational waves that are expected to be observethg the method of lines to integrate in time. The basic idea of
by ground-based gravitational wave detectors; the FD approach is to replace function derivatives by differ-
. : . . ences in that function evaluated at certain neighboring points
2) Eulers_ equatlo_ns, where the numerical SOI_Ut'On ©jn the domain, so that the solution is given solely for that set
PDES is essential, beca_use the hydro-dy_nammal cquas points. Spectral methods will be used in subsequent papers
tions must be solved e'”‘ef for comparison betweento solve hyperbolic equations in one and two dimensions, and
Fheory and laboratory expenments oron an aStrOp.hySéther important equations in physics, particularly in fluid dy-
ical scale, where these equations must be solved in Ol amics.
der to explain and predict astrophysical phenomena,
such as the physical conditions of the supernovae core- The main goal of these papers is to introduce students to a
collapse; very basic approach to the numerical solution of some equa-
_ tions in physics. We expect that the fact of presenting a full
3) a problem more related to the system we deal W'ﬂ\/\/orkingpcoyde that studgnts can modify stin?ulates thge use zf

in this paper, the evqluﬂo_n of a_Bo_se condensate 'Mumerical methods to solve problems related to particular re-
the mean field approximation, which involves the So'”'search topics

tion of the time-dependent Sdidinger equation with

potentials including corrections of self-interaction be-  This first paper involves what we consider the simplest
tween pairs of particles, the so-called Gross-Pitaevskicase: the 1D and 2D Saidinger equation for a particle in a
equation [1]. box and a particle in a harmonic oscillator potential; we also
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evolve two solitons in one spatial dimension and the stabineighbors can be calculated as follows:
lization of an atomic gas in two dimensions.

. . . A 2

'_I’he code we use to cor_npute the results in this paper is Flajo1) = f(z;) — Axf'(z;) + & ()
available on request, and this paper would serve to document 2
it. This type of code is expected to be a starting point for stu- A3

. . . €z " 4

dents in Physics who want to solve PDEs related to different ——5 7 (z;) + O(Az"),
problems; the code used in the solution of the present prob-
lems could be used - possibly with minor modifications- to Flaz) = flz)),
solve several other time-dependent problems. , Az?

As an extra bonus, we rewrite the exact solutions to the Flajer) = flag) + Az fi(zg) + ——f(2;)
classical problems in quantum mechanics in full space and Agd
time dependence. We do so, because we consider that cod- + Txfm(xj) + O(Az‘l)’

ing the solution to partial differential equations involves an

adequate knowledge of exact solutions to well known casesyhere the prime denotes the derivative with respect:.to
This paper is organized as follows: in Sec. 2 we preseniarting from these approximations it is possible to construct

the finite differences approximation of partial differential gifference operators for the derivatives ff. For instance,

equations in one dimension; in Sec. 3 we solve 8dimger's  py adding the first and third expressions one obtains an ex-

equation in one dimension; in Sec. 4 we develop the finitgyression for the first derivative at the pointwith a second-
differences approximation in 2 dimensions; and in Sec. 5 wgyder error

solve Schadinger's equation in 2D. Finally, in Sec. 6 we

draw some final conclusions. f(ay) = f($3+1)2; flaj-1) O(Az?);
x
2. Approximation using finite differences in  notice that the value of the function for the left and right near-
1D est neighbors is needed in order to calculate this derivative,
which is why this combination is called a centered finite dif-
2.1. Taylor expansions ference approximation.

) ) ) ] In order to obtain the second derivative fofit suffices to
There are different approximations of the system of equationg rite the combination

to be solved: for example, spectral methods assume that the
functions involved in the system of differential equations can  f(z;+1) — 2f(x;) + f(z;-1)
be expanded as a series of orthogonal functions on a given Ax?
domain; then orthogonality conditions and recurrence rela- .
tions are used to reduce the system to a simpler system o J,Il+1
equations for the coefficients of the expansion. This is a case
studied in depth in a forthcoming paper [2].

The approximation using finite differences works in a dif-
ferent way. In order to illustrate how discretization works in

= f"(x;) + O(Az?),

an Initial Value Problem, we assume the case of a hypothet-: 1 : j+1 n
. . o . ) : ]—1.n J.n s
ical finite domain with a time coordinateand a spatial co- N N
ordinatez. Spatial coordinates are defined as a discrete set N Y N

of points given byz; = jAx, and the boundaries correspond e 1. lllustration of the molecule used to constryct the
to the pointsz, (on the left) andcy (on the right). Time ;11 time slice. Afilled circle indicates the place where one wishes
t" = nAt is also defined only for certain values of the con- to find the desired variable onto, and empty circles indicate the lo-
tinuum time. Thus, a function is defined only for the valuescation where the functions involved are known.
of x andt¢ that correspond to points in the mesh in such a
way that for a given continuous functigithere are available /
values of it at(t", z;), denoted here by?*. For a uniformly wll/,
discretized domainAz = z; . — x; andAt = "+t —¢7, .
indicate the resolution in the spatial and time coordinates re- .,
spectively. Once we have defined an approximate discrete
domain, we proceed to define an approximation of a PDE.
The finite difference approximation assumes that the @ '
functions involved can be expanded in a Taylor series arounggyre 2. Exact solution for the particle in a one-dimensional
every point of the mesh up to a desired order of approximanox. (Left) Real part of the wave functio@ for the particle in a
tion. Therefore, considering the functighis defined and  box withn, = 0, 1,2, 3,4 att = 0. (Right) Density of probability
smooth at every;, the value of the function for the nearest for the same cases.
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o Ja\ Approximation of derivatives with respect to time can be

‘ [ obtained in the same way as the spatial derivatives, one only
needs to vary the time labels)(instead of the space labels
(j). For a complete description of the discrete version of op-
erators see [3].

e b ' ’ el ’ ' 2.2. The evolution

@ The evolution of data consists in calculating the function
NV S+ from data in the previous time slicg', /", /72

etc. In order to illustrate this fact, consider the diffusion equa-

tiondf /ot = 02 f /0z*. The discretized version of this equa-

tion centered aft”, ;) is:

A T i PR Y
FIGURE 3. Numerical solution for the particle in a one- ! 2Atj = A2 s +O(A At ), (2)
dimensional box. (a) Real part of the wave functibffor a particle . _ _
in a box, withn, = 2 for several times. (b) Density of probabil- Where the results of finite differencing above have been used

ity also for several values of time. The time-independenceisf =~ assumingAt andAx to be small. In (2) itis possible to solve
manifest. The resolution used &z = 0.001. (c) The integral  for f]”“, that is, the value of at timet™*! can be found

N = [} pdz which remains constant in time. (d) THa norm  in terms of its values at previous time levels. When this is
of e, defined asli(e) = )_; |e:| for everyz;. This quantity for  possible the method is called explicit. Notice that in order
Az = 0.004 is four times that forAz = 0.002, which in turn is to calculate the values of**!, values off™ and f*~! are

four times that found forz = 0.001. required, that is, three time levels are needed; this is an ex-

which implies the desired expression for the second denvaample of an explicit method (as done in Ref. 4). In practice,

tive with second-order accuracy as well. As in the previ- one defines arrays for each variable (gyor the number

ous case, this is also a centered approximation of the secoﬁ)cg time levels needed (3 with this discretization), and as long
derivative. as one is working in one dimension there are no problems

In the location of the spatial boundaries, one of the nearﬁé?!?giiglgnrgetng' d?&gﬁggnlvrlﬁg ?nneenfnjoeralfm\aﬂg)hmee(lu:;]
est neighbors would be missing (for the paigtthe left point y
2, is not defined), and a centered approximation would re|mportant problem. That is why we introduce once for all the
quire the addition of an extra point (a ghost point) to the?vf/)(tnlc'[)|rr]ngflg\i|2/le|:1hfhde?rfwé_tlr?gj g;/:?r:;a)s \;Vh'iza%?:yt;lequgeas )
domain; in most problems it is preferable to live without bp P

ghost points for the purpose of imposing boundary CondlprOX|mat|on is written in a semi-discrete form as
tions. Therefore we consider that only points to the right in Of [l —2f7 + fi
the spatial domain are available (in the case of the left bound- ot A2 +0(Az?). (3)

ary), thus we proceed by writing the approximations of the
function considering only points on the right as follows: The molecule associated with this discretization can be found

in Fig. 1 for eachy. Then, itis assumed that for eaghf, sat-

1.004

1.002

0.998

0.994

0.902
099

flx;) = flx;), isfies an ordinary differential equation (ODE) along the verti-
A2 cal lines of the domain (see Fig. 1). With this in mind, it suf-
f(zjs1) = f(zy) + Axf' + x 7+ 0(AT?), fices to have the discretization in (3) and integrate the result-
2 ing differential equation in time fod f /9¢. Terms other than

f(zj42) = f(x) + 2Azf" + 2A2* " + O(Az?). (1) the timg derivative off are _considered to belong to t.he right-
hand side of the ODE in time. Thus only an ODE integrator

The combination is required to evolve the data from one time slice to the next.
One only needs to choose the integrator, which is selected
f(@jp2) — 4f(xj11) + 3f(z;) = 28z f' + O(Az®) according to the accuracy, dissipation and stability proper-

ties that depend on the restrictions on the fagtef Ax? (to
implies the desired expression for the first spatial derivativgagrn about the properties of evolution algorithms we refer the
of the function with second-order accuracy; when applied tqeader to Refs. 3, 5 to 7). In the present paper, the third-order
the left boundary it would read Runge-Kutta algorithm is the one used for the evolution. A
simplified but practical illustration of this algorithm assumes
o= f(wz) = 4/ (x1) + 3/ (o) + O(Az?). the unknown functiory to be such thad, f = S, whereS
28z would be, for instance, the right-hand side (RHS) in (3). A
A similar expression can be obtained for the right boundarynaive way to solve this equation would be to replace it by
considering only points to the left. frtl = fm+ AtS™, a procedure known as the Euler method,
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which is neither accurate nor stable. The Euler method can b@ 1. Particle in a 1D box
thought of as a first-order Runge Kutta Method, which evalu-
ates derivativesy™) only at the time slicet(*), which makes 3.1.1. Exact solution
this method very asymmetric with respect to the beginning
and end of intervals. To remedy this, one makes an Eulern this case we choose the domain tosbe [0, 1]. The par-
like trial step to the midpoint to compute the real step acroséicle is considered to be free in the domain, thatis= 0,
the whole intervalAt, having in this manner a single-step except at the boundaries, whéreis assumed to be infinite
method, but double-stage time discretization. Namely, in order to model the effects of a solid wall of a box; thus the
n boundary conditions ar®(z = 0,t) = ¥(z = 1,¢) = 0. If
k1 = AtS(t", ™), . :
one separates variables, the wave function can be expressed

ko = AtS(t"™ + At/2, ™ + k1/2), asVU(z,t) = v¥(x)e P, and the remaining equation for
i . 3 ¥ (x) reads:
o9 +2FEYy =0 @
= fPHALS(t"FAL/2, fr 4k /2)+O(AL).  (4) Ox? o

Symmetrization cancels out the first-order error term, yield-Applying the conditions of continuity of and its derivative
ing a second-order accuracy method (Runge Kutta 2). Bwt the boundaries, we know the solution is:

using two trial steps per time interval, it is possible to cancel
out first- and second-order error terms and construct a third-
order Runge Kutta method. The second trial step would be
given by ks = AtS(t, + At/2, f™ + k2/2), and then the
algorithm for calculatingf™*! in terms of the values of " 1e-05
would read: =0 =01

Y, () = Ay, sin(n,mx), E, =

kl = AtS(tnvfn)v
ko = AtS(t" + At/2, ™ + k1/2), t=0.2
ks :AtS(tn+At/2,fn+k2/2), e s

-1 5e-06

5e-05

1 2 1
it =4 6k;l T §k;2 + 6k3, (5) =03 t=0.4 =0.5

This algorithm is widely used because it requires only
three iterations and is accurate and stable for small enougf
values of theAt/Az? factor.

In a few words, the way we solve the time-dependent
Schibdinger equation will be based on tegolution of the i
initial data. That is, given a wave function at initial tint&, 0.6 0.8
the values of the wave function at subsequent time slices are
calculated using the evolution under a MoL discretization. In
the case of the particle in a box and the harmonic oscillator 0.7
we shall use the exact solution at the initial time as the initial
data for the wave function. In the case of solitons we shall
also use two superposed exact solitons as initial data and ir
the atomic gas model we start with a Gaussian initial wave t=1.0
function.

1 2.5e-05

1 2.5e-05

0
0.0001

1 5e-05
t=1.8

3. 1D Shcidinger Equation

The general form of the one-dimensional Sidinger equa- . . . .

tion is 0 075 0 075 0 0.75

_ha\I'(x,t) h? 9%¥(z,t)
ih =—— "=

+ V(x,t)¥(x,t). (6) FIGURE 4. Snapshots of the error for two different resolutions for

a0 2
Itis i 8;5 t wh 2m | 8|:vt_ ical soluti ¢ tthe evolution shown in the previous figure. The numerical solu-
IS Important, when caiculaling numerical Solutions, 10 g€l shows second-order convergence. The resolutions used are

rid of constants that are either tiny or huge. That is WhyA, — 0.001 and Az = 0.002. The continuous lines represent
atomic units are used, thatis= m = 1. We shall assume the error calculated witi\z = 0.001, and the dots indicate the

these units in the rest of the paper. Next we present particulasrror calculated using\z = 0.002 divided by 4 (only at a few
solutions to this equation. points, so that it is possible to appreciate the plot).
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wheren, = 0,1,2,... is the quantum number labeling the is able to keep this number constant. Finally also the con-
permitted energy values. After demanding the normalizatiorvergence of thd.; norm of the error to zero is shown. This
of the wave function last plot in Fig. 3 is quite important when showing numerical
solutions of PDEs, and one cannot trust the numerical results
obtained, unless there is an indication that the error of a so-
lution converges to zero in the continuum limit (that is, when

1 1
/¢*¢dz = / Aim sin?(ngmz)dr = 1,
0 0

Ax, At — 0).
we find thatA? /2 = 1, thatis: 4,,, = /2, which finally Aside from the result showing the convergencd.gfe),
implies 1, (z) = v/2sin(n,7x). Therefore, the complete one should verify, at least for a few snapshots, that the error
time-dependent solution is: is actually converging to zero, not only a norm of it, but the
, error itself. In Fig. 4 we show the error for two different res-
U, (2) = V2eFret sin(n, ). (8)  olutions. The fact that when doubling the resolution the error

. . . is four times smaller indicates second-order convergence of
In order to compare the numerical solution with the exact so; . :
lution. we shall onlv use the real part of it: the solution (see R_ef. 8_for det{;uls about conver.gence).. What
, y p
can be seen also in this plot, is that the error is growing in
RV, (,1)) = V2cos(E,, t) sin(nymz). (9) time. One important criterion to trust in numerical results is
that one must be able to monitor the numerical error and de-
The energy density calculated from (8) is termine the admitted tolerance for a solution, that is, one is
p=V*¥=2sin*(n,7z), which is evidently time indepen- able to decide from what values of the error on, one cannot
dent. The time-independence serves to test any numericglst the numerical results anymore.
solution, which must show a harmonic time-dependence of
¥ whereas must remain constant in time.
An important lesson in working out a numerical solution, 3 2 Harmonic oscillator
is that one actually has to develop all the constants involved,
and keep in mind the domain, because a general solutio 51
needs all the parameters and constants of integration to be
fixed. In Fig. 2 we show the exact solutionfat= 0 for
various values of.,,.

Exact solution

In this case the potential is

3.1.2. Numerical solution Vi(z) = %ka.

The discretized version of (6) for the present cdge0) is

as follows: Once again the solution using separation of variables can

n n n be written as¥(z,t) = (x)e”*F! and the resulting

oV T, 20T 4T ) - S
—— = . Schibdinger equation is
o~ 2 Ar? + O(Az?) (10) ger eq

The right-hand side of this equation plays the rol&an (5). d24 5

In order to test whether a numerical implementation is cor- 2 TIB—az ]y =0, (12)

rect, one must reproduce the full time-dependent exact solu-

tion and show that the density of probability is actually time'wherea — Vk and3 — 2E. Defining the new variable
independent. Moreover, we define an error on the real part og — /az, one obtains '

the wave function by

e =R(Vpum) — R(Pes), (11)

(13)

whereVv,,,.,, and¥., are the numerical and exact solutions
respectively. In Fig. 3 we show the evolution of the initial ‘
wave function¥,(z,0) = /2sin(27z), which is the solu-
tion of a particle in a box with 2 nodes. The density of prob-
ability is also shown and is manifestly time-independent. An . ,
important quantity is the integral

1
N:/pdx, ) T Yo
0

FIGURE 5. Exact solution of the one-dimensional harmonic oscil-
which determines whether or not an evolution algorithm islator. (Left) Real part of the wave functioh for n, = 0, 1,2, 3, 4.
actually unitary or not; we show here that the method of linegqRight) Density of probability for the same cases.

05
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FIGURE 6. Numerical solution of the one-dimensional harmonic

oscillator. (a) Real part o¥,,, calculated for the harmonic oscilla-
tor andn. = 4 for several times is shown. (b) Density of probabil-
ity also for several times. The time-independence &f manifest.
The resolution used iz = 0.01. (c) The integralV = [ pdx
remains constant in time. (d) THe norm ofe. This quantity for
Az = 0.04 is four times that forAz = 0.02, which in turn is
four times that found forAz = 0.01. This indicates that the error
converges with second order to zero [8].

We look for bounded solutions fgf — +oo, and we
know such solutions satisfy

Y€)= e C2H(e),

where now the equation for thié is Hermite's equation

fgj—z‘ing(g—l)H—o, (14)
whose solutions are the Hermite polynomials
Ho(§) =1,
Hy(§) = 2¢,
Hy(€) = 2 - 4¢2, (15)
Hj(§) = 12¢ — 8¢7,
Hy(€) = 12 — 48¢% 4 16¢*,

and so on. Thus the normalized solution {dk:) is obtained
from

125

Once again we use the real part of this solution in order to

measure the accuracy of the numerical solution:

1 5 1
- —=z%)2 1
ﬁ?nwnm!e Hy, (z) cos <(nT + 2) t> .

R(Wn, (2,1)) =

(17)

We show this exact solution at= 0 for various values of

n, and also the density of probability in Fig. 5.

3.2.2. Numerical solution

The method of lines discretization for the Satlinger equa-

tion in this case is

oUWy, 20 U

ot 2

Ax?

J

- %ﬁ +O(Az?).

(18)

The boundary conditions are a subtle point. When construct-
ing the exact solution, the wave function is required to vanish
at infinity, so that the integral of the density of probability is

t=0.1

ol

% -
Il

4

[\e)

t=0.3

=

1\\\

t=0.5

t=0.6

fh:o

t=1.5

=2.0

T t=4.0

5e-05

1 4e-05

3e-05
2e-05
1e-05

0
5e-05

1 4e-05

3e-05
2e-05
1e-05

0
0.0001

-1 8e-05

6e-05
4e-05
2e-05

0
0.0002

-1 0.00016

0.00012

8e-05

4e-05

/@D*wd:c: 1:

1 2
Vn, (§) = \/ meﬁ "2H, (&),

with n, = 0,1, 2,

Recovering the original variables and

the time dependence &, one finds

Un, (2,1) =

/T2Men,!

1

e"iEnate= /2 (). (16)

i
JJ

o 1 " 1 |. 0
75 -75 0

1 "
0

FIGURE 7. Snapshots of the error using two different resolu-
tions Az = 0.01,0.02 for the evolution presented in the pre-
vious figure. The continuous lines represent the error calculated
with Az = 0.01, and the dots indicate the error calculated using
Az = 0.02 divided by 4 (only at a few points, so that it is possible
to appreciate the plot). The fact that when doubling the resolution
the error is four times smaller indicates second-order convergence
to zero.

T
i
-7.5 75 -75 0 7.5
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3.3. Solitons in one dimension
t=35 |

A slightly different problem is that of the solitonic behav-
ior. Solitons are standing wave solutions to the non-linear
Schibdinger equation for which the density profile of the so-
1 lution is preserved during the evolution. In order to show that
A V\ our algorithm works also in the non-linear case, here we show
L= the evolution of the solution

5
4
41 3
2

expli(vz + (a? — v?)t/2 — to)]
coshla(z — vt — xg)]

t=70 t=95 |

P =a

(19)

which is a standing wave function with amplitudespeed»
and initial time and positiot, andx, respectively. This is a
11 solution to the non-linear Sabdinger equation:

0 = 2 Oz2
and is called a solitonic solution [9]. An important property
of this type of solution is that it shows a density of probability
that preserves its profile in time (even if it moves across the
spatial domain) as a result of the balance between the focus-
ing tendency of the wave function and the dispersive effect of
the non-linear term. These solutions also propagate at a con-
stant speed. Especially important is the case in which more
4 than one of these solutions are evolved over the same spatial
domain. In fact solitons in a more precise language are not
only standing waves travelling at a constant speed with a con-
2 stant density profile, but these solutions have the property of
maintaining the shape of the density profile even when there
is interaction with other solitons [10]. In Figs. 8 and 9 we

0 show snapshots of two solutions like those of the type (19)
superposed with parameters= 2, v = +0.1, t; = 0 and

xo = 5. The system is evolved using periodic boundary
conditions, so that it is possible to track the evolution of the
system for various crossing times and see the solitonic behav-
ior several times.

N W~ 010

¥y (20)

t=105 t=115 =140 |

N W~ OO0

FIGURE 8. Evolution of two solitonic solutions on the same spatial
domain with periodic boundary conditions. The expected behav-
ior is manifest: the density profile -indicated with the solid line-
of each of the initial superposed solutions maintain its shape even p
after the two blobs interact with each other. The dotted line indi-
cates the real part of the wave function. {At- 35 the two blobs

are shown to interact and form a sort of momentary interference
pattern.

OoON B~O

finite. What we have done here is to use a large enough do-  ©
main so that the wave function is smaller thid@r!®, so that

one needs to apply the same boundary as for the particle in ¢
box, that is, the wave function is zero at the boundary. The
evidence that the algorithm and boundary conditions togethery
work well is shown in Fig. 6, where we preseR{¥) andp
calculated numerically fon,, = 4. The wave function is os-
cillating (preserving the location of the nodes), whereas the
density of probability remains time-independent.

In Fig. 7 we show the error for two different resolutions. r,gyre 9. Density profile in time for the two solitons, where peri-

Again, the fact that when doubling the resolution the error isodic boundary conditions are used. This simulation was carried out
four times smaller indicates second order convergence of th@ith a valueAt/Az? = 0.01 and resolutiomz = Ay = 0.025.

solution.
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j.-k.n+1

jk+1,n
j-Lkn

O j+lkn

j-k.n

j.k=1,n

FIGURE 10. lllustration of the molecule used to construttat
then + 1 time slice. A filled circle indicates the place where one
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the same way as before, and the spatial derivatives are con-
structed only by varying the index that labels the correspond-
ing coordinate, that is:

39(50]'71/1@) _ gj+1,k — 9j—1,k

2
ox 2Azx +0(Az7)
09(xj,yx)  Gjk+1 — Gjk—1 2
By = Ay + O(Ay?) (21)

for all t™, and analogous expressions for second derivatives.
The concept of the method of lines is exactly the same as in
the one-dimensional case. Then when the method of lines
discretization is to be applied, the molecule considered to
evolve a function from™ to ¢"*+! is illustrated in Fig. 10.

wishes to find the desired variable onto, and empty circles indicate

the location where the functions involved are known.
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FIGURE 11. Exact solution for the particle in a two-dimensional
box. We show the real part of the wave function (top) and the den-
sity of probability (bottom) for the case, =3y n, = 2.

4. Approximation using finite differences in
2D

5. 2D Schidinger Equation

In two dimensions and Cartesian coordinatesy), and us-
ing units wheregh = m = 1 as before, the Schdinger equa-
tion reads:

OV(yt) 1 (0w y.t) | OV (w,y,t)
ot 2 ox? Oy?
+ Vi(z,y,t)¥(z,y,t).
The exact solution for the particle in a box
and the harmonic oscillator is found through
U(z,y,t) = ¥(z,y)e *Pt. The discrete approximation

in two dimensions is an extension of the one-dimensional
molecule as shown in Fig. 10.

5.1. Particle in a 2D box

5.1.1. Exact solution

In this case we choose the domain tobe= [0, 1] x [0, 1].
After the separation of variables mentioned above, the re-
maining equation to be solved inandy is

(

which again permits a separation of variables of the type
Y(z,y)=X(2)Y (y). The boundary conditions again are
¥ = 0 on all faces of the boundary dp. After applying
these conditions and the normalization condition

1 1
0/ O/ ripdady =1,

2 2
Py v

52 ay2> 1 2By =0,

The FD approximation in two dimensions is an extensionthe exact solution reads:

of that in one dimension. Assuming a functigndepend-
ing on two spatial dimensions and time, a two-dimensiona
mesh is defined so that; = jAz, y, = kAy, and again
" nAt. Then the function is defined only at points
9k g(t", xj,yx). Its time derivatives are obtained in

Rev. Mex. 5. E54 (2

Yy n, = 2sin(ngmz) sin(n,my),
2
T
Enx,ny = ?[(ni) + (ni)],
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wheren, andn,, are the quantum numbers that label an en- 0.04
ergy state and indicate the number of nodes aleramndy. =004 =04 =08 ] o
The complete time-dependent solution is then
4 0.02
U = 2¢~Ent sin(n,wa) sin(n, y), 1 001
. . . . e 0
from which we take its real part in order to compare with 0.04
numerical results: t=1.2 t=1.6
0.03
R(T) = 2 cos(Eyt) sin(ngymz) sin(n,my). 0.02
0.01
As an example, we show in Fig. 11 the exact solution
with n, = 3 andn, = 2 att = 0. Our code should be able 804
to show the oscillating wave function and a time-independent 22 .4 2.8
density of probability. 4 0.03
=0 =0 + ++ + ++
Re(y;,)
\.%
T 532 ' '
t=3.6 t=4.0 { 0.05
0 I 1 0.04
a) ‘ { 0.03
1=2
4 0.02
Re(y; 3) ) +te TtAq 0.01
L‘)E’ | 1 L 1 fi 0
-8 0 03 07 0 03 07 0 035 07

c)

Re(y; 3)

1.01

1.008

1.006

1.004

1.002

0.998
0.996
0.994
0.992

0.988
0

9) '

FIGURE 12. Numerical solution for the particle in a two dimen-
sional box. We show the wave function and the density of prob-
ability for the casen, = 3 andn, = 3 at timest = 0,2,4.
These plots were obtained using the resolution = Ay = 0.01

and the factorAt/Am2 = 0.1. The wave function is oscillating,
the density of probability is constant in time, and so its integral
N = [ pdzdy.

FIGURE 13. Comparison of the error at the axjs= 0 for the
particle in a two-dimensional box at various times, with resolutions
Az = Ay = 0.01 andAz = Ay = 0.005 (divided by four)

with the factorAt/Az? = 0.1. When doubling the resolution, the
error is four times smaller, indicating second-order convergence of
the error to zero. The fact that the plots up to around 2 are

still superposed indicates second-order convergence of the calcu-
lation up to this time; after this value of time, the solution is not
second-order convergent anymore. However the convergence can
be preserved for longer when the resolution is increased.

5.1.2. Numerical solution

This time, Schidinger’'s equation for the particle in two di-
mensions and Cartesian coordinates reads

8% 0?2
(w * ay> ’

and its MoL discretized version reads:

OV 1

T 2

oV i (Vi — 2V Vi
ot 2 (Bx)?
Vo — 297, + ‘I’?,k—1>
(Ay)?

+O(Az?, Ay?).
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1=0 1=0

which we solve again using the third-order Runge-Kutta time
integrator (5). We apply Dirichlet boundary conditions set- Re¥s2)
ting, the wave function to zero at the boundaries. In Fig. 12
we show the wave function obtained numerically at various
times.

In Fig. 13 we show the comparison of the error when  s—_ ° :
two resolutions are used. Second-order convergence to zer x 7
is found on a projection of the error along the= 0 axis. =1

Re(ys )

5665 cooo
2

5.2. 2D harmonic oscillator

Ll
5555 o000
RenmoSNeh

5.2.1. Exact solution

In this case, the potential I8(z,y) = 3K (2% + y?). After
applying separation of variables = e~ "t X (2)Y (y), the o)
solution for the spatial part of the wave function is:

Re(y; )

1

V/m2nan,

[ 1 ) >
Y, =, ——e " /?2H, 22
y (77) ﬁ?"yny! € v (77); ( ) e)

FIGURE 14. Numerical solution of a particle in a two-dimensional
whereé = /ay andn = /az, and with the permitted en- harmonic oscillator potential. We show the real part of the wave
ergy values function and the density of probability for the casg = 3 and

Erpm, =g +ny + 1. ny = 2. The resolution used iAz = Ay = 0.1 with the
o factor At/Az? = 0.1. The domain used for the calculation is
Then the complete full time-dependent solution and itsz € [-7,7] andy € [-7, 7).
real part are:

X, (€) = e 2H,, (€)

5655 cooo
Ron2oINaR

1 5.3. Example in 2D
V(z,y,t) = | on—om "
T2, 12"vn, | . . )

When dealing with systems that allow the wave function out
Byt 2 of the domain or does not guarantee that the wave function

e viemTen ¥ Hy, (@) Hn, (y) is localized in a finite domain, it is important to deal with
[ 1 22 g2 boundary conditions on the wave function that distinguish
R(V(z,y,t)) = me_Te_T' between outgoing and incoming modes. However, in order
v v to provide more usual, simpler boundary conditions on the
x Hy, (2)Hy, (y) cos ((ng +ny + 1)t) . wave function we introduce the concept of sponge, that is,

we define a region of the spatial domain that acts as a sink of

As before, we choose this exact solutiortat 0 to be  particles. This technique has been applied in various studies
our initial data to be evolved using the Sétinger equation involving the solution to Sclidinger’s equation, for example

and we do not plot the exact solution anymore and proceed teelf-gravitating Bose condensates [11] and stabilization of an

show the numerical results. atomic gas [12]. The idea is to prevent the density of prob-
ability from being reflected back from the boundaries which
5.2.2. Numerical solution eventually would pollute the calculations.

The sponge-sink region is defined on a chunk of the do-

In Fig. 14 we show the real part of the wave function and thémain near the numerical boundary. This sponge is produced
density of probability at various times. The case correspondgy assuming that in this region the system has an imaginary

ton, = 3 andn, = 2. Once again, as expected, our codepgtential. In order to understand what the effects are on the
shows an oscillating wave function and a frozen density O&Iave function of the addition of an imaginary potential, we

probability. consider the Sckdinger equation
The domain has boundaries far from the region where the
dynamics is going on, that is, the evolution of the wave func- O 1,
tion is localized as in the one-dimensional case, thus apply- “or T *gv v+ Ve,
ing Dirichlet boundary conditions, setting the wave function
to zero at the boundaries, suffices. whereV is a general potential. We also write the complex
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conjugate of this equation: dipole interaction with classical radiation [14]. Finally, the
ou* 1 total potential to which the system is subject is
—i = ——V2U* 4 VU
ot 2 Z .
where we have assumed that the potential has a non-zer V== /a2 + 22 + 42 + g(t) Flz sin(wt) + y cos(wt)],

imaginary part. As usual, one multiplies the first equation

times ¥* and the second by, then adds both results and where we have used = 1, and where we use units such that
one obtains the continuity equation for the density of proba#, = ¢ = m = 1, wheree is the charge of the electron. Here

bility: w is the frequency of the laseg(t) is a function that goes
A(TT) i from zero to one in a finite time, anil is the laser intensity.
o +V- 3 (IVI* —U*VV) Under the symmetry used, Séldinger’s equation driving the

system reads
=20 Im(V).  (23)
ov 1/ 6% 02
WhenV is real, there is conservation of the density of prob- 5 =3 <8m2 + 8y2> U+ V.
ability. Otherwise, the system has a sink or a source of parti-

cles, depending on the sign bfx(V'). The remaining prob- We now carry out various simulations with different val-
lem is the choice of thém(V') profile that goes to zero in yes of F in order to determine the effect of this parameter
the region containing the physical system, and to a negativgy, the lifetime of the gas. In Fig. 16 we show the integral

number when approaching the sponge-sink region near thg the density of probability for various values of the laser
numerical boundaries. The profile we choose is as follows: jytensity. These simulations were carried out for an initial

wave function profile¥(z,y,0) = e~ @*+¥*) on the do-

1
Im(V) = TV {2+ tanh [(r — 7c)/6] — tanh (rc/0)} mainz € [—-20,20], y € [—20,20], with spatial resolution

which is a smooth version of a step function [11]. In this ex-
pression); is the depth of the imaginary potential wellis Im(V)
the radial coordinater(= « in the one-dimensional case and
r = /22 + y2 in the 2D case)t. is the radius at which the
step is centered) is the width of a transition region. In Fig.
15 we show the sponge potential used in the example below.”

In Refs. 11 the transmission and reflection coefficients

. . . -0.8

are calculated for a step function potential, and the maximum y
absorption corresponds to the case of a large region for the
sponge and a smdlf. In practice such conditions cannot be
afforded, and then the smoothed version of the step function -s <
helps to clean up the modes that otherwise would be reflectec
back into the physical domain. The conditions at the bound-
ary can be those of the faces of a box used earlier, and then
the reflected modes are absorbed in the sponge region. FIGURE 15. We showImn(V) for the 2D domain with/, = 1.

Using this technique, we proceed to show our last exam-
ple: the stabilization of a soft-core model of an atomic gas.
In this case we study the response of a distribution of atoms
to the interaction with a laser-like potential. We restrict this
to the case in which the system has s-lab symmetry, that is,
what happens at the plane= z; happens also for any other
z = constant plane. The Sclirdinger equation is used to
model the behavior of the gas [12], so that the wave function
represents the dynamics of the gas. Thus the two-dimensiona
examples above contain the necessary technology for simu-
lating this case.

One considers that the gas is made of hydrogen-like
atoms. The model for the potential over the electron of each
atom is Coulombian, that id,/y/z? + y2; however, we ap-

0 r
-0.2
0.4
0.6

ply Rydberg’s soft core model [13], in which case the atom 0 10 20 30 40 50 60 70 80
potential is1/+/a? + 22 + y?, wherea plays the role of the t

smoothness parameter and avoids the singularity at the orFicure 16. We show the decay oV = [ [ pdxdy for various
gin. The interaction with the laser is approximated by thevalues ofF.
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700 T T T T T T T T

time-dependent Schdinger equation in one and two dimen-
sions. As examples we have presented the solution for the
particle in a box and in a harmonic oscillator potential. These

600

500 | 1 examples help in understanding:
400 - 1 i) the evolution algorithm,
o
800 1 1 ii the time-dependent solution in terms of the wave func-

tion and the density of probability,

200

o0l iii) the checks of a unitary evolution,

iv) the concept of convergence of the solution in the con-

0 s . s s s s . .
18 2 22 24 26 28 3 32 34 36 tinuum limit.

F
FIGURE 17. We show the lifetime (as defined in the text) for vari- As a non-standard problem, we also showed the evolu-
ous values of". tion of solitonic solutions in one dimension. We expect this

. . example to illustrate:
Az = Ay = 0.2 and time resolutionAt/Az? = 0.1. P

The sponge contains 25 points from the faces of the domain.

i) what a solitonic solution is,
The frequency of the laser was assumed tabe 1.2, the

smoothness parameter of the atomic maedet 0.8. The in- ii) how periodic boundary conditions work.
tensity factorg(¢) used was a linear growing function from
t=0tot = 20. In two dimensions we solved Sditinger's equation that

In order to estimate the lifetime of the gas, we produce amodels a soft-core gas under a Laser-like potential. We ex-
exponential fitting of the curves in Fig. 16 frotm= 30 on,  pect the solution of this problem to illustrate:
that is, we use the function
N = Npe ¥/, i) how a sponge works, and

wheret is the time andr is a naive but commonly used es- i) how to deal with a time-dependent potential.

timate of the lifetime of the systenly and N, are numbers

proportional to the number of particles that have not left theThese tools could immediately be applied for instance:
numerical domain, and are freely chosen from the initial data,

in our case an initial Gaussian wave function with amplitude @) to the propagation of Bose condensates in optical lat-

and width equal to one (see above). In this case, tices through the simple introduction of a spatially pe-
20 20 riodic potential, as in Ref. 15,
N = / / pdxdy b) the evolution of collapsing and exploding Bose con-
—20 -20 densates in different trap symmetries as in Ref. 16,
indicates the integrated density of probability that remains in and

the domain. The results of the fitting are shown in Fig. 17.

We have shown with this test problem that the intensity
of the laser has an impact on the lifetime of the gas. The re-
sults shown here are pretty much consistent with those found
in Ref. 12. This example could be extended for instance tQI'he code is also available in Ref. 17
discover the effects of changing the frequency of the laser e
on the lifetime of the gas.

¢) agarden variety of models based on the solution of the
time-dependent Schdinger equation related to con-
densates and solitons.
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