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We solve the time-dependent Schrödinger equation in one and two dimensions using the finite difference approximation. The evolution
is carried out using the method of lines. The illustrative cases include: the particle in a box and the harmonic oscillator in one and two
dimensions. As non-standard examples we evolve two solitons and show the time-dependent solitonic behavior in one dimension and the
stabilization of an atomic gas model in two dimensions. The codes used to generate the results in this manuscript are freely available under
request, and we expect this material could help students to have a better grasp of the solution of partial differential equations related to
dynamical systems.
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Resolvemos la ecuación de Schr̈odinger dependiente del tiempo en una y dos dimensiones usando diferencias finitas. La evolución se lleva
a cabo usando el ḿetodo de ĺıneas. Los casos ilustrativos incluyen: la partı́cula en una caja y en un potencial de oscilador armónico en
una y dos dimensiones. Como ejemplos poco comunes presentamos la evolución de dos solitones y mostramos la dependencia temporal del
comportamiento solitónico en una dimensión y la estabilizacíon de un modelo de gas atómico en dos dimensiones. Los códigos usados para
generar los resultados en este manuscrito se encuentran disponibles a la menor petición, y esperamos que este hecho ayude a los estudiantes
a adquirir un mejor entendimiento de la solución de ecuaciones diferenciales parciales relacionadas con sistemas dinámicos.

Descriptores:Método de diferencias finitas; técnicas computacionales; ecuación de Schr̈oedinger.
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1. Introduction

Numerical methods have been very important in basic re-
search on physics. Nowadays partial differential equations
(PDEs) related to main stream problems involve the use of
numerical solutions to PDEs. As examples we mention a few:

1) numerical relativity, related to the set of highly non-
linear systems of coupled differential equations of gen-
eral relativity, which have to be solved under very gen-
eral symmetry conditions in order to predict the profile
of gravitational waves that are expected to be observed
by ground-based gravitational wave detectors;

2) Euler’s equations, where the numerical solution to
PDEs is essential, because the hydro-dynamical equa-
tions must be solved either for comparison between
theory and laboratory experiments or on an astrophys-
ical scale, where these equations must be solved in or-
der to explain and predict astrophysical phenomena,
such as the physical conditions of the supernovae core-
collapse;

3) a problem more related to the system we deal with
in this paper, the evolution of a Bose condensate in
the mean field approximation, which involves the solu-
tion of the time-dependent Schrödinger equation with
potentials including corrections of self-interaction be-
tween pairs of particles, the so-called Gross-Pitaevskii
equation [1].

Thus, numerical solutions to PDEs should be made available
to any student, as a tool for tackling problems with approxi-
mate methods that could help explain experimental results or
provide predictions of theoretical branches of physics.

This is expected to be the first of a series of papers in
which we illustrate the solution of PDEs and provide the
code. In this first manuscript we present the numerical solu-
tion to Schr̈odinger’s equation in various situations: one and
two dimensions for classical problems whose solutions are
known, employing the finite difference (FD) method, and us-
ing the method of lines to integrate in time. The basic idea of
the FD approach is to replace function derivatives by differ-
ences in that function evaluated at certain neighboring points
in the domain, so that the solution is given solely for that set
of points. Spectral methods will be used in subsequent papers
to solve hyperbolic equations in one and two dimensions, and
other important equations in physics, particularly in fluid dy-
namics.

The main goal of these papers is to introduce students to a
very basic approach to the numerical solution of some equa-
tions in physics. We expect that the fact of presenting a fully
working code that students can modify stimulates the use of
numerical methods to solve problems related to particular re-
search topics.

This first paper involves what we consider the simplest
case: the 1D and 2D Schrödinger equation for a particle in a
box and a particle in a harmonic oscillator potential; we also
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evolve two solitons in one spatial dimension and the stabi-
lization of an atomic gas in two dimensions.

The code we use to compute the results in this paper is
available on request, and this paper would serve to document
it. This type of code is expected to be a starting point for stu-
dents in Physics who want to solve PDEs related to different
problems; the code used in the solution of the present prob-
lems could be used - possibly with minor modifications- to
solve several other time-dependent problems.

As an extra bonus, we rewrite the exact solutions to the
classical problems in quantum mechanics in full space and
time dependence. We do so, because we consider that cod-
ing the solution to partial differential equations involves an
adequate knowledge of exact solutions to well known cases.

This paper is organized as follows: in Sec. 2 we present
the finite differences approximation of partial differential
equations in one dimension; in Sec. 3 we solve Schrödinger’s
equation in one dimension; in Sec. 4 we develop the finite
differences approximation in 2 dimensions; and in Sec. 5 we
solve Schr̈odinger’s equation in 2D. Finally, in Sec. 6 we
draw some final conclusions.

2. Approximation using finite differences in
1D

2.1. Taylor expansions

There are different approximations of the system of equations
to be solved: for example, spectral methods assume that the
functions involved in the system of differential equations can
be expanded as a series of orthogonal functions on a given
domain; then orthogonality conditions and recurrence rela-
tions are used to reduce the system to a simpler system of
equations for the coefficients of the expansion. This is a case
studied in depth in a forthcoming paper [2].

The approximation using finite differences works in a dif-
ferent way. In order to illustrate how discretization works in
an Initial Value Problem, we assume the case of a hypothet-
ical finite domain with a time coordinatet and a spatial co-
ordinatex. Spatial coordinates are defined as a discrete set
of points given byxj = j∆x, and the boundaries correspond
to the pointsx0 (on the left) andxN (on the right). Time
tn = n∆t is also defined only for certain values of the con-
tinuum time. Thus, a function is defined only for the values
of x and t that correspond to points in the mesh in such a
way that for a given continuous functionf there are available
values of it at(tn, xj), denoted here byfn

j . For a uniformly
discretized domain,∆x = xi+1 − xi and∆t = tn+1 − tn,
indicate the resolution in the spatial and time coordinates re-
spectively. Once we have defined an approximate discrete
domain, we proceed to define an approximation of a PDE.

The finite difference approximation assumes that the
functions involved can be expanded in a Taylor series around
every point of the mesh up to a desired order of approxima-
tion. Therefore, considering the functionf is defined and
smooth at everyxi, the value of the function for the nearest

neighbors can be calculated as follows:

f(xj−1) = f(xj)−∆xf ′(xj) +
∆x2

2
f ′′(xj)

− ∆x3

6
f ′′′(xj) + O(∆x4),

f(xj) = f(xj),

f(xj+1) = f(xj) + ∆xf ′(xj) +
∆x2

2
f ′′(xj)

+
∆x3

6
f ′′′(xj) + O(∆x4),

where the prime denotes the derivative with respect tox.
Starting from these approximations it is possible to construct
difference operators for the derivatives offn

i . For instance,
by adding the first and third expressions one obtains an ex-
pression for the first derivative at the pointxj with a second-
order error

f ′(xj) =
f(xj+1)− f(xj−1)

2∆x
+ O(∆x2);

notice that the value of the function for the left and right near-
est neighbors is needed in order to calculate this derivative,
which is why this combination is called a centered finite dif-
ference approximation.

In order to obtain the second derivative off , it suffices to
write the combination

f(xj+1)− 2f(xj) + f(xj−1)
∆x2

= f ′′(xj) + O(∆x2),

FIGURE 1. Illustration of the molecule used to constructf at the
n+1 time slice. A filled circle indicates the place where one wishes
to find the desired variable onto, and empty circles indicate the lo-
cation where the functions involved are known.

FIGURE 2. Exact solution for the particle in a one-dimensional
box. (Left) Real part of the wave functionΨ for the particle in a
box withnx = 0, 1, 2, 3, 4 at t = 0. (Right) Density of probability
for the same cases.
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FIGURE 3. Numerical solution for the particle in a one-
dimensional box. (a) Real part of the wave functionΨ for a particle
in a box, withnx = 2 for several times. (b) Density of probabil-
ity also for several values of time. The time-independence ofρ is
manifest. The resolution used is∆x = 0.001. (c) The integral
N =

∫ 1

0
ρdx which remains constant in time. (d) TheL1 norm

of e, defined asL1(e) =
∑

i |ei| for everyxi. This quantity for
∆x = 0.004 is four times that for∆x = 0.002, which in turn is
four times that found for∆x = 0.001.

which implies the desired expression for the second deriva-
tive with second-order accuracy as well. As in the previ-
ous case, this is also a centered approximation of the second
derivative.

In the location of the spatial boundaries, one of the near-
est neighbors would be missing (for the pointx0 the left point
x−1 is not defined), and a centered approximation would re-
quire the addition of an extra point (a ghost point) to the
domain; in most problems it is preferable to live without
ghost points for the purpose of imposing boundary condi-
tions. Therefore we consider that only points to the right in
the spatial domain are available (in the case of the left bound-
ary), thus we proceed by writing the approximations of the
function considering only points on the right as follows:

f(xj) = f(xj),

f(xj+1) = f(xj) + ∆xf ′ +
∆x2

2
f ′′ + O(∆x3),

f(xj+2) = f(xj) + 2∆xf ′ + 2∆x2f ′′ + O(∆x3). (1)

The combination

f(xj+2)− 4f(xj+1) + 3f(xj) = 2∆xf ′ + O(∆x3)

implies the desired expression for the first spatial derivative
of the function with second-order accuracy; when applied to
the left boundary it would read

f ′0 =
f(x2)− 4f(x1) + 3f(x0)

2∆x
+ O(∆x2).

A similar expression can be obtained for the right boundary
considering only points to the left.

Approximation of derivatives with respect to time can be
obtained in the same way as the spatial derivatives, one only
needs to vary the time labels (n) instead of the space labels
(j). For a complete description of the discrete version of op-
erators see [3].

2.2. The evolution

The evolution of data consists in calculating the function
fn+1

j from data in the previous time slicesfn
j , fn−1

j , fn−2
j

etc. In order to illustrate this fact, consider the diffusion equa-
tion∂f/∂t = ∂2f/∂x2. The discretized version of this equa-
tion centered at(tn, xj) is:

fn+1
j − fn−1

j

2∆t
=

fn
j+1 − 2fn

j + fn
j−1

∆x2
+O(∆x2, ∆t2), (2)

where the results of finite differencing above have been used
assuming∆t and∆x to be small. In (2) it is possible to solve
for fn+1

j , that is, the value off at time tn+1 can be found
in terms of its values at previous time levels. When this is
possible the method is called explicit. Notice that in order
to calculate the values offn+1, values offn andfn−1 are
required, that is, three time levels are needed; this is an ex-
ample of an explicit method (as done in Ref. 4). In practice,
one defines arrays for each variable (sayf ) for the number
of time levels needed (3 with this discretization), and as long
as one is working in one dimension there are no problems
of allocatable memory, however, when one deals with equa-
tions in two and three dimensions, the memory becomes an
important problem. That is why we introduce once for all the
notion of the Method of Lines (MoL), which only requires
two time levels. In the method of lines approach, the FD ap-
proximation is written in a semi-discrete form as

∂f

∂t
=

fn
j+1 − 2fn

j + fn
j−1

∆x2
+ O(∆x2). (3)

The molecule associated with this discretization can be found
in Fig. 1 for eachj. Then, it is assumed that for eachj, f , sat-
isfies an ordinary differential equation (ODE) along the verti-
cal lines of the domain (see Fig. 1). With this in mind, it suf-
fices to have the discretization in (3) and integrate the result-
ing differential equation in time for∂f/∂t. Terms other than
the time derivative off are considered to belong to the right-
hand side of the ODE in time. Thus only an ODE integrator
is required to evolve the data from one time slice to the next.
One only needs to choose the integrator, which is selected
according to the accuracy, dissipation and stability proper-
ties that depend on the restrictions on the factor∆t/∆x2 (to
learn about the properties of evolution algorithms we refer the
reader to Refs. 3, 5 to 7). In the present paper, the third-order
Runge-Kutta algorithm is the one used for the evolution. A
simplified but practical illustration of this algorithm assumes
the unknown functionf to be such that∂tf = S, whereS
would be, for instance, the right-hand side (RHS) in (3). A
naive way to solve this equation would be to replace it by
fn+1 = fn+∆tSn, a procedure known as the Euler method,
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which is neither accurate nor stable. The Euler method can be
thought of as a first-order Runge Kutta Method, which evalu-
ates derivatives (Sn) only at the time slice (tn), which makes
this method very asymmetric with respect to the beginning
and end of intervals. To remedy this, one makes an Euler-
like trial step to the midpoint to compute the real step across
the whole interval∆t, having in this manner a single-step
method, but double-stage time discretization. Namely,

k1 = ∆tS(tn, fn),

k2 = ∆tS(tn + ∆t/2, fn + k1/2),

fn+1 = fn + k2 + O(∆t3)

= fn+∆tS(tn+∆t/2, fn+k1/2)+O(∆t3). (4)

Symmetrization cancels out the first-order error term, yield-
ing a second-order accuracy method (Runge Kutta 2). By
using two trial steps per time interval, it is possible to cancel
out first- and second-order error terms and construct a third-
order Runge Kutta method. The second trial step would be
given byk3 = ∆tS(tn + ∆t/2, fn + k2/2), and then the
algorithm for calculatingfn+1 in terms of the values offn

would read:

k1 = ∆tS(tn, fn),

k2 = ∆tS(tn + ∆t/2, fn + k1/2),

k3 = ∆tS(tn + ∆t/2, fn + k2/2),

fn+1 = fn +
1
6
k1 +

2
3
k2 +

1
6
k3. (5)

This algorithm is widely used because it requires only
three iterations and is accurate and stable for small enough
values of the∆t/∆x2 factor.

In a few words, the way we solve the time-dependent
Schr̈odinger equation will be based on theevolution of the
initial data. That is, given a wave function at initial timet0,
the values of the wave function at subsequent time slices are
calculated using the evolution under a MoL discretization. In
the case of the particle in a box and the harmonic oscillator
we shall use the exact solution at the initial time as the initial
data for the wave function. In the case of solitons we shall
also use two superposed exact solitons as initial data and in
the atomic gas model we start with a Gaussian initial wave
function.

3. 1D Shcr̈odinger Equation

The general form of the one-dimensional Schrödinger equa-
tion is

i~
∂Ψ(x, t)

∂t
= − ~

2

2m

∂2Ψ(x, t)
∂x2

+ V (x, t)Ψ(x, t). (6)

It is important, when calculating numerical solutions, to get
rid of constants that are either tiny or huge. That is why
atomic units are used, that is~ = m = 1. We shall assume
these units in the rest of the paper. Next we present particular
solutions to this equation.

3.1. Particle in a 1D box

3.1.1. Exact solution

In this case we choose the domain to bex ∈ [0, 1]. The par-
ticle is considered to be free in the domain, that isV = 0,
except at the boundaries, whereV is assumed to be infinite
in order to model the effects of a solid wall of a box; thus the
boundary conditions areΨ(x = 0, t) = Ψ(x = 1, t) = 0. If
one separates variables, the wave function can be expressed
as Ψ(x, t) = ψ(x)e−iEt, and the remaining equation for
ψ(x) reads:

∂2ψ

∂x2
+ 2Eψ = 0. (7)

Applying the conditions of continuity ofψ and its derivative
at the boundaries, we know the solution is:

ψnx(x) = Anx sin(nxπx), Enx =
(nxπ)2

2
.

FIGURE 4. Snapshots of the error for two different resolutions for
the evolution shown in the previous figure. The numerical solu-
tion shows second-order convergence. The resolutions used are
∆x = 0.001 and∆x = 0.002. The continuous lines represent
the error calculated with∆x = 0.001, and the dots indicate the
error calculated using∆x = 0.002 divided by 4 (only at a few
points, so that it is possible to appreciate the plot).
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wherenx = 0, 1, 2, ... is the quantum number labeling the
permitted energy values. After demanding the normalization
of the wave function

1∫

0

ψ∗ψdx =

1∫

0

A2
nx

sin2(nxπx)dx = 1,

we find thatA2
nx

/2 = 1, that is: Anx
=
√

2, which finally
implies ψnx

(x) =
√

2 sin(nxπx). Therefore, the complete
time-dependent solution is:

Ψnx
(x) =

√
2e−iEnx t sin(nxπx). (8)

In order to compare the numerical solution with the exact so-
lution, we shall only use the real part of it:

<(Ψnx
(x, t)) =

√
2 cos(Enx

t) sin(nxπx). (9)

The energy density calculated from (8) is
ρ=Ψ∗Ψ=2 sin2(nxπx), which is evidently time indepen-
dent. The time-independence serves to test any numerical
solution, which must show a harmonic time-dependence of
Ψ whereasρ must remain constant in time.

An important lesson in working out a numerical solution,
is that one actually has to develop all the constants involved,
and keep in mind the domain, because a general solution
needs all the parameters and constants of integration to be
fixed. In Fig. 2 we show the exact solution att = 0 for
various values ofnx.

3.1.2. Numerical solution

The discretized version of (6) for the present case (V = 0) is
as follows:

∂Ψ
∂t

=
i

2
Ψn

j+1 − 2Ψn
j + Ψn

j−1

∆x2
+ O(∆x2). (10)

The right-hand side of this equation plays the role ofS in (5).
In order to test whether a numerical implementation is cor-
rect, one must reproduce the full time-dependent exact solu-
tion and show that the density of probability is actually time-
independent. Moreover, we define an error on the real part of
the wave function by

e = <(Ψnum)−<(Ψex), (11)

whereΨnum andΨex are the numerical and exact solutions
respectively. In Fig. 3 we show the evolution of the initial
wave functionΨ2(x, 0) =

√
2 sin(2πx), which is the solu-

tion of a particle in a box with 2 nodes. The density of prob-
ability is also shown and is manifestly time-independent. An
important quantity is the integral

N =

1∫

0

ρdx,

which determines whether or not an evolution algorithm is
actually unitary or not; we show here that the method of lines

is able to keep this number constant. Finally also the con-
vergence of theL1 norm of the error to zero is shown. This
last plot in Fig. 3 is quite important when showing numerical
solutions of PDEs, and one cannot trust the numerical results
obtained, unless there is an indication that the error of a so-
lution converges to zero in the continuum limit (that is, when
∆x, ∆t → 0).

Aside from the result showing the convergence ofL1(e),
one should verify, at least for a few snapshots, that the error
is actually converging to zero, not only a norm of it, but the
error itself. In Fig. 4 we show the error for two different res-
olutions. The fact that when doubling the resolution the error
is four times smaller indicates second-order convergence of
the solution (see Ref. 8 for details about convergence). What
can be seen also in this plot, is that the error is growing in
time. One important criterion to trust in numerical results is
that one must be able to monitor the numerical error and de-
termine the admitted tolerance for a solution, that is, one is
able to decide from what values of the error on, one cannot
trust the numerical results anymore.

3.2. Harmonic oscillator

3.2.1. Exact solution

In this case the potential is

V (x) =
1
2
kx2.

Once again the solution using separation of variables can
be written asΨ(x, t) = ψ(x)e−iEt and the resulting
Schr̈odinger equation is

d2ψ

dx2
+ [β − α2x2]ψ = 0, (12)

whereα =
√

k and β = 2E. Defining the new variable
ξ =

√
αx, one obtains

d2ψ

dξ2
+

(
β

α
− ξ2

)
ψ = 0. (13)

FIGURE 5. Exact solution of the one-dimensional harmonic oscil-
lator. (Left) Real part of the wave functionΨ for nx = 0, 1, 2, 3, 4.
(Right) Density of probability for the same cases.
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FIGURE 6. Numerical solution of the one-dimensional harmonic
oscillator. (a) Real part ofΨnx calculated for the harmonic oscilla-
tor andnx = 4 for several times is shown. (b) Density of probabil-
ity also for several times. The time-independence ofρ is manifest.
The resolution used is∆x = 0.01. (c) The integralN =

∫
ρdx

remains constant in time. (d) TheL1 norm ofe. This quantity for
∆x = 0.04 is four times that for∆x = 0.02, which in turn is
four times that found for∆x = 0.01. This indicates that the error
converges with second order to zero [8].

We look for bounded solutions forξ → ±∞, and we
know such solutions satisfy

ψ(ξ) = e−ξ2/2H(ξ),

where now the equation for theH is Hermite’s equation

d2H

dξ2
− 2

dH

dξ
+

(
β

α
− 1

)
H = 0, (14)

whose solutions are the Hermite polynomials

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = 2− 4ξ2, (15)

H3(ξ) = 12ξ − 8ξ3,

H4(ξ) = 12− 48ξ2 + 16ξ4,

and so on. Thus the normalized solution forψ(x) is obtained
from

∞∫

−∞
ψ∗ψdx = 1 :

ψnx(ξ) =

√
1√

π2nxnx!
e−ξ2/2Hnx(ξ),

with nx = 0, 1, 2, ..... Recovering the original variables and
the time dependence ofΨ, one finds

Ψnx(x, t) =

√
1√

π2nxnx!
e−iEnx te−x2/2Hnx(x). (16)

Once again we use the real part of this solution in order to
measure the accuracy of the numerical solution:

<(Ψnx
(x, t)) =

√
1√

π2nxnx!
e−x2/2Hnx

(x) cos
((

nx +
1
2

)
t

)
.

(17)
We show this exact solution att = 0 for various values of

nx and also the density of probability in Fig. 5.

3.2.2. Numerical solution

The method of lines discretization for the Schrödinger equa-
tion in this case is

∂Ψ
∂t

=
i

2
Ψn

j+1 − 2Ψn
j + Ψn

j−1

∆x2
− i

2
x2

j + O(∆x2). (18)

The boundary conditions are a subtle point. When construct-
ing the exact solution, the wave function is required to vanish
at infinity, so that the integral of the density of probability is

FIGURE 7. Snapshots of the error using two different resolu-
tions ∆x = 0.01, 0.02 for the evolution presented in the pre-
vious figure. The continuous lines represent the error calculated
with ∆x = 0.01, and the dots indicate the error calculated using
∆x = 0.02 divided by 4 (only at a few points, so that it is possible
to appreciate the plot). The fact that when doubling the resolution
the error is four times smaller indicates second-order convergence
to zero.
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FIGURE 8. Evolution of two solitonic solutions on the same spatial
domain with periodic boundary conditions. The expected behav-
ior is manifest: the density profile -indicated with the solid line-
of each of the initial superposed solutions maintain its shape even
after the two blobs interact with each other. The dotted line indi-
cates the real part of the wave function. Att ∼ 35 the two blobs
are shown to interact and form a sort of momentary interference
pattern.

finite. What we have done here is to use a large enough do-
main so that the wave function is smaller than10−15, so that
one needs to apply the same boundary as for the particle in a
box, that is, the wave function is zero at the boundary. The
evidence that the algorithm and boundary conditions together
work well is shown in Fig. 6, where we present<(Ψ) andρ
calculated numerically fornx = 4. The wave function is os-
cillating (preserving the location of the nodes), whereas the
density of probability remains time-independent.

In Fig. 7 we show the error for two different resolutions.
Again, the fact that when doubling the resolution the error is
four times smaller indicates second order convergence of the
solution.

3.3. Solitons in one dimension

A slightly different problem is that of the solitonic behav-
ior. Solitons are standing wave solutions to the non-linear
Schr̈odinger equation for which the density profile of the so-
lution is preserved during the evolution. In order to show that
our algorithm works also in the non-linear case, here we show
the evolution of the solution

ψ = a
exp[i(vx + (a2 − v2)t/2− t0)]

cosh[a(x− vt− x0)]
(19)

which is a standing wave function with amplitudea, speedv
and initial time and positiont0 andx0, respectively. This is a
solution to the non-linear Schrödinger equation:

i∂tψ = −1
2

∂2ψ

∂x2
− |ψ|2ψ (20)

and is called a solitonic solution [9]. An important property
of this type of solution is that it shows a density of probability
that preserves its profile in time (even if it moves across the
spatial domain) as a result of the balance between the focus-
ing tendency of the wave function and the dispersive effect of
the non-linear term. These solutions also propagate at a con-
stant speed. Especially important is the case in which more
than one of these solutions are evolved over the same spatial
domain. In fact solitons in a more precise language are not
only standing waves travelling at a constant speed with a con-
stant density profile, but these solutions have the property of
maintaining the shape of the density profile even when there
is interaction with other solitons [10]. In Figs. 8 and 9 we
show snapshots of two solutions like those of the type (19)
superposed with parametersa = 2, v = ±0.1, t0 = 0 and
x0 = ±5. The system is evolved using periodic boundary
conditions, so that it is possible to track the evolution of the
system for various crossing times and see the solitonic behav-
ior several times.

FIGURE 9. Density profile in time for the two solitons, where peri-
odic boundary conditions are used. This simulation was carried out
with a value∆t/∆x2 = 0.01 and resolution∆x = ∆y = 0.025.
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FIGURE 10. Illustration of the molecule used to constructf at
then + 1 time slice. A filled circle indicates the place where one
wishes to find the desired variable onto, and empty circles indicate
the location where the functions involved are known.

FIGURE 11. Exact solution for the particle in a two-dimensional
box. We show the real part of the wave function (top) and the den-
sity of probability (bottom) for the casenx = 3 y ny = 2.

4. Approximation using finite differences in
2D

The FD approximation in two dimensions is an extension
of that in one dimension. Assuming a functiong depend-
ing on two spatial dimensions and time, a two-dimensional
mesh is defined so thatxj = j∆x, yk = k∆y, and again
tn = n∆t. Then the function is defined only at points
gn

j,k = g(tn, xj , yk). Its time derivatives are obtained in

the same way as before, and the spatial derivatives are con-
structed only by varying the index that labels the correspond-
ing coordinate, that is:

∂g(xj , yk)
∂x

=
gj+1,k − gj−1,k

2∆x
+ O(∆x2)

∂g(xj , yk)
∂y

=
gj,k+1 − gj,k−1

2∆y
+ O(∆y2) (21)

for all tn, and analogous expressions for second derivatives.
The concept of the method of lines is exactly the same as in
the one-dimensional case. Then when the method of lines
discretization is to be applied, the molecule considered to
evolve a function fromtn to tn+1 is illustrated in Fig. 10.

5. 2D Schr̈odinger Equation

In two dimensions and Cartesian coordinates(x, y), and us-
ing units where~ = m = 1 as before, the Schrödinger equa-
tion reads:

i
∂Ψ(x, y, t)

∂t
= −1

2

(
∂2Ψ(x, y, t)

∂x2
+

∂2Ψ(x, y, t)
∂y2

)

+ V (x, y, t)Ψ(x, y, t).

The exact solution for the particle in a box
and the harmonic oscillator is found through
Ψ(x, y, t) = ψ(x, y)e−iEt. The discrete approximation
in two dimensions is an extension of the one-dimensional
molecule as shown in Fig. 10.

5.1. Particle in a 2D box

5.1.1. Exact solution

In this case we choose the domain to beD = [0, 1] × [0, 1].
After the separation of variables mentioned above, the re-
maining equation to be solved inx andy is

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ 2Eψ = 0,

which again permits a separation of variables of the type
ψ(x, y)=X(x)Y (y). The boundary conditions again are
Ψ = 0 on all faces of the boundary ofD. After applying
these conditions and the normalization condition

1∫

0

1∫

0

ψ∗ψdxdy = 1,

the exact solution reads:

ψnx,ny = 2 sin(nxπx) sin(nyπy),

Enx,ny =
π2

2
[(n2

x) + (n2
y)],
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wherenx andny are the quantum numbers that label an en-
ergy state and indicate the number of nodes alongx andy.
The complete time-dependent solution is then

Ψ = 2e−iEnt sin(nxπx) sin(nyπy),

from which we take its real part in order to compare with
numerical results:

<(Ψ) = 2 cos(Ent) sin(nxπx) sin(nyπy).

As an example, we show in Fig. 11 the exact solution
with nx = 3 andny = 2 at t = 0. Our code should be able
to show the oscillating wave function and a time-independent
density of probability.

FIGURE 12. Numerical solution for the particle in a two dimen-
sional box. We show the wave function and the density of prob-
ability for the casenx = 3 and ny = 3 at timest = 0, 2, 4.
These plots were obtained using the resolution∆x = ∆y = 0.01
and the factor∆t/∆x2 = 0.1. The wave function is oscillating,
the density of probabilityρ is constant in time, and so its integral
N =

∫
ρdxdy.

FIGURE 13. Comparison of the error at the axisy = 0 for the
particle in a two-dimensional box at various times, with resolutions
∆x = ∆y = 0.01 and∆x = ∆y = 0.005 (divided by four)
with the factor∆t/∆x2 = 0.1. When doubling the resolution, the
error is four times smaller, indicating second-order convergence of
the error to zero. The fact that the plots up to aroundt ∼ 2 are
still superposed indicates second-order convergence of the calcu-
lation up to this time; after this value of time, the solution is not
second-order convergent anymore. However the convergence can
be preserved for longer when the resolution is increased.

5.1.2. Numerical solution

This time, Schr̈odinger’s equation for the particle in two di-
mensions and Cartesian coordinates reads

i
∂Ψ
∂t

= −1
2

(
∂2ψ

∂x2
+

∂2

∂y2

)
,

and its MoL discretized version reads:

∂Ψ
∂t

=
i

2

(Ψn
j+1,k − 2Ψn

j,k + Ψn
j−1,k

(∆x)2

+
Ψn

j,k+1 − 2Ψn
j,k + Ψn

j,k−1

(∆y)2

)

+ O(∆x2, ∆y2).
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which we solve again using the third-order Runge-Kutta time
integrator (5). We apply Dirichlet boundary conditions set-
ting, the wave function to zero at the boundaries. In Fig. 12
we show the wave function obtained numerically at various
times.

In Fig. 13 we show the comparison of the error when
two resolutions are used. Second-order convergence to zero
is found on a projection of the error along they = 0 axis.

5.2. 2D harmonic oscillator

5.2.1. Exact solution

In this case, the potential isV (x, y) = 1
2K(x2 + y2). After

applying separation of variablesΨ = e−iEtX(x)Y (y), the
solution for the spatial part of the wave function is:

Xnx(ξ) =

√
1√

π2nxnx!
e−ξ2/2Hnx(ξ)

Yny
(η) =

√
1√

π2nyny!
e−η2/2Hny

(η), (22)

whereξ =
√

αy andη =
√

αx, and with the permitted en-
ergy values

Enx,ny = nx + ny + 1.

Then the complete full time-dependent solution and its
real part are:

Ψ(x, y, t) =

√
1

π2nxnx!2nyny!
·

× e−iEnx,ny te−
x2
2 e−

y2

2 Hnx(x)Hny (y)

<(Ψ(x, y, t)) =

√
1

π2nxnx!2nyny!
e−

x2
2 e−

y2

2 ·

×Hnx(x)Hny (y) cos ((nx + ny + 1)t) .

As before, we choose this exact solution att = 0 to be
our initial data to be evolved using the Schrödinger equation
and we do not plot the exact solution anymore and proceed to
show the numerical results.

5.2.2. Numerical solution

In Fig. 14 we show the real part of the wave function and the
density of probability at various times. The case corresponds
to nx = 3 andny = 2. Once again, as expected, our code
shows an oscillating wave function and a frozen density of
probability.

The domain has boundaries far from the region where the
dynamics is going on, that is, the evolution of the wave func-
tion is localized as in the one-dimensional case, thus apply-
ing Dirichlet boundary conditions, setting the wave function
to zero at the boundaries, suffices.

FIGURE 14. Numerical solution of a particle in a two-dimensional
harmonic oscillator potential. We show the real part of the wave
function and the density of probability for the casenx = 3 and
ny = 2. The resolution used is∆x = ∆y = 0.1 with the
factor ∆t/∆x2 = 0.1. The domain used for the calculation is
x ∈ [−7, 7] andy ∈ [−7, 7].

5.3. Example in 2D

When dealing with systems that allow the wave function out
of the domain or does not guarantee that the wave function
is localized in a finite domain, it is important to deal with
boundary conditions on the wave function that distinguish
between outgoing and incoming modes. However, in order
to provide more usual, simpler boundary conditions on the
wave function we introduce the concept of sponge, that is,
we define a region of the spatial domain that acts as a sink of
particles. This technique has been applied in various studies
involving the solution to Schrödinger’s equation, for example
self-gravitating Bose condensates [11] and stabilization of an
atomic gas [12]. The idea is to prevent the density of prob-
ability from being reflected back from the boundaries which
eventually would pollute the calculations.

The sponge-sink region is defined on a chunk of the do-
main near the numerical boundary. This sponge is produced
by assuming that in this region the system has an imaginary
potential. In order to understand what the effects are on the
wave function of the addition of an imaginary potential, we
consider the Schrödinger equation

i
∂Ψ
∂t

= −1
2
∇2Ψ + V Ψ,

whereV is a general potential. We also write the complex
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conjugate of this equation:

−i
∂Ψ∗

∂t
= −1

2
∇2Ψ∗ + V ∗Ψ∗,

where we have assumed that the potential has a non-zero
imaginary part. As usual, one multiplies the first equation
timesΨ∗ and the second byΨ, then adds both results and
one obtains the continuity equation for the density of proba-
bility:

∂(ΨΨ∗)
∂t

+∇ ·
[

i

2
(Ψ∇Ψ∗ −Ψ∗∇Ψ)

]

= 2ΨΨ∗Im(V ). (23)

WhenV is real, there is conservation of the density of prob-
ability. Otherwise, the system has a sink or a source of parti-
cles, depending on the sign ofIm(V ). The remaining prob-
lem is the choice of theIm(V ) profile that goes to zero in
the region containing the physical system, and to a negative
number when approaching the sponge-sink region near the
numerical boundaries. The profile we choose is as follows:

Im(V ) = −1
2
V0 {2 + tanh [(r − rc)/δ]− tanh (rc/δ)} ,

which is a smooth version of a step function [11]. In this ex-
pression,V0 is the depth of the imaginary potential well,r is
the radial coordinate (r = x in the one-dimensional case and
r =

√
x2 + y2 in the 2D case);rc is the radius at which the

step is centered,δ is the width of a transition region. In Fig.
15 we show the sponge potential used in the example below.

In Refs. 11 the transmission and reflection coefficients
are calculated for a step function potential, and the maximum
absorption corresponds to the case of a large region for the
sponge and a smallV0. In practice such conditions cannot be
afforded, and then the smoothed version of the step function
helps to clean up the modes that otherwise would be reflected
back into the physical domain. The conditions at the bound-
ary can be those of the faces of a box used earlier, and then
the reflected modes are absorbed in the sponge region.

Using this technique, we proceed to show our last exam-
ple: the stabilization of a soft-core model of an atomic gas.
In this case we study the response of a distribution of atoms
to the interaction with a laser-like potential. We restrict this
to the case in which the system has s-lab symmetry, that is,
what happens at the planez = z0 happens also for any other
z = constant plane. The Schrödinger equation is used to
model the behavior of the gas [12], so that the wave function
represents the dynamics of the gas. Thus the two-dimensional
examples above contain the necessary technology for simu-
lating this case.

One considers that the gas is made of hydrogen-like
atoms. The model for the potential over the electron of each
atom is Coulombian, that is,1/

√
x2 + y2; however, we ap-

ply Rydberg’s soft core model [13], in which case the atom
potential is1/

√
α2 + x2 + y2, whereα plays the role of the

smoothness parameter and avoids the singularity at the ori-
gin. The interaction with the laser is approximated by the

dipole interaction with classical radiation [14]. Finally, the
total potential to which the system is subject is

V = − Z√
α2 + x2 + y2

+ g(t)F [x sin(ωt) + y cos(ωt)],

where we have usedZ = 1, and where we use units such that
~ = e = m = 1, wheree is the charge of the electron. Here
ω is the frequency of the laser,g(t) is a function that goes
from zero to one in a finite time, andF is the laser intensity.
Under the symmetry used, Schrödinger’s equation driving the
system reads

i
∂Ψ
∂t

= −1
2

(
∂2

∂x2
+

∂2

∂y2

)
Ψ + V Ψ.

We now carry out various simulations with different val-
ues ofF in order to determine the effect of this parameter
on the lifetime of the gas. In Fig. 16 we show the integral
of the density of probability for various values of the laser
intensity. These simulations were carried out for an initial
wave function profileΨ(x, y, 0) = e−(x2+y2), on the do-
main x ∈ [−20, 20], y ∈ [−20, 20], with spatial resolution

FIGURE 15. We showIm(V ) for the 2D domain withV0 = 1.

FIGURE 16. We show the decay ofN =
∫ ∫

ρdxdy for various
values ofF .
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FIGURE 17. We show the lifetime (as defined in the text) for vari-
ous values ofF .

∆x = ∆y = 0.2 and time resolution∆t/∆x2 = 0.1.
The sponge contains 25 points from the faces of the domain.
The frequency of the laser was assumed to beω = 1.2, the
smoothness parameter of the atomic modelα = 0.8. The in-
tensity factorg(t) used was a linear growing function from
t = 0 to t = 20.

In order to estimate the lifetime of the gas, we produce an
exponential fitting of the curves in Fig. 16 fromt = 30 on,
that is, we use the function

N = N0e
−t/τ ,

wheret is the time andτ is a naive but commonly used es-
timate of the lifetime of the system,N andN0 are numbers
proportional to the number of particles that have not left the
numerical domain, and are freely chosen from the initial data,
in our case an initial Gaussian wave function with amplitude
and width equal to one (see above). In this case,

N =

20∫

−20

20∫

−20

ρdxdy

indicates the integrated density of probability that remains in
the domain. The results of the fitting are shown in Fig. 17.

We have shown with this test problem that the intensity
of the laser has an impact on the lifetime of the gas. The re-
sults shown here are pretty much consistent with those found
in Ref. 12. This example could be extended for instance to
discover the effects of changing the frequency of the laserω
on the lifetime of the gas.

6. Final comments

In this paper we have presented the finite difference approx-
imation and applied it in finding numerical solutions to the

time-dependent Schrödinger equation in one and two dimen-
sions. As examples we have presented the solution for the
particle in a box and in a harmonic oscillator potential. These
examples help in understanding:

i) the evolution algorithm,

ii the time-dependent solution in terms of the wave func-
tion and the density of probability,

iii) the checks of a unitary evolution,

iv) the concept of convergence of the solution in the con-
tinuum limit.

As a non-standard problem, we also showed the evolu-
tion of solitonic solutions in one dimension. We expect this
example to illustrate:

i) what a solitonic solution is,

ii) how periodic boundary conditions work.

In two dimensions we solved Schrödinger’s equation that
models a soft-core gas under a Laser-like potential. We ex-
pect the solution of this problem to illustrate:

i) how a sponge works, and

ii) how to deal with a time-dependent potential.

These tools could immediately be applied for instance:

a) to the propagation of Bose condensates in optical lat-
tices through the simple introduction of a spatially pe-
riodic potential, as in Ref. 15,

b) the evolution of collapsing and exploding Bose con-
densates in different trap symmetries as in Ref. 16,
and

c) a garden variety of models based on the solution of the
time-dependent Schrödinger equation related to con-
densates and solitons.

The code is also available in Ref. 17.
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