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On second-order mimetic and conservative finite-difference discretization schemes
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Although the scheme could be derived on the grounds of a relatively new numerical discretization methodology Kdawetias-inite-

Difference Approachthe derivation of a second-order mimetic finite difference discretization scheme will be presented in a more intuitive
way, using Taylor expansions. Since students become familiar with Taylor expansions in earlier calculus and mathematical methods for
physicist courses, one finds this approach of presenting this new discretization scheme to be more easily handled in courses on numerice
computations of both undergraduate and graduated programs. The robustness of the resulting discretized equations will be illustrated by
finding the numerical solution of an essentially hard-to-solve, one-dimensional, boundary-layer-like problem, based on the steady diffusion
equation. Moreover, given that the presented mimetic discretization scheme attains second-order accuracy in the entire computational domai
(including the boundaries), as a comparative exercise the discretized equations can be readily applied in solving examples commonly founc
in texbooks on applied numerical methods and solved numerically via other discretization schemes (including some of the standard finite-
diffence discretization schemes).
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Aungue la derivadn del esquema se puede realizar usando la reciente met@didiscretizadin nunerica conocida combiferencias

Finitas Miméticas estaremos presentando la deriégactde un esquema de discretizatimimético en diferencias finitas de segundo orden

en una forma ras intuitiva, mediante el uso de expansiones de Taylor. Considerando que los estudiantes se familiarizan con expansiones d
Taylor en los primeros cursos délculo y metodos mateidticos paraikicos, pensamos que la presente alternativa de presentar este nuevo
esquema de discretizéci es nds favorable de ser asimilada en cursos de computatinérica tanto de pregrado como de postgrado. La
robusticidad del esquema &eitustrada encontrando la solénoi nunérica de un problema unidimensional del tipo caipaite dificil de

resolver en forma nuérica y que se basa en la ecudacde difusbn estacionaria. s aun, dado que el esquema de discrefiraaicanza

segundo orden de predisi en todo el dominio computacional (incluyendo las fronteras), como ejercicio comparativo el mismo puede ser
rapidamente aplicado para resolver ejemplos inmmente encontrados en textos sobiodos nuréricos aplicados y que se resuelven
usando otras metodol@s nungricas (incluyendo algunos esquemas de discretinaa diferencias finitas).

Descriptores: Discretizaciones miticas; diferencias finitas; ecuaciones diferenciales parciales; énudeidifusbn; expansiones de
Taylor; capaimite (boundary layer).

PACS: 02.50.Ey; 82.20.Wt; 83.10.Pp; 83.10.Rs

1. Introduction tions that mimic underlying properties of the continuum
differential operators including conservation laws, solution
Numerical modeling of complex physical probleme (tur- ~ Symmetries, fundamental identities of vector and tensor cal-
bulence, front tracking and so on) in sophisticated topologicafulus [4,5]. In particular, a recent article [6] shows a system-
structures modeled by arbitrary grids, requires high-qualityatic way to construct high-order mimetic discretizations for
numerical schemes in order to be able to capture its fine ddhe gradient and divergence operators, attaining the same or-
tails, which in turn implies high precision and accuracy inder of approximation at the boundary and inner region. Dis-
the numerical method in use [1, 2]. Accordingly, much ef- cretizations with this feature have been considered challeng-
fort has been devoted to creating a discrete analog of vectdfg even in the simplest case of one dimension on a uniform
and tensor calculus that could be used to accurately approg'id. The framework of this mimetic approach is to build dis-
imate continuum models for a wide range of physical andcrete versions of these operators satisfying a discrete analog
engineering problems and that preserves, in a discrete sen$d the divergence or Green-Gauss theorem
symmetries and conservation laws that are true in the contin-

uum. Such an approach is therefore more likely to produce /V'(ﬁf) dv = /(V'ﬁ) fav + /77‘ (Vf)av
physically faithful results [3]. Q Q Q

This endeavor has led recently to the formulation of a
~ [ 5.5 M

set of mimetic finite-difference discretization schemes to find
high-order numerical solutions to partial differential equa- o0
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which implies that the discrete operators will satisfy a globalporous medium flow they are, respectively, the permeability
conservation law. This condition also ensures that the distensor, the pressure driving the flow, and a source teamng
cretization of the boundary conditions and that of the dif-producer or injector well in a oil field) affecting the fluid flow
ferential equation are compatible. In the case of onein the region of interest. In one dimension, Eq. (3) takes the
dimensional discretizations, Eq. (1) takes the form of theform, J .

fam|I|1ar FundameTtaI Theorem of Calculus: o’ (K(:c) dJ;( )) P2, @

/dlf dr + /Uﬁdx =v(1)f(1) —v(0)f(0), (2) Which, interms of the discretized operators via the mimetic
dz dz technique, is written in the fornD(KGf(z)) = F(z),
whereD and G are matrices representing the discretized
in which dv/dz plays the role of the divergence of the vector version of the divergence and the gradient operators, respec-
field v(x), while df /dz plays the role of the gradient of the tively. That is, rather than discretizing a particular differen-
scalar fieldf (z). tial equation, the mimetic approach uses discrete operators to
In this article we shall be presenting the derivation, viaproduce a discrete analog of the partial differential equations
Taylor's expansions, of a second-order mimetic discretizaynder consideration. In this form, once we have the discrete
tion scheme for the gradient and divergence operators [6}ersion of the differential operators of interest, one could dis-
Then, we can use the discretized scheme to build a secongdretize any equation written in terms of them. To have a
order conservative scheme to numerically solve the diffuhoundary value problem properly expressed by Eq. (4), we

sion equation. Though our presentation is much simpleghall impose boundary conditions of the Robin (mixed) type
and perhaps intuitive, it is not obvious by any means. In

fact, the conservative scheme is obtained as a necessary first oo f(0) — f/(0) = vo; a1 f(1)+ f(1)=v  (5)
step in proving the convergence of the second-order mimetic
scheme reported in [6]. Details of the proof can be foundwhereayg, a1, 7o and~; are known constants. It should be

0 0

elsewhere [7, 8]. mentioned that finding reasonably accurate numerical solu-
tions to partial differential equations by means of numerical
1.1. The continuum model problem schemes preserving key properties of the continuwendon-

servation laws; symmetry properties of the equation being

Being one of the most important and widely used equationgjiscretized, and so on) has been an active research area [2].
in mathematical physics, the range of physical and engineeiccordingly, many finite difference schemes can be found
ing problems modeled by the diffusion equation (Eq. (3) beq, the literature which are basically created for very specific
low) includes heat transfer, flow through porous medium, anghrohlems [10]. On the other hand, in the present ongoing re-
the pricing of some financial instruments. Accordingly, thesearch on mimetic discretizations, the main effort is towards
wide range of applications of the diffusion equation somehow:onstructing high-order mimetic discretizations of differen-

justifies the effort and time spent in finding ways to obtaintjg| gperators, which are of general applicability rather than
high-quality numerical solutions to it in different contexts [9]. peing limited to a specific problem.

Correspondingly, the accuracy and robustness of our con-
servative discretization method will be shown by solving ) o L
boundary-layer-like problems, which are modeled by the dif-2. Mimetic discretizations of D and G
fusion equation.

In terms of the invariant operators divergen&é)(and
gradient ), the diffusion equation is written in the form

In a general non-uniforretaggeredyrid (Fig. 1) spanning the
interval [0,1], the mimetic framework presented in [6] leads
to the one-dimensional, second-order discretized mingtic
_v.(‘?(a—;).vf(f)) = F(Z) (3 andD, presented in Egs. (6) [11]. From these equations
- and Fig. 1, it is clear thaD is defined at cell points, but
where K (¥) is a symmetric tensorf(Z) is the target prop- G at nodal points. It is important to bear in mind that these
erty we are looking for, and’(7) is a source term. For in- discretizations were obtained within the mimetic framework
stance, in a heat transfer problery, (Z), f(Z), and F(Z) analysis reported in Ref. 6. Correspondingly, they satisfy the
are the thermal conductivity, the temperature, and a sourcearious conditions imposed by the mimetic approach men-
of heat influencing the domain of interest, respectively; in ationed in that article.

X:l(()) xe(1) Xn.(l) xc(2) xn‘(2) xc(3) xr;(3) xc(4) xn‘(4)
m(0) fc(l) fn(l) fc(2) m(2) fc(3) tn3) fc(4) @)

FIGURE 1. 1-D staggered (non-uniform point distributed) grid. The end points of each cell are the moe@i@sthe cells are indexed

ze(i) = (1/2)(zn(i) + zn(i — 1)). fa(j) = fa(za(j)).
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_ ze(l) + xe(2) — 22n(0) n —z¢(2) + 2n(0) .
(G130~ = (oot = )t = ) 70 G o) ) @9
ze(1) — zn(0) .
T el = 2e(2)) (we(2) —am(o))? ¥
B xe(l) + xe(2) — 2zn(1) n(0) — xze(2) + 2n(0) — 22n(1) .
(G = ooy ) (et ™)~ () e Gt o) 70 @
xze(l) + an(0) — 22n(1) .
(zc(l) — ze(2)) (zc(2) — 2n(0)) fe(?)
1 ) ) . ) — ... —
(Gf)i= Tl 1 1) = 2el) fe(i) + me(l +1) ; i=2,--- ,N-2 (6¢)
_ xe(N —1) = 2zn(N — 2) + an(N — 1) (N —
(Gf)n—2 = (xe¢(N —2) —xzce(N — 1)) (zc(N — 2) — zn(N — 1))f (N —=2) (6d)
zc(N —2) — 2zn(N — 2) + zn(N — 1) 3
* GaN —9) —ae(N = D))(ae(N = 1) —an(N =1y NV U
ze(N —2) + xze(N — 1) — 2an(N — 2)
" eV —2) —an(N = 1))@e(N —1) —an(v =1y "WV U
B an(N —1) —zc(N — 1) (N —
(CHN1 = eV =2~ 2e(N — ) (e —2) —zn( Dy & 2 (6e)
xe(N —2) —an(N —1)
t N =) —we(N = ))(aelN = 1) —an(v =1y ¥ ~ U
xe(N —2) 4+ zc¢(N — 1) = 2zn(N — 1)
" eV =2) —aen(N = )){we(N=1) —an(v =1/ "V~ 1)
~ fn(i+1) — fn(i) ; . B
(Du)isy = xn(i) — zn(i — 1) =0 N =1 (6
2.1. Obtaining D and G via Taylor’'s expansions aroundzn(1), and then evaluating the obtained expansion at

the grid positionsn(0), zc(1) andzc(2). The desired equa-
Now, one would argue that the discretized scheme (6a)-(6fjion is found after solving the resulting system of equations
could be obtained from a more intuitive point of view, us- for the first derivative evaluated at(1).

ing Taylor expansions and the benefit of hindsight. As is . ) )
Similar reasoning can be used to obtain Egs. (6c)-(6e).

common when trying to obtain high-order finite-difference . : ) X \ )
schemes and in perturbation theory, the starting anzat is nd"€ form in which the equations were written out will guide
obvious, and the form in which we have intentionally Iore_the reader in guessing the grid points around which Taylor’'s
sented Eqgs. (6) will guide our insight. expansions should be carried out in order to obtain them.

In fact, the discretized gradiefG f), evaluated at the Equation (6f) is standard in finite differences.
first 2n(0) node in the grid can be obtained by Taylor's ex-  Once we have a discretized set of equations for the diver-
pansion of the unknowrf(x) aroundzn(0), and then eval- gence and gradient operators, one should check whether this
uating the obtained expansion at the grid positieng0),  scheme satisfies the desired properties implicit in the contin-
zc(1) andzc(2). Solving the resulting system of equations uum version of the operators (conservation laws, symmetries
for the first derivative evaluated at:(0), equation (6a) is and so on), which are required in order to be considered a
obtained. mimetic discretization. As indicated, the set (6a)-(6f) already

By the same token, the discretized gradi@#tf),, equa- satisfies these conditions since they were first obtained in that
tion (6b), is obtained by taking Taylor's expansion fifr) context [6,11].
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f  Nexp(Ax)

TABLE |. Numerical Errors “eJ (9)
, dz?  exp\) —1
Grid Error Error Error . . ) ) .
Size  Finite Difference  Support Operator  New Method deflned on the mtervg! [0,1], and it's solution must satisfy
Robin boundary conditions of the form
16 0.3958 0.1861 0.0794
64 0.2206 0.0154 0.0045 af(0) = Bf(0)=-1 ; af()+8f(1)=0 (10)
256 0.0717 0.0010 0.0002

at the borders. Equations (9) and (10) form together a

2.2.  From mimetic to conservative schemes well where problem foin= — exp(}), S=(exp(\) — 1)/,
where XA an arbitrary non-null real number. This

Reference [6] provides sufficient discussion about the desiregroblem has a unique analytical solution given by

properties that discretized forn®® and G should satisfy  f(z) = (expAz) —1)/(exp(A) — 1), and it represents a

in order to be considered a mimetic scheme. And follow-houndary layer for large values af Correspondingly, it is

ing the systematic procedure outlined in that article, mimetican excellent test problem for evaluating numerical schemes

discretizations (6a)-(6f) were obtained, whose derivation viayith different discretization alternatives for boundary condi-

Taylor expansions were just presented. tions.

Since one needs to solve the diffusion equation, the |n this test all the numerical methods were implemented
Laplacian operator is required. It turns out that a conservativgn a uniform staggered grid. The value of the paramater
scheme of our model problem (4) and (5) has the form was set equal to 20, although similar results and conclusions

~ ~ B are obtained for any positive value of it. Numerical results
(A+BG +DKG)f =b () are presented in Tables |, where we also show results ob-
In this expressioD andG are matrix representations of the t@ined via two widely used discretizations schemes (finite-
discretized schemd satisfies difference based on ghost point [10] and the mimetic support
R R operator discretization described in Ref. 3)

(Df) =0, (Df) =0, Table | shows the numerical errors computed in the max-

0 " imum norm. They indicate that on refined grids the new

and method achieved at least three exact digits in its approxi-
(ﬁf) _ (Df) mation, while support operator and standard finite-difference
i+i i+3° methods obtained only two and one exact digits, respectively.

. ! . Such results indicate a clear advantage to our new scheme.
B is a boundary operator with only non-null entries

B(1,1) = -1 andB(n + 2,n+ 1) = 1. A is the

(n +2) x (n + 2) matrix having as non-zero entries those 3. Conclusion

elements in its diagonal that correspond to boundary nodes

(A(1,1) = ap andA(n + 2,7+ 2) = a;). Kis adiagonal Intended to be presented in applied numerical methods

tensor whose known values are positive and evaluated at grigPurses at both undergraduate and graduate levels, by
block edges. means of intuitive Taylor expansions, an alternative complete

derivation of a second-order mimetic discretization scheme
f=(f(wo), f(wy), flws),-  fw,_1), f(zn))" (8)  for the divergence and gradient operators was presented. As
illustrated via the diffusion equation, the scheme can be ap-
plied in building conservative discretization schemes of con-
Its analysis hadlhuum problems formulated in terms of partial differential
equations. The many advantages to conservative schemes

application of the modulus maximum principle, that the nu_in numerical studies have been known for some time and

merical scheme has an optimum second-order convergenéée still a fruitful research area. The results obtained from
rate. our test problem indicate a clear advantage to the presented

new scheme over other widely used numerical discretization
2.3. Anillustrative example schemes. By using this approach, students can be introduced

earlier to mimetic discretization and its advantages, particu-
The one-dimensional boundary value problem in this test isarly on the applications in the discretization presented here
formulated in terms of the ordinary differential equation to physical, engineering and industrial problems.

b= (’YOaF%>F%a"' 7Fn7%171)T

This scheme is conservative and new.
been recently developed in [7]. It is proved in [7], by an
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