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On second-order mimetic and conservative finite-difference discretization schemes
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Although the scheme could be derived on the grounds of a relatively new numerical discretization methodology known asMimetic Finite-
Difference Approach, the derivation of a second-order mimetic finite difference discretization scheme will be presented in a more intuitive
way, using Taylor expansions. Since students become familiar with Taylor expansions in earlier calculus and mathematical methods for
physicist courses, one finds this approach of presenting this new discretization scheme to be more easily handled in courses on numerical
computations of both undergraduate and graduated programs. The robustness of the resulting discretized equations will be illustrated by
finding the numerical solution of an essentially hard-to-solve, one-dimensional, boundary-layer-like problem, based on the steady diffusion
equation. Moreover, given that the presented mimetic discretization scheme attains second-order accuracy in the entire computational domain
(including the boundaries), as a comparative exercise the discretized equations can be readily applied in solving examples commonly found
in texbooks on applied numerical methods and solved numerically via other discretization schemes (including some of the standard finite-
diffence discretization schemes).
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Aunque la derivacíon del esquema se puede realizar usando la reciente metodologı́a de discretización nuḿerica conocida comoDiferencias
Finitas Miméticas, estaremos presentando la derivación de un esquema de discretización mimético en diferencias finitas de segundo orden
en una forma ḿas intuitiva, mediante el uso de expansiones de Taylor. Considerando que los estudiantes se familiarizan con expansiones de
Taylor en los primeros cursos de cálculo y ḿetodos mateḿaticos para f́ısicos, pensamos que la presente alternativa de presentar este nuevo
esquema de discretización es ḿas favorable de ser asimilada en cursos de computación nuḿerica tanto de pregrado como de postgrado. La
robusticidad del esquema será ilustrada encontrando la solución nuḿerica de un problema unidimensional del tipo capa lı́mite dif́ıcil de
resolver en forma nuḿerica y que se basa en la ecuación de difusíon estacionaria. Ḿas aun, dado que el esquema de discretización alcanza
segundo orden de precisión en todo el dominio computacional (incluyendo las fronteras), como ejercicio comparativo el mismo puede ser
rápidamente aplicado para resolver ejemplos comúnmente encontrados en textos sobre métodos nuḿericos aplicados y que se resuelven
usando otras metodologı́as nuḿericas (incluyendo algunos esquemas de discretización en diferencias finitas).

Descriptores: Discretizaciones miḿeticas; diferencias finitas; ecuaciones diferenciales parciales; ecuación de difusíon; expansiones de
Taylor; capa ĺımite (boundary layer).

PACS: 02.50.Ey; 82.20.Wt; 83.10.Pp; 83.10.Rs

1. Introduction

Numerical modeling of complex physical problems (i.e. tur-
bulence, front tracking and so on) in sophisticated topological
structures modeled by arbitrary grids, requires high-quality
numerical schemes in order to be able to capture its fine de-
tails, which in turn implies high precision and accuracy in
the numerical method in use [1, 2]. Accordingly, much ef-
fort has been devoted to creating a discrete analog of vector
and tensor calculus that could be used to accurately approx-
imate continuum models for a wide range of physical and
engineering problems and that preserves, in a discrete sense,
symmetries and conservation laws that are true in the contin-
uum. Such an approach is therefore more likely to produce
physically faithful results [3].

This endeavor has led recently to the formulation of a
set of mimetic finite-difference discretization schemes to find
high-order numerical solutions to partial differential equa-

tions that mimic underlying properties of the continuum
differential operators including conservation laws, solution
symmetries, fundamental identities of vector and tensor cal-
culus [4,5]. In particular, a recent article [6] shows a system-
atic way to construct high-order mimetic discretizations for
the gradient and divergence operators, attaining the same or-
der of approximation at the boundary and inner region. Dis-
cretizations with this feature have been considered challeng-
ing even in the simplest case of one dimension on a uniform
grid. The framework of this mimetic approach is to build dis-
crete versions of these operators satisfying a discrete analog
of the divergence or Green-Gauss theorem

∫

Ω

∇· (~v f) dV =
∫

Ω

(∇·~v) f dV +
∫

Ω

~v · (∇f) dV

=
∫

∂Ω

f ~v · d~s, (1)
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which implies that the discrete operators will satisfy a global
conservation law. This condition also ensures that the dis-
cretization of the boundary conditions and that of the dif-
ferential equation are compatible. In the case of one-
dimensional discretizations, Eq. (1) takes the form of the
familiar Fundamental Theorem of Calculus:

1∫

0

dv

dx
f dx +

1∫

0

v
df

dx
dx = v(1)f(1)− v(0)f(0), (2)

in whichdv/dx plays the role of the divergence of the vector
field v(x), while df/dx plays the role of the gradient of the
scalar fieldf(x).

In this article we shall be presenting the derivation, via
Taylor’s expansions, of a second-order mimetic discretiza-
tion scheme for the gradient and divergence operators [6].
Then, we can use the discretized scheme to build a second-
order conservative scheme to numerically solve the diffu-
sion equation. Though our presentation is much simpler
and perhaps intuitive, it is not obvious by any means. In
fact, the conservative scheme is obtained as a necessary first
step in proving the convergence of the second-order mimetic
scheme reported in [6]. Details of the proof can be found
elsewhere [7,8].

1.1. The continuum model problem

Being one of the most important and widely used equations
in mathematical physics, the range of physical and engineer-
ing problems modeled by the diffusion equation (Eq. (3) be-
low) includes heat transfer, flow through porous medium, and
the pricing of some financial instruments. Accordingly, the
wide range of applications of the diffusion equation somehow
justifies the effort and time spent in finding ways to obtain
high-quality numerical solutions to it in different contexts [9].
Correspondingly, the accuracy and robustness of our con-
servative discretization method will be shown by solving
boundary-layer-like problems, which are modeled by the dif-
fusion equation.

In terms of the invariant operators divergence (∇·) and
gradient (∇), the diffusion equation is written in the form

−∇ · (←→K (~x) · ∇f(~x)) = F (~x) (3)

where
←→
K (~x) is a symmetric tensor,f(~x) is the target prop-

erty we are looking for, andF (~x) is a source term. For in-
stance, in a heat transfer problem,

←→
K (~x), f(~x), andF (~x)

are the thermal conductivity, the temperature, and a source
of heat influencing the domain of interest, respectively; in a

porous medium flow they are, respectively, the permeability
tensor, the pressure driving the flow, and a source term (i.e. a
producer or injector well in a oil field) affecting the fluid flow
in the region of interest. In one dimension, Eq. (3) takes the
form,

d

dx

(
K(x)

df(x)
dx

)
= F (x), (4)

which, in terms of the discretized operators via the mimetic
technique, is written in the formD(KGf(x)) = F (x),
whereD and G are matrices representing the discretized
version of the divergence and the gradient operators, respec-
tively. That is, rather than discretizing a particular differen-
tial equation, the mimetic approach uses discrete operators to
produce a discrete analog of the partial differential equations
under consideration. In this form, once we have the discrete
version of the differential operators of interest, one could dis-
cretize any equation written in terms of them. To have a
boundary value problem properly expressed by Eq. (4), we
shall impose boundary conditions of the Robin (mixed) type

α0f(0)− f ′(0) = γ0; α1f(1) + f ′(1) = γ1 (5)

whereα0, α1, γ0 andγ1 are known constants. It should be
mentioned that finding reasonably accurate numerical solu-
tions to partial differential equations by means of numerical
schemes preserving key properties of the continuum (i.e. con-
servation laws; symmetry properties of the equation being
discretized, and so on) has been an active research area [2].
Accordingly, many finite difference schemes can be found
in the literature which are basically created for very specific
problems [10]. On the other hand, in the present ongoing re-
search on mimetic discretizations, the main effort is towards
constructing high-order mimetic discretizations of differen-
tial operators, which are of general applicability rather than
being limited to a specific problem.

2. Mimetic discretizations ofD and G

In a general non-uniformstaggeredgrid (Fig. 1) spanning the
interval [0,1], the mimetic framework presented in [6] leads
to the one-dimensional, second-order discretized mimeticG
and D, presented in Eqs. (6) [11]. From these equations
and Fig. 1, it is clear thatD is defined at cell points, but
G at nodal points. It is important to bear in mind that these
discretizations were obtained within the mimetic framework
analysis reported in Ref. 6. Correspondingly, they satisfy the
various conditions imposed by the mimetic approach men-
tioned in that article.

FIGURE 1. 1-D staggered (non-uniform point distributed) grid. The end points of each cell are the nodesxn(i), the cells are indexed
xc(i) = (1/2)(xn(i) + xn(i− 1)). fα(j) ≡ fα(xα(j)).

Rev. Mex. F́ıs. E54 (2) (2008) 141–145



ON SECOND-ORDER MIMETIC AND CONSERVATIVE FINITE-DIFFERENCE DISCRETIZATION SCHEMES 143

(Gf)0 = −
(

xc(1) + xc(2)− 2 xn(0)
(xc(1)− xn(0)) (xc(2)− xn(0))

)
fn(0) +

−xc(2) + xn(0)
(xc(1)− xc(2)) (xc(1)− xn(0))

fc(1) (6a)

+
xc(1)− xn(0)

(xc(1)− xc(2)) (xc(2)− xn(0))
fc(2)

(Gf)1 =
xc(1) + xc(2)− 2 xn(1)

(xc(1)− xn(0)) (−xc(2) + xn(0))
fn(0)−

(
xc(2) + xn(0)− 2 xn(1)

(xc(1)− xc(2)) (xc(1)− xn(0))

)
fc(1) (6b)

+
xc(1) + xn(0)− 2 xn(1)

(xc(1)− xc(2)) (xc(2)− xn(0))
fc(2)

(Gf)i = − 1
xc(i + 1)− xc(i)

fc(i) +
1

xc(i + 1)− xc(i)
fc(i + 1) ; i = 2, · · · , N − 2 (6c)

(Gf)N−2 = − xc(N − 1)− 2xn(N − 2) + xn(N − 1)
(xc(N − 2)− xc(N − 1))(xc(N − 2)− xn(N − 1))

fc(N − 2) (6d)

+
xc(N − 2)− 2xn(N − 2) + xn(N − 1)

(xc(N − 2)− xc(N − 1))(xc(N − 1)− xn(N − 1))
fc(N − 1)

− xc(N − 2) + xc(N − 1)− 2xn(N − 2)
(xc(N − 2)− xn(N − 1))(xc(N − 1)− xn(N − 1))

fn(N − 1)

(Gf)N−1 =
xn(N − 1)− xc(N − 1)

(xc(N − 2)− xc(N − 1))(xc(N − 2)− xn(N − 1))
fc(N − 2) (6e)

+
xc(N − 2)− xn(N − 1)

(xc(N − 2)− xc(N − 1))(xc(N − 1)− xn(N − 1))
fc(N − 1)

− xc(N − 2) + xc(N − 1)− 2xn(N − 1)
(xc(N − 2)− xn(N − 1))(xc(N − 1)− xn(N − 1))

fn(N − 1)

(Du)i+ 1
2

=
fn(i + 1)− fn(i)
xn(i)− xn(i− 1)

; i = 0, · · · , N − 1 (6f)

2.1. ObtainingD and G via Taylor’s expansions

Now, one would argue that the discretized scheme (6a)-(6f)
could be obtained from a more intuitive point of view, us-
ing Taylor expansions and the benefit of hindsight. As is
common when trying to obtain high-order finite-difference
schemes and in perturbation theory, the starting anzat is not
obvious, and the form in which we have intentionally pre-
sented Eqs. (6) will guide our insight.

In fact, the discretized gradient(Gf)0 evaluated at the
first xn(0) node in the grid can be obtained by Taylor’s ex-
pansion of the unknownf(x) aroundxn(0), and then eval-
uating the obtained expansion at the grid positionsxn(0),
xc(1) andxc(2). Solving the resulting system of equations
for the first derivative evaluated atxn(0), equation (6a) is
obtained.

By the same token, the discretized gradient(Gf)1, equa-
tion (6b), is obtained by taking Taylor’s expansion off(x)

aroundxn(1), and then evaluating the obtained expansion at
the grid positionsxn(0), xc(1) andxc(2). The desired equa-
tion is found after solving the resulting system of equations
for the first derivative evaluated atxn(1).

Similar reasoning can be used to obtain Eqs. (6c)-(6e).
The form in which the equations were written out will guide
the reader in guessing the grid points around which Taylor’s
expansions should be carried out in order to obtain them.
Equation (6f) is standard in finite differences.

Once we have a discretized set of equations for the diver-
gence and gradient operators, one should check whether this
scheme satisfies the desired properties implicit in the contin-
uum version of the operators (conservation laws, symmetries
and so on), which are required in order to be considered a
mimetic discretization. As indicated, the set (6a)-(6f) already
satisfies these conditions since they were first obtained in that
context [6,11].
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TABLE I. Numerical Errors

Grid Error Error Error

Size Finite Difference Support Operator New Method

16 0.3958 0.1861 0.0794

64 0.2206 0.0154 0.0045

256 0.0717 0.0010 0.0002

2.2. From mimetic to conservative schemes

Reference [6] provides sufficient discussion about the desired
properties that discretized formsD and G should satisfy
in order to be considered a mimetic scheme. And follow-
ing the systematic procedure outlined in that article, mimetic
discretizations (6a)-(6f) were obtained, whose derivation via
Taylor expansions were just presented.

Since one needs to solve the diffusion equation, the
Laplacian operator is required. It turns out that a conservative
scheme of our model problem (4) and (5) has the form

(Â + BG + D̂KG)f = b (7)

In this expressionD andG are matrix representations of the
discretized scheme.̂D satisfies

(
D̂f

)
0

= 0,
(
D̂f

)
n

= 0,

and
(
D̂f

)
i+ 1

2

= (Df)i+ 1
2

.

B is a boundary operator with only non-null entries
B(1, 1) = −1 and B(n + 2, n + 1) = 1. Â is the
(n + 2) × (n + 2) matrix having as non-zero entries those
elements in its diagonal that correspond to boundary nodes
(Â(1, 1) = α0 andÂ(n + 2, n + 2) = α1). K is a diagonal
tensor whose known values are positive and evaluated at grid
block edges.

f ≡ (f(x0), f(x 1
2
), f(x 3

2
), · · · , f(xn− 1

2
), f(xn))T (8)

b ≡ (γ0, F 1
2
, F 3

2
, · · · , Fn− 1

2
, γ1)T

This scheme is conservative and new. Its analysis has
been recently developed in [7]. It is proved in [7], by an
application of the modulus maximum principle, that the nu-
merical scheme has an optimum second-order convergence
rate.

2.3. An illustrative example

The one-dimensional boundary value problem in this test is
formulated in terms of the ordinary differential equation

d2f

dx2
=

λ2exp(λx)
exp(λ)− 1

(9)

defined on the interval [0,1], and it’s solution must satisfy
Robin boundary conditions of the form

αf(0)− βf ′(0) = −1 ; αf(1) + βf ′(1) = 0 (10)

at the borders. Equations (9) and (10) form together a
well where problem forα= − exp(λ), β=(exp(λ)− 1)/λ,
where λ an arbitrary non-null real number. This
problem has a unique analytical solution given by
f(x) = (exp(λx)− 1)/(exp(λ)− 1), and it represents a
boundary layer for large values ofλ. Correspondingly, it is
an excellent test problem for evaluating numerical schemes
with different discretization alternatives for boundary condi-
tions.

In this test all the numerical methods were implemented
on a uniform staggered grid. The value of the parameterλ
was set equal to 20, although similar results and conclusions
are obtained for any positive value of it. Numerical results
are presented in Tables I, where we also show results ob-
tained via two widely used discretizations schemes (finite-
difference based on ghost point [10] and the mimetic support
operator discretization described in Ref. 3)

Table I shows the numerical errors computed in the max-
imum norm. They indicate that on refined grids the new
method achieved at least three exact digits in its approxi-
mation, while support operator and standard finite-difference
methods obtained only two and one exact digits, respectively.
Such results indicate a clear advantage to our new scheme.

3. Conclusion

Intended to be presented in applied numerical methods
courses at both undergraduate and graduate levels, by
means of intuitive Taylor expansions, an alternative complete
derivation of a second-order mimetic discretization scheme
for the divergence and gradient operators was presented. As
illustrated via the diffusion equation, the scheme can be ap-
plied in building conservative discretization schemes of con-
tinuum problems formulated in terms of partial differential
equations. The many advantages to conservative schemes
in numerical studies have been known for some time and
are still a fruitful research area. The results obtained from
our test problem indicate a clear advantage to the presented
new scheme over other widely used numerical discretization
schemes. By using this approach, students can be introduced
earlier to mimetic discretization and its advantages, particu-
larly on the applications in the discretization presented here
to physical, engineering and industrial problems.
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