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Mathematics motivated by physics: the electrostatic potential is the Coulomb
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e-mail: lumg@fciencias.unam.mx,
bInstituto de F́ısica, Universidad Nacional Autónoma de Ḿexico,
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This article illustrates a practical way to connect and coordinate the teaching and learning of physics and mathematics. The starting point is
the electrostatic potential, which is obtained in any introductory course of electromagnetism from the Coulomb potential and the superposition
principle for any charge distribution. The necessity to develop solutions to the Laplace and Poisson differential equations is also recognized,
identifying the Coulomb potential as the generating function of harmonic functions. Correspondingly, the convenience of expressing the
electrostatic potential in terms of its multipole expansion in spherical coordinates, or as integral transforms based on harmonic functions in
different coordinate systems, is also established. These connections provide a motivation for teachers and students to acquire the necessary
mathematics as a basic tool in the study of electromagnetic theory, optics and quantum mechanics.
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Este art́ıculo ilustra una manera práctica de conectar y coordinar la enseñanza y aprendizaje de la fı́sica y las mateḿaticas. El punto de
partida es el potencial electrostático que se obtiene en el curso introductorio de electromagnetismo a partir del potencial de Coulomb y del
principio de superposición para cualquier distribución de carga. También se reconoce la necesidad de construir soluciones de las ecuaciones
diferenciales de Laplace y de Poisson, identificando al potencial de Coulomb como una función generadora de funciones armónicas. Cor-
respondientemente, también se reconoce la conveniencia de expresar al potencial electrostático en t́erminos de su desarrollo multipolar en
coordenadas esféricas, o de transformadas integrales basadas en funciones armónicas en diferentes sistemas de coordenadas. Estas conex-
iones proporcionan una motivación para maestros y alumnos para adquirir las matemáticas necesarias como una herramienta básica en el
estudio de la teorı́a electromagńetica, laóptica y mećanica cúantica.

Descriptores: Electrost́atica; ecuaciones diferenciales de Laplace y de Poisson; funciones armónicas esf́ericas y ciĺındricas circulares.

PACS: 41.20.Cv1

1. Introduction

Mathematics and physics have always been closely inter-
woven in a two-way process. The former is not only the
language of the latter; in addition, it often determines to a
large extent the content and meaning of physical concepts
and theories themselves. Consequently, progress in the study
of fundamental physics increasingly depends on the avail-
ability of new mathematical tools. It is a well-known fact
that there has been a close interrelationship between mathe-
matics and physics throughout their historical development.
Modern mathematics and physics were born in the 17th cen-
tury through Newton’s formulation of the laws of mechanics
and the invention of the infinitesimal calculus [1-2]. New-
ton changed the face of scientific research by placing the full
force of mathematics at the service of physical enquiry, be-
coming a unique example of coordination in invention and
discovery by a single individual. In contrast, Einstein had
to learn Riemannian geometry in order to formulate the the-
ory of general relativity [3], while Born recognized the ma-
trix mathematics behind Heisenberg’s formulation of quan-
tum mechanics [4].

This article addresses the general problem of connecting
and coordinating the study of physics and mathematics in dif-
ferent areas and on different levels. Specific facets of the
problem have been explored in [5] and in a series of dialogues
under the title of ”Mathematics motivated by physics” [6].
Emphasis was placed on the construction of mathematical
bridges to make the transition from introductory courses
in mechanics, fluids, thermodynamics, electromagnetism
and quantum mechanics to their junior/senior/graduate level
counterparts. The second half of the title of this manuscript
blends the physical and mathematical elements to guide col-
leagues and students in their respective tasks of teaching and
learning electrostatics, identifying and constructing the ap-
propriate mathematical tools.

The starting points are the physical laws of electrostatics
expressed in their integral and differential equation forms, re-
viewed in Sec. 2. Section 3 is devoted to the solutions to
the Laplace equation in some illustrative coordinate systems,
corresponding to the so-called harmonic function bases. In
Sec. 4, the harmonic function expansions of the Coulomb
potential in spherical and circular cylindrical coordinates are
comparatively analyzed, contrasting their discrete and con-
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tinuous natures, respectively. The physical and mathemat-
ical elements identified in Secs. 3 and 4 are the basis for
representing the electrostatic potential as harmonic function
expansions in Sec. 5, characterizing them according to the
specific coordinates involved. Section 6 contains discussions
of the extensions to other coordinates, and to other areas of
electromagnetism.

2. The laws of electrostatics

Coulomb’s law describes the radial and inverse-square of the
distance force between two electrically charged point parti-
cles [7-12]:

−→
F 1→2 = keq1 q2

(−→r1 −−→r2)

|−→r1 −−→r2 |3
(1)

The superposition principle applies in electrostatics, and
states that the force of a collection of charges on a test charge
is the vector sum of Coulomb forces:

−→
F {−→q i,

−→ri}→(−→q ,−→r ) =
N∑

i=1

−→
Fi{−→q i,

−→ri}→(−→q ,−→r )

= ke

N∑

i=1

qiq
(−→r −−→ri )

|−→r −−→ri |3
(2)

In the case in which the collection of charges is contin-
uously distributed in a volumeV, so that the charge element
associated with a differential volume isdq′ = ρ(

−→
r′ )d3V ′,

whereρ(
−→
r′ ) is the charge volume density, the sum in Eq. (2)

becomes an integral:

−→
F {ρ,V }→(q,−→r ) = keq

∫

V

ρ(
−→
r′ )

(−→r −−→r′
)

∣∣∣−→r −−→r′
∣∣∣
3 dV ′ (3)

Since the forces in Eqs. (2) and (3), are proportional to
the magnitude of the chargeq, it is possible to identify

−→
E (−→r ) =

−→
F

q
= ke

∫

V

ρ(
−→
r′ )

(−→r −−→r′
)

∣∣∣−→r −−→r′
∣∣∣
3 dV ′ (4)

as the electric intensity field produced by the charge distribu-
tion {ρ, V }.

Gauss’ law of electrostatics follows from the evaluation
of the flux integral of Eq. (4), becoming

∮

S

−→
E · d−→a = 4πke

∫

V

ρ(
−→
r′ )dV ′ = 4πkeQ (5)

whereS is the closed surface bounding the volumeV, andQ
is the electric charge contained inside that volume. The dif-
ferential equation form of Gauss’ law is obtained by applying
Gauss’ flux or divergence theorem to Eq. (5):

5 · −→E (−→r ) = 4πkeρ(−→r ) (6)

The Coulomb force of Eq. (1) is conservative and can
be written as the negative of the gradient of the so-called
Coulomb potential energy,

−→
F 1→2 = −5

(
keq1 q2

1
|−→r1 −−→r2 |

)
= −5 (U12) (7)

Correspondingly, the electric intensity field of Eq. (4) can
be written as

−→
E = −ke 5




∫

V

ρ(
−→
r′ )∣∣∣−→r −−→r′

∣∣∣
dV ′


 = −5 φ(−→r ) (8)

where

φ(−→r ) = ke

∫

V

ρ(
−→
r′ )∣∣∣−→r −−→r′

∣∣∣
dV ′ (9)

is the electrostatic potential produced by the charge distribu-
tion {ρ,V}. This is the quantity giving rise to the second half
of the title in this manuscript. The reader can appreciate the
physical and mathematical elements in it. In Sec. 5, sev-
eral alternative mathematical representations are introduced
explicitly.

If the line integral of electric intensity field is evaluated
using Eq. (8),

r∫

ri

−→
E · d−→r = −

r∫

ri

5φ · d−→r = −φ(−→r ) + φ(−→r i) (10)

the result depends only on the initial and final points of the in-
tegration path, and is independent of the path chosen. When
the path is closed, and therefore both points coincide, the
closed-line integral vanishes. Also, the curl of Eq. (8) van-
ishes:

5×−→E (−→r ) = 0 (11)

Equations (7)-(11) are different forms of expressing the
conservative character of the electrostatic field. While Eq. (4)
indicates that

−→
E (−→r ) is the force per unit charge at a given po-

sition, Eqs. (7) and (8) point out thatφ(−→r ) is the potential
energy per unit charge.

The reader may also inquire about the equation thatφ(−→r )
must satisfy. The answer follows from the substitution of
Eq. (8) into Eq. (6) with the result:

52φ(−→r ) = −4πkeρ(−→r ), (12)

the so-called Poisson equation, involving the Lapacian or
Laplace operator52.

At the points where there is no charge, Eq. (12) reduces
to the so-called Laplace equation,

52φ(−→r ) = 0 (13)
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3. Harmonic functions in spherical and circu-
lar cylindrical coordinates

The solutions to the Laplace equation are called harmonic
functions. Here we review the explicit forms of the equa-
tion in spherical and circular cylindrical coordinates, illus-
trating their separation and integration leading to the respec-
tive spherical harmonics and circular cylindrical harmon-
ics [13,14]. In fact, the Laplace equation in the familiar
spherical (r,ϑ,ϕ) and circular cylindrical (R,ϑ,ϕ) coordinates
has the respective forms:

{
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2

[
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ

+
1

sin2 ϑ

∂2

∂ϕ2

]}
φ(r, ϑ, ϕ) = 0 (14)

[
1
R

∂

∂R
R

∂

∂R
+

1
R2

∂2

∂ϕ2
+

∂2

∂z2

]
φ(R,ϑ, z) = 0 (15)

In both cases, the equation is satisfied by separable solu-
tions in the following forms:

φ(r, ϑ, ϕ) = f(r)θ(ϑ)Φ(ϕ) (16)

φ(R, ϑ, z) = g(R)Φ(ϕ)Z(z) (17)

The successive factors satisfy the ordinary differential
equations

d2Φ
dϕ2

= −m2Φ (18)

[
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
− m2

sin2 ϑ

]
θ(ϑ) = −l(l + 1)θ(ϑ) (19)

[
1
r2

d

dr
r2 d

dr
− l(l + 1)

r2

]
f(r) = 0 (20)

d2Z

dz2
= k2Z (21)

[
1
R

d

dR
R

d

dR
− m2

ρ

]
g(R) = −k2g(R) (22)

where -m2, -l(l+1), andk2 are the respective separation con-
stants. Notice that Eqs. (18)-(22) have the form of eigen-
value equations, involving second-order differential opera-
tors which, upon application to the eigenfunction, lead to the
same function multiplied by a constant, called the eigenvalue.
The angular coordinateϕ and the associated Eq. (18) are
common to both cases.

The solutions are chosen to those of periodic
Φ(ϕ + 2π) = Φ(ϕ), restricting the values of the separa-
tion constant to be an integerm = 0,±1,±2,. . .

The set of such solutions,

Φm(ϕ) =
e(imϕ)

√
2π

(23)

is the well-known Fourier basis. The real and imaginary parts
cos (mϕ) and sin (mϕ) correspond to the alternative even
and odd (underϕ → −ϕ) Fourier bases. The orthonormality
and completeness properties of the basis are expressed, by

2π∫

0

e(in′ϕ)e(inϕ)

2π
dϕ = δn′,n (24)

∞∑
n=−∞

e(inϕ)e(inϕ′)

2π
= δ(ϕ− ϕ′) (25)

respectively, in terms of the Kronecker-delta symbol and the
Dirac-delta function, where the latter is zero forϕ 6= ϕ′, in-
finity for ϕ = ϕ′, and its integral is one in the integration
interval includes the valueϕ = ϕ′.

The polar coordinate0 ≤ ϑ ≤ π and its associated
Eq. (19) determine the singularities atϑ = 0 and π, or
cos (ϑ) = 1 and−1. Eq. (19) is known as the associated
Legendre equation; its regular solutions are the associated
Legendre polynomials

θ (ϑ) = P
|m|
` (cos ϑ) = (sin ϑ)|m|

d|m|P` (cosϑ)

d (cos ϑ)|m|
(26)

of degreè − |m|, where` = 0, 1, 2, ... andP` (cos ϑ) are
the ordinary Legendre polynomials of degree`. They also
have a well-defined parity(−1)`−|m| underϑ → ϑ − π or
cos ϑ → − cosϑ.

The products of the angular functions

Ylm(ϑ, ϕ) = NlmP
|m|
` (cos ϑ) exp (imϕ) (27)

are known as the angular spherical harmonics, whereNlm is
a normalization factor such that

π∫

0

2π∫

0

Y ?
`m(ϑ, ϕ)Y`m(ϑ, ϕ) sin ϑdϕdϑ = 1 (28)

It is known that the Fourier basis in Eq. (23) is orthonor-
mal. In a similar way, the angular spherical harmonic basis
of Eq. (27) is orthonormal

π∫

0

2π∫

0

Y ?
`′m′(ϑ, ϕ)Y`m(ϑ, ϕ) sin ϑdϕdϑ = δ`′,`δm′,m (29)

and complete

∞∑

`=0

∑̀

m=−`

Y ?
`′m′(ϑ′, ϕ′)Y`m(ϑ, ϕ)

=
δ(ϕ− ϕ′)δ(ϑ− ϑ′)

sin ϑ′
(30)

The completeness property implies that any quadratically
integrable function ofϑ andϕ can be expanded in terms of
such a basis,

F (ϑ, ϕ) =
∑

`

∑
m

a`mY`m(ϑ, ϕ) (31)
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where the expansion coefficients follow from Eq. (29):

a`m =

π∫

0

2π∫

0

Y ?
`m(ϑ, ϕ)F (ϑ, ϕ) sin ϑdϕdϑ (32)

The radial Eq. (20) is satisfied by two independent power
solutions

f(r) = Ar` + Br−(`+1) (33)

for each given value of̀. The positive powers are regular
at the origin and diverge asr → ∞, and the inverse powers
diverge at the origin and tend to zero asymptotically.

The productsr`Y`m(ϑ, ϕ) are known as solid spherical
harmonics. The axial coordinate and its associated Eq. (21)
lead to the exponential solutions

Z(z) = Ce(kz) + De(−kz) (34)

which are regular and singular atz → −∞, respectively, and
the other way around atz →∞.

The corresponding solutions of Eq. (22) in the circular
radial coordinate are the ordinary Bessel functions

g(R) = EJm(kR) + FNm(kR) (35)

of the first and second kind, respectively. They are regular
and singular at the originR → 0,

J0(kR) → 1, N0(kR) → 2
π

ln (kR) (36)

Jm(kR) → (kR)|m|

2|m| |m|! ,

Nm(kR) → −2|m|
(m− 1)!

π
(kR)−|m| (37)

oscillate for intermediate and larger values of their argument,
and their asymptotic behavior is of the form

Jm(kR) =

√
2
π

cos
(
kR− (

m + 1
2

)
π
2

)
√

kR
,

Nm(kR) →
√

2
π

sin
(
kR− (

m + 1
2

)
π
2

)
√

kR
(38)

The ordinary Bessel functions are quadratically inte-
grable and form an orthonormal and complete set of func-
tions:

∞∫

0

Jm(k′R)Jm(kR)RdR =
δ(k − k ′)

k ′
(39)

∞∫

0

Jm(kR)Jm(kR′)kdk =
δ(R − R′)

R′
(40)

In Eqs. (21) and (22) the separation constant could be
chosen with the opposite sign, which we express by the an-
alytical continuationk → iκ. Then, instead of Eqs. (34)
and (35), the solutions become

Z(z) = Ce(iκz) + De(−iκz) (41)

g(R) = EIm(κR) + FKm(κR) (42)

respectively, involving the Fourier basis in longitudinal co-
ordinates, and the modified Bessel functions in radial coordi-
nates. The latter are monotonically increasing and decreasing
as their arguments change fromκR = 0 to κR →∞.

In conclusion, the general solutions to the Laplace
Eqs. (14) and (15) can be written as a superposition of spher-
ical harmonics, from Eqs. (27) and (33),

φ(R,ϑ, z) =
∑

`

∑
m

(
a`r

` + b`r
−(`+1)

)
Y`m(ϑ, ϕ) (43)

or circular cylindrical harmonics,

φ(R, ϕ, =
∑
m

e(imϕ)





∞∫

0

[amkJm(kR) + bmkNm(kR)]

×
[
cke(kz) + dke(−kz)

]
kdk

}
(44)

from Eqs. (23), (30) and (33), or

φ(R, ϕ, z) =
∑
m

e(imϕ)





∞∫

0

[amkIm(κR) + bmkNm(κR)]

×
[
cκe(iκz) + dke(−iκz)

]
κdκ

}
(45)

using Eqs. (41) and (42).
The potential in Eq. (43) is expressed as the spherical

harmonic multipole expansion in which the terms with each
value of` are designated as2` order poles [12]. The potential
in Eqs. (44) and (45) are expressed as Fourier series in the
angular coordinateϕ. Besides, Eq. (44) involves a Laplace-
ordinary Bessel integral transform, and Eq. (45) involves a
Fourier-modified Bessel integral transform in the longitudi-
nal and radial coordinates, respectively. The expansion coef-
ficients in Eqs. (43) - (45) are to be determined by the bound-
ary conditions according to each specific application.

4. Harmonic expansions of the Coulomb po-
tential

In order to solve the Poisson differential equation, Eq. (12),
for any source distribution with electric charge densityρ(−→r ),
it is sufficient to use the Green function technique. The Green
functionG(−→r ,−→r ′) satisfies the Poisson equation for a unit
electric point charge located at the position−→r ′:

∇2G(−→r ,−→r ′) = −4πδ(−→r −−→r ′) (46)
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where the Dirac-delta function represents appropriately the
electric charge density of the chosen source. Its volume inte-
gral that contains the point where the charge is located is∫

δ(−→r −−→r ′)dV ′ = 1 (47)

The solution to the Poisson Eq. (12) is given by the in-
tegral of the product of the electric charge density and the
Green function:

φ(−→r ) =
∫

ρ(−→r ′)G(−→r ,−→r ′)dV ′ (48)

If the Laplace operator is applied to both sides of the last
equation, the result is

∇2φ(−→r ) =
∫

ρ(−→r ′)∇2G(−→r ,−→r ′)dV ′

= −4π

∫
ρ(−→r ′)δ(−→r −−→r ′)dV ′ = −4πρ(−→r ) (49)

where use is made of Eq. (46) and of the integration with the
Dirac-delta function, showing thatφ(−→r ) is indeed a solution
to Eq. (12).

On the other hand, the potential of the unit point charge is
simply the Coulomb potential, with which the Green function
can be identified:

G(−→r ,−→r ′) =
1

|−→r −−→r ′] (50)

Then the reader can identify Eq. (50) with the Coulomb
integral transform of the charge density already discussed in
connection with Eq. (9), in Sec. 2.

The Coulomb potential, or inverse of the distance be-
tween the source point and the field point, is known to be
the generating function of the spherical harmonics [13, 14]

1
|−→r −−→r ′] =

1√
r2 + r′2 − 2rr′(r̂ · r̂′)

∞∑

`=0

r`
<

r`+1
>

P (r̂ · r̂′)

=
∞∑

`=0

4π

2` + 1
r`
<

r`+1
>

∑̀

m=−`

Y ?
`m(ϑ′, ϕ′)Y`m(ϑ, ϕ) (51)

wherer< andr> represent the smaller and larger ofr and
r′. Expansion of the -1/2 power of powers(r</r>) of the
trinomial generates the Legendre polynomials with argument

r̂ · r̂′ = sin ϑ sin ϑ′ cos(ϕ− ϕ′) + cos ϑ cosϑ′ (52)

and the latter in turn generate the spherical harmonics, via the
so-called addition theorem involving the sum overm.

The inverse of the distance in Eq. (9) is also the generat-
ing function of the circular cylindrical harmonics [15]:

1√
R2 + R′2 − 2RR′ cos(ϕ− ϕ′) + (z − z′)2

=
1
π

∞∑
m=−∞

eim(ϕ−ϕ′)
∞∫

0

Jm(kR)Jm(kR′)e−k(z>−z<)dk (53)

1√
R2 + R′2 − 2RR′ cos(ϕ− ϕ′) + (z − z′)2

=
1
π

∞∑
m=−∞

eim(ϕ−ϕ′)
∞∫

0

Im(κR<)Km(κR>)e−iκ(z−z′)dκ (54)

Notice that the spherical and circular cylindrical harmonic expansions of Eqs. (51), (53) and (54), are particular cases of the
general solutions to the Laplace Equation described by Eqs. (43), (44) and (45) in Sec. 3. Notice also, that the Poisson Eq. (12)
reduces to the Laplace equation for all pointsr 6= r′, making possible the harmonic expansions of the Coulomb potential.

5. Harmonic expansions of the electrostatic potential

Substitution of the harmonic expansions of the Coulomb potential Eqs. (51), (53) and (54) into Eq. (9) leads to the respective
harmonic expansions of the electrostatic potential:

φ(r, ϑ, ϕ) =
∞∑

`=0

4π

2` + 1

∑̀

m=−`

∞∫

0

dr′
π∫

0

sin ϑ′dϑ′
2π∫

0

dϕ′ρ(r′, ϑ′, ϕ′)
r`
<

r`+1
>

r′2Y ?
`m(ϑ′, ϕ′)Y`m(ϑ, ϕ) (55)

φ(R, ϑ, z)=
1
π

∞∑
m=0

(2−δm,0)

∞∫

0

dkJm(kR)

∞∫

0

dR′Jm(kR′)R′
2π∫

0

dϕ′ cosm(ϕ−ϕ′)

∞∫

−∞
dz′ρ(R′, ϕ′, z′)e−k(z>−z<) (56)

φ(R, ϑ, z)=
1
π

∞∑
m=0

(2−δm,0)

∞∫

0

dκ

∞∫

0

dR′Im(κR<)Km(κR>)R′
2π∫

0

dϕ′ cosm(ϕ−ϕ′)

∞∫

−∞
dz′ρ(R′, ϕ′, z′) cos κ(z−z′) (57)
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Equation (55) gives the familiar spherical multipole ex-
pansion of the electrostatic potential, described in detail in
Ref. 14 for the regions inside and outside the region where
the sources are located. It must be pointed out that in most
books, the study of this type of expansion is limited only to
the region far from the sources. The expansions in circular
cylindrical harmonics of Eqs. (56) and (57) involve Fourier
series in angular coordinates, and integral transforms of the
Laplace-ordinary Bessel and of the Fourier-modified Bessel
types in longitudinal and radial coordinates, respectively.

Integrations of the charge density with harmonic func-
tions over the primed coordinates provide the coefficients in
the complementary harmonic expansion ofρ(−→r ). The steps
followed from Eq. (9) of Sec. 2 passing through Secs. 3
and 4 and ending in Eqs. (55) - (57) of the present section
provide the bridge for arriving at the mathematical integral
transforms motivated by the physical integral transform of
the electrostatic potential.

6. Discussion

The contents of this article, as anticipated in the Introduction,
take the review of the laws of electrostatics, in particular the
connection between the electric source density and the elec-
trostatic potential, Eqs. (9) and (12), as the motivation for
learning about the solutions to the Laplace equation in Sec. 3,
the harmonic expansions of the Coulomb potential in Sec. 4,
and the harmonic expansions of the electrostatic potential in
Sec. 5. The outline presented here emphasizes the special
place that harmonic functions play in the study of electro-
statics and it is the aim of the authors to motivate the reader,
whether teacher or student, to learn about them in detail. Al-
though the center of the attention has been the electrostatic
potential, once it is available, Eq. (9) serves to construct the
electric intensity field and its harmonic expansions. For the

sake of space and illustration, the analysis in this paper has
been limited to spherical and circular cylindrical coordinates.

The interested reader may consult [15] for the harmonic
expansions of the Coulomb potential harmonics in prolate
spheroidal, oblate spheroidal, and paraboloidal harmonics.
Also the relationship between the electrostatic potential and
the electric charge density has its counterpart in the relation-
ship between the magnetostatic potential and the electric cur-
rent density, being connected by a Coulomb integral trans-
form and by the Poisson equation [14]. The same ideas are
extended to the case of electromagnetic fields. Instead of
the Laplace and Poisson equations, the sourceless and source
Helmholtz equations must be used. The Coulomb potential as
a Green function is replaced by the outgoing spherical wave
eik|−→r −−→r ′|/−→r −−→r ′. The complete electromagnetic multipole
expansion is also available in Ref. 16.

It must also be pointed out that the mathematics of elec-
tromagnetism is also useful in quantum mechanics, where
the superposition principle is also valid. For instance, the
spherical harmonics are the eigenfunctions of angular mo-
mentumˆ̀2 and ˆ̀

z, with eigenvalues~2`(`+1) andm~ for the
square of its magnitude and its components along thez-axis.
Plane waves and spherical waves are the mathematical tools
for describing the scattering of electromagnetic and quantum
waves. In conclusion, the interested reader is invited to iden-
tify and develop the appropriate mathematics for the field of
physics of his/her choice.
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