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Some intricacies of the momentum operator in quantum mechanics
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In quantum mechanics textbooks, the momentum operator is defined in Cartesian coordinates and the form of the momentum operator in
spherical polar coordinates is rarely discussed. Consequently one always generalizes the Cartesian prescription to other coordinates and
falls into a trap. In this work, we introduce the difficulties one faces when the question of the momentum operator in general curvilinear
coordinates arises. We have tried to elucidate the points related to the definition of the momentum operator, taking spherical polar coordinates
as our specimen coordinate system and proposing an elementary method in which we can ascertain the form of the momentum operator in
general coordinate systems.
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En los libros de menica ciéntica, el operador de momento se define en coordenadas cartesianas y raramente se discute la forma de este
operador en coordenadas polares. En consecuencia, siempre se generaliza la predergste operador en coordenadas cartesianas al caso

de otras coordenadas con lo cual se suele caer en una trampa. En este trabajo, introducimos las dificultades que se encuentran cuando surge
la pregunta de@mo se escribe el operador de momento en coordenadadmeagilgenerales. Tratamos de dilucidar los puntos relacionados

con la definicbn del operador de momento tomado como ejemplo el caso de las coordenadaasgfproponemos unétodo elemental

con el cual podemos establecer la forma del operador de momento en sistemas coordenados generales.

Descriptores:Operador de momento; mégica c@ntica.

PACS: 02.30.Tb; 45.20.df; 03.65.-w

1. Introduction wherei = 1,2, 3. The angular momentum vectors are defined

as
In classical mechanics, the definition of momentum (both lin-

ear and angular) in Cartesian coordinates is simple. Linear L= —ih(r x V). 3)
momentum is defined as mass times velocity, and angular

momentum is the cross-product of the position vector with _—
: . ) . All of the above definitions of momentum operators seem to
the linear momentum vector of a particle or a body in motion

In classical mechanics. a particle must have a unique ositic;be flawless in Cartesian coordinates. But one soon realizes
' ap que POSUOf .+ the definitions above are not all satisfatory if we have to

and velocity and consequently the definition of momentum is . ; . ;
Y q y eneralize our results to various coordinate systems. In this

unamblguou_s._ When we are using generalized coor_dlnate ticle we shall illustrate the problems of defining the mo-
then the definition of the generalized momenta straightfor-

) . mentum operators in general curvilinear coordinates.
ward. We have to know the Lagrangigrof the system writ- P 9

ten in the generalized coordinates, and the momentum conju- | It wefchoqsehspherlcialll polar coordinates, then the c:c'ﬁr:'
gate to the generalized coordinatés simply culty we face is that not all momentum components are of the

same status (as in Cartesian coordinates), as one is a linear
oL 1 momentum and the other two are angular momenta. More-

pi= ag; @) over in quantum mechanics we do not have a relation cor-

responding to Eq. (1) to find out the momenta in arbitrary

In quantum mechanics the position of a particle is not UNIQUEe; cumstances. The nice world of separate linear and angular

one has to revert to wave functions and then find out th%omenta vanished and we must find how to define the mo-
probability density of finding the particle in some portion of menta under these new circumstances. In addition to these

spsce. Nelétlurally the def|rk;|t|ol? of momenium beﬁ"”’.'es ?L bs'iifficulties we also have to consider whether the momentum
arbitrary. Elementary textbooks on quantum mechanics [1-— perators defined are actually self-adjoint. In this article we

|n'var|ably define thg m,o_me”t“m operators in Cartesian COOzhall not speak about the self-adjointness of the operators;
dinates, where ambiguities are fortunately fewer. In Cartesia

for a better review on this topic, readers may consult [4]. In

coordinates we have three coordinates which have the Same antum mechanics, whenever we speak about angular mo-
dimensions, and the linear momentum operator is defined ag, - " in the back c’)f our mind we conceive of the gener-

) ators of rotation which follow the Lie algebra. But strictly
pi= _maxi g ) speaking this fact is not true. In spherical polar coordinates,
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[pe , po] = 0 although both of them are angular momentumwhere g(q) is the determinant of the metric of the three-
operators. The Lie algebra of the angular momenta followslimensional space. The constafitin the general form of
only when we are working in Cartesian coordinates. the momentum operator in Eq. (7) turns out to be zero. Be-

In the present article, we try to formulate the importantfore going into the actual proof of the last statement, it should
properties of the momentum operator which can be geneme noted that in any arbitrary coordinate system some of the
alized to non-Cartesian coordinates, and in this process weanonical conjugate momenta will be linear and some will
point out which properties cannot be generalized. We try tdoe angular. As the expectation values of the canonical mo-
treat both angular and linear momenta on the same footinghientum operators must be real, so for bound quantum states
and try to find out the properties of these operators. In theéhe expectation value of the linear momentum operators must
following section, we start with a general discussion of thebe zero in any arbitrary coordinate system. Physically this
momentum operator. Section 3 is dedicated to a descriptiomeans that coordinates with linear dimensions are in gen-
of the momentum operator in the Cartesian and the sphereral non-compact and extend to infinity and for bound states,
cal polar coordinate systems, but its content is general anifl the expectation value of the momenta conjugate to those
can be used to understand the form of the momentum openon-compact coordinates is not zero, then it implies a mo-
ators in other coordinates as well. We conclude with a brieimentum flow to infinity, which contradicts the very essence
discussion on the topics described in the article in Sec. 4. of a bound state. On the other hand, in an arbitrary coordinate
system the expectation values of the angular momentum op-
erators for any bound/free quantum state can be zero or of the
form M#A (from purely dimensional grounds), wheké can

Particularly in this section when we speak of momentum wed€ any integer (positive or negative) including zero. To prove
shall not distinguish between linear and angular momentahatc; = 0, we first take those components of the momentum
The coordinate system in which the position and momentun@pPerator for which its expectation value turns out to be zero
operators are represented is general with no bias in favouf an arbitrary coordinate system for a bound quantum state.
of the Cartesian system. The basic commutation relations iffh00sing those specific components of the momentum, we

2. The momentum operator

quantum mechanics are: assume that for these casgs# 0 and it has a unique value.
. The value ofc; may depend on our coordinate choice but in
[gi  pj] = ihdiy , (4)  any one coordinate system it must be unique. Suppose in the
and special coordinate systegrthe normalized wave function of
an arbitrary bound state is given k¥q). Then, from the
9, ¢j] = [pi, pj] =0 (5)  definition of the general momentum operator in Eq. (7) this
implies:
whereg; andp; are the generalized coordinate and momen-
tum operator and; ; = 1 wheni = j and zero for all other N ‘
cases, and,; = 1,2,3. From Eg. (4) we can infer that (pi) = 0= —ihFl(g)] + e ©)
the most general form of the momentum operator in quan- _ _ _ _
tum mechanics, in position representation, is: whereF[y(q)] is a functional of(q) given by:
=it |2 f(g) + halg) + ©) 19 .
pi=—ih | g (@) +hile) + i Flo@l= V=300 @ | 515 oo v} |#a. 1o

where f(q) andh;(q) are arbitrary functions of coordinates

g, ande; are constants all of which may be different for dif- which depends on the functional form¢fq). If we choose
ferent components of the momenta If we put this general another bound state in the same coordinate system whose
form of the momentum operator into Eq. (5) we see that ithormalized wave function is given hy(¢) then we can also
restrictsh(q) to being a constant and so the general form ofwrite

the momentum operator must be:

L 8 —ihF[¢(q)] + ¢ = 0. (11)

pi=—ih|——=+—f(q) +c| . (7)
f(q) 9qi .

) _ ) ~ Comparing Eqg. (9) and Eg. (11) we see that the value; of
ferent circumstances. In this article we show that one of thgerg at least for those components of the momentum oper-
ways in which the functiorf (¢) can be determined is by im-  ator that have vanishing expectation values in bound states.
posing the condition that the momentum operator must havRext we take those components of the momentum opera-

mentum operator is given as: case also we can take two arbitrary but different bound state
. wave-functions)(q) and¢(q). Evaluating(p;) using these
(pi) = / V=9(@) ¥*(9) pi(q) d°q, (8)  two different wave-functions will yield two similar spectra of
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momenta as\/# and Nh whereM and N belong to the set a heuristic method. A more formal approach to something
of integers including zero. In this case also we see that twaimilar to the topics discussed in this article can be found in
guantum systems with different wave-functions yield simi-Refs. 5 and 6. As the present article is purely pedagogical in
lar momentum expectation values. Consequently in this casietent we shall try to follow the path as (probably) taken by
also we must have; = 0, otherwise it will not be unique. young graduate students who generalize the concepts of the
Although we utilized some properties of bound systems inCartesian coordinates to any other coordinate system and in
guantum mechanics to show that= 0 in general, we as- doing so fall into a trap. Then after some thinking the student
sume that the form of the canonical momentum operator isinderstands the error in his/her thought process and mends
the same for bound and free quantum states. Thus the madsis/her way to proceed towards the correct result. Conse-
general form of the canonical momentum operator for anyquently, the ansatz which we shall follow to find out the form
quantum mechanical system in any coordinate system musf f(q) is the following. First we will blindly assume, in any

be of the form: specific coordinate system, thafg) = 1 as in the Cartesian
1 8 coordinates and try to see whether the momentum operator
Pi= _th(q) 3qif(Q)’ (12) yields a real expectation value. If this choice foffy) pro-

. . . . , duces a real expectation value of the momentum operator,
which still contains the arbitrary functiofi(q) whose form o the choice is perfect and we have the desired form of
IS coordlpate system dependent. From Eq. (6) we droppeﬁle momentum operator. If on the other hand with our initial
the functionh; (¢) because the momentum components must,gice off(q) = 1 we do not get a real expectation value of

satisfy|p; , p;] = 0. The last condition is not always true as o jomentum operator, then we shall choose an appropriate

in the case of charged particles in the presence of an extef) e for it so that the redefined momentum yields real ex-

nal classical electromagnetic field. For charged particles irE)ectation values. In the cases which we shall consider in this

the presence of a classical external electromagnetic field thgrticle the form off (¢) will be evident as soon as we demand

momentum components do not commute and in tho;e CaS¥at the momentum operators must have real expectation val-
the most general form of the momentum operator will CoN- g

tain h;(¢) as in Eq. (6) whilec; will be zero. In presence In this article we assume that in general the wave func-
of an electromagnetic field the momenta components of th'ﬁons we deal with are normalized to unity and the coordi-

electron are defined in the Cartesian coordinates as nate systems to be orthogonal. Moreover the wave functions

™ = —ih Fied;(x), are assumed tq_vanish at the boundaries or satisfy periodic
T boundary conditions.
wheree is the negative electronic charge add(x) is the
electromagnetic gauge field. In this cdse, m;] = —icFi; 3. The momentum operator in various coordi-

where F;; is the electromagnetic field-strength tensor. As

seen in these casés(q) will be proportional to the electro-

magnetic gauge field. 3.1. Cartesian coordinates

In this article, we assume that the form of the momentum

operator in general orthogonal curvilinear coordinate sysAccording to our ansatz here we initially takéz, y, z) = 1,

tems is dictated by the basic commutation relations as givewhich implies that the: component of the momentum oper-

in Eg. (4) and Eq. (5) and the condition that the expectatiorator is as given in Eq. (2). If the normalized wave function

value of the momentum operator must be real in any coorsolution of the time-independent Séldinger equation of any

dinate system. To find out the form ¢fq) we shall follow  quantum system is given hy(x), wherey (x) vanishes at the
boundaries of the region of interest, the expectation value of

nate systems

| pgis:
r L
[oepvas=—in [ [aya: __/L v ) 20 g,
——in [ [ aya: [ it - / 000221 gy (13)
L —L

If the wave function vanishes at the boundarieand— L or are periodic or anti-periodic at those points, then the first term on
the second line on the right-hand side of the above equation drops and we have,
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/W(X)pxw(X)d% = —iﬁ//dydz [/_LLW(X) oY (x
= ih//dydz [/Lzb(X)ad} )

This shows that the expectation valuepgfis real and so in
Cartesian coordinates we hayér,y,z) = 1. In a similar
way it can be shown that with the same choicef¢f, y, 2)
the expectation values ¢f, andp, are also real. The above
analysis can also be done when the wave functions are sepa- oo

rable. Consequ_ently |n_CarteS|an coordinates the momentum W',y — z’h/dQ/r|w(r))|2 dr = (pf,)*
operators are given as in Eq. (2).

da:] - / () Pt () . (14)

The above equation implies th@t',.) is not real in spherical
polar coordinates. On the other hand if we write Eq. (18) as:

3.2. Spherical polar coordinates

+ih/dQ/r|z/)(r))|2dr, (19)
0

3.2.1. The radial momentum operator

If we start with f(r,0,¢) = 1 then the radial momentum

; then the left-hand side of the above equation can be written
operator looks like:

as:
Pl = fzﬁag (15)
| o - | <pT>—m/dQ/r|w<r>|2dr
If the solution of the time-independent Sédinger equation
for any particular potential ig/(r, 6, ¢) = ¥(r), then the ex-
pectation value of!. is

= —ih / dQ) / [

oo

.y = —ih / a0 [ / r2 % (r) agff”) dr] . (186)

0

P
= —m/dsz/o 2y (r) Li + ﬂ P(r)dr. (20)

whered() = sin 6 df d¢ and consequently,

o0 5 A similar manipulation on the right side of Eq. (19) can be
(P = —ih/dQ [/ r%*(r)% dr] done and it yields:
0 o)
/ o\ % . 2
it [ a0 [ @l W, +ih [ do / rl(e) dr
o0 a %
- [ (w22 v dr] S an =i [ ao / o0 2 ] ar
0
If ¢ (r) vanishes as — oo then the above equation reduces o 1
0 :zh/dﬂ/r () [m + J Yre)dr. (21)
0 0
PN s 2 Y*(r)
') = Zh/dQ [/r ¥(r) or dr] Now if we redefine the radial momentum operator as:
0
7 oy (9 Yl 0
+2m/d9/r\w<r>\2dr Pr=py = =ik (ar * ) =il @9
0 - then from Eq.(19) we observe that the expectation value of
, ) p- must have real values. This fact was derived in a different
={,)" + 2271/619/7““# "dr. (18)  \yay by Dirac [7,8]. Now this form of,, we can identify as

f(r,0,¢) =rinEq. (7).
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We end our discussion on the radial component of thevhich implies that the only force acting on the electron is
momentum operator with an interesting example. Here wehe centripetal force supplied by the Coulomb field. But the
shall calculate the expectation value of the radial componerdbove equation presents some difficulties. First from our
of the force acting on an electron in the Hydrogen atom. Thé&knowledge of particle mechanics in central force fields we
main purpose of this exercise is to generalize Heisenbergknow that there must be some centrifugal reaction also which
equation of motion in spherical polar coordinates, which isis absent in Eq. (28). Secondly as the Hydrogen atom is a
not found in the elementary quantum mechanics text bookdound system, the expectation value of its radial component
Although in the Heisenberg picture we deal with operatorspf the momentum vanishes and consequently the time rate of
to specify the relevant quantum numbers we first write dowrchange of the radial momentum expectation value must also
the wave-function of the Hydrogen atom explicitly. In the vanish. But if we take the expectation value of the right-hand
present case the wave-function is separable and it is given aside of Eq. (28) it does not vanish. So Eg. (28) is a wrong

equation and we cannot blindly use the Cartesian prescrip-

Y (r,0,0) = N Rur (r)Yom (0, 6), tion in such a case.
op 17 The correct way to proceed in the present circumstance
= N,e"/nao [} £ is to write Heisenberg’s equation of motion in spherical polar
nagp

coordinates using Eq. (22) as the radial momentum operator.

2r In this way we will get all the results right. The Hamiltonian

x <nao> Yiu(9,9), (23 ofthe Hydrogen atom is:
whereaq = h?/me? is the Bohr radius anth is the reduced 7 P19 ra R TN e (29)
mass of the system comprising the proton and the electron, 2m r Or? 2myr? r’
n is the principal quantum number which is a positive in-\here
teger,ﬁiﬁf_l(m) are the associated Laguerre polynomials, ’
Y7 m (0, ¢) are the spherical-harmonics, ang is the nor- L2 = 2 ( 1 0 gl o 1 32) (30)
malization arising from the radial part of the eigenfunction. sin 6 00 90 sin?00¢? )’

The domain ofL is made up of positive integers including , . .
zero andM are such that for each, —L < M < L. The whose eigenvalues are of Fhe forAL(L + }) in the. basis
radial normalization constant is given by: Y. m(0,). Inthe expression of thg 'Hamlltonlan is the
reduced mass of the system comprising the proton and elec-
9 \3 (n—L—1) 1/2 tron. Next we try to apply Heisenberg’s equation to the radial
N, = [() T D (24)  momentum operator. Noting that the first term of the Hamil-
1o (n+L)2n tonian is nothing bup? the Heisenberg equation is:

The spherical-harmonics are given by, dp, L2 [1 9 1 } , [1 9 1}
=5 |>-3." 3 A
9L +1(L— M)ITY? dt 2m [rdr r? ror r
Yeu(0,9) = ()Y ( )
a7 (L+ M)! L2 ¢
x PE (cos§)et™? (25) mr r

" ] ) The above equation is the operator form of Newton’s sec-
whereP; (cos ) are the associated Legendre functions.  onq |aw in spherical polar coordinates. The first term on the

From elementary quantum mechanics textbooks we know,ght-hand side of the above equation gives the centrifugal
that in Cartesian coordinates the time evolution of the MOygaction term in a central force field. Evaluating the expec-
mentum operator in one dimension is given as: tation value of both the sides of the above equation using the

dp. 1 d wave-functions given in Eg. (23) we get [1],

L — —fpy, H] = ——V(2), (26)

dt ih dx 1 1
which is the operator version of Newton’s second law. Now <r2> T3 ai(L+1)’ (32)
if we take the expectation values of both sides of Eq. (26) in
any basis we get: 1N 1 . (33)

r3 agndL(L+ 3)(L +1)
dt dz () ) Using the above expectation values in Eq. (31) and noting

o that (L?) = h2L(L + 1) we see that the time derivative of
which is called the Ehrenfest theorem. In the case of the Hye expectation value of the radial momentum operator of the

drogen atonV(r) = —e?/r and if we follow the Cartesian  jygrogen atom vanishes. The interesting property to note
prescription we shall write, is that, although the Heisenberg equation of motionzfor

dp, d o2 shows that a force is acting on the system due to whijcis

a  dr (r)= 2 (28)  changing, as soon we go to the level of expectation values the
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force equation collapses to give a trivial identity. The causevhich can be shown to posses real expectation values by fol-
of this is the reality of the radial momentum operator, whichlowing a similar proof to that of Eq. (13) and Eq. (14), if
is bound to have a real value. we assumeb(0) = ®(27). The periodic boundary condi-
tion forces the solution to the time-independent $dirger
3.2.2. The angular momentum operator canonically conjuequation to be of the form:
gate tog andd

The canonically conjugate momenta corresponding to the an- Y(r,0,¢) o \/% Mo, (35)
gular variables must be angular momentum operators. Let

py be the angular momentum operator canonically conjugatgnerens — 0,+1, +2, --. The solution cannot have any other
to ¢. In this case if we sef(r,6,¢) = 1 the form of the ¢4 of A7 dependence as in that case the expectation value

momentum operator is: of L4 will not be of the formM 7. So for the case of, our
0 initi i =
Py = —ih2 (34) initial choice of f(r, 0, ¢) = 1 turns out-to be correct. .
¢ Next we compute the expectation value pf with

| f(r,0,¢) = 1. The expectation value dpy) is as follows:

(po) = —ih//r2d7“d¢ /w*(r)a?ér) sin 0d6

T

= —ih / / r2drde | siny* (r)p(r)|T — / (Cosew*(r)+sin98w;;r)) Y(r) do

0
//r2drd¢) ih/ﬂsinﬁw(r)&/gér) do —|—ih//r2drd¢o/ﬂcosﬁ|1/)(r)|2d0

0

_ <Lg>*+ih//r2drd¢/cos9|¢(r)|2d9. (36)
0

The above equation shows that) is not real and so our |
choice off(r, 0, ¢) is not correct. Following similar steps as along the# direction. Whatever the quantum system may
done for the radial momentum operator we can redefine thee, we will always have the expectation valuepgfequal to

angular momentum operator conjugate tas [9]: zero although the wave-functions may not be periodid in
_ o 1 or it may not vanish a = 0 andé = =. In this article
pe = —ih (39 + ) cot 9) : (37)  we shall show the validity of this observation for those cases

) . . where the wave-functions are separable, but the result holds
From the form of pg we find that in this case .
£(r,0,6) — Vsin 0 in Eq. (7). for non-separable wave-functions also.
T The time-independent Sdhdinger equation for a cen-
3.2.3. The signature of the unequal domain of the angulaé'@l potential yields the wave-function corresponding s
variables in spherical polar coordinates ©(6), given by:

It is known that bott¥ and¢ are compact variablese., they () = Ny Pi;(cosb), (38)
have a finite extent. But there is a difference between them.
In spherical polar coordinates the rangespadndf are not  where Ny is a normalization constant depending bn M
the same0 < ¢ < 2w and0 < # < 7. This difference hasan and Pf; (cos 6) is the associated Legendre function, which
interesting result. Sincg runs over the whole angular range, is real. In the above equatioh and M are integers where
the wave-function has to be periodic in nature, whereasduetb = 0,1,2,3,--andM = 0,+1,£2,+3,--. A requirement
the range of, the wave-function need not be periodic. Con- of the solution of the Sckidinger equation for a central po-
sequently there can be a net angular momentum along thetential is that—Z < M < L. Now we can calculate the
direction while there cannot be any net angular momentunexpectation value g, using the above wave-function and it
is:
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R dPL (cosf) 1
(pg) = —ihNZ / PE (cos ) (Mc(z;%) + 5 cot 6PL (cos 9)) sin 0d6
0

s Ky

dPFk 0 1
= —ihN} / P (cos 0) % sin 0d6 + 5 / Pl (cos 0) PE;(cos 0) cos 6 df

0 0
(39)

To evaluate the integrals on the right-hand side of the above
equation we can take = cos# and then the expectation spherical polar coordinates. The form of the momentum op-
value becomes: erator in most of the commonly used coordinates can be de-
-1 " duced from the ansatz which we presented in Sec. 2. Al-
(pg) = —ihN? /p]\%(x)dPL () (1—22)7 da though the treatment presented in this article is not a general
dx technique which can be applied in all circumstance as in that
1 . ..

case one has to proof that this process of fixing the form of
1 s " the momentum is unique and can be applied to all coordinate

— = | Pl Pryo ———=dx systems, no matter how pathological they may be

5 M (z) L M (2) 2 Yy ) p g y may be.
1 The points discussed above are rarely dealt with in ele-
The second term on the right-hand side of the above equatidRentary quantum mechanics textbooks. Most often the lin-

vanishes as the integrand is an odd function in the integratioR&" momentum operator is defined in Cartesian coordinates
range. For the first integral we use the following recurrencénd it is intuitively attached to the generator of translations.

(40)

relation [10]:

the last integral can be written as

= MxzPL(z)— (L+M)PE_(z), (41)

—1
(pe) = ihNZ ]V[/x(l — 222 PL(2)PL (2) da
1
-1
— (L+ M) /(1 —22) i PL(2)PL_ (a)dx| . (42)
1

Since

Pyi(x) = (1) P (~a), (43)

The difficulty in such an approach is that it becomes very dif-
ficult to generalize it to other curvilinear coordinates where
the concept of translation is non-trivial. Moreover in arbitrary
coordinate systems the concept of the uncertainty of the po-
sition and momentum operators becomes a difficult and non-
trivial concept. As curvilinear coordinates contain compact
dimensions it may happen that the uncertainties in those di-
rections exceed the domain of the coordinate for a sharply
defined conjugate momentum and so the conventional under-
standing of the uncertainty relation in general breaks down.
In the present work, we have emphasized the reality of
the momentum expectation value and using the reality of the
expectation value as a bench mark we found the form of the
momentum. Linear and angular momenta were not dealt with
differently. This process of deduction is interesting as in most
cases the actual expectation value of the momentum is zero.

we can see immediately that both integrands on the rightit may seem that the deductions were incorrect as we ma-
hand side of Eq. (42) are odd and consequefly = 0 as  nipulated zeros. In this regard it must be understood that the
expected. A similar analysis givég,) = Mh. As the mo-  actual expectation values of the momenta in bound state turns
tion alongg is closed, there can be a net flow of angular mo-gut to be zero in many cases because the expectation values
mentum along that direction; but because the motion alongre required to be real. As in bound state problems we have
¢ is not so, a net momentum along thalirection will not  real wave-functions so the expectation value of the momenta
conserve probability, and consequently for probability con-pperators can be real only when it is zero. Consequently the
servation we must have an expectation value for the angulagality of the expectation value is a concept which is more
momentum along this direction equal to zero. important than the fact that in many cases the expectation
value turns out to be zero. In the present work the same pre-
scriptions which yield the forms of the linear momenta also
gives us the forms of the angular momenta. It was shown
Before concluding, we would like to point out that the form that regardless of the nature of the potential, the expectation
of the momentum operators in the other widely used curvivalue of the angular momentum conjugatefte spherical
linear coordinates as the cylindrical polar coordinates or thgolar coordinates is zero. This is more a geometric fact than
plane polar coordinates can be found in the same way as fa physical effect.

4. Conclusion

Rev. Mex. is. E54(2) (2008) 160167



SOME INTRICACIES OF THE MOMENTUM OPERATOR IN QUANTUM MECHANICS 167
Acknowledgements

The authors wish to thank Professors D.P. Dewangan, S. Rin-
dani, J. Banerji, P.K. Panigrahi, and Ms. Suratna Das for
stimulating discussions and constant encouragements.

o

1. J.J. SakuraiModern quantum mechanidaternational student B.S. DeWitt,Phys. Rew85(1952) 653.

edition (Addison-Wesley, 1999). 7. P.A.M Dirac.The principles of quantum mechani€surth edi-
2. LI. Schiff, Quantum mechanigthird edition (McGraw-Hill In- tion (Oxford University Press, 1958).

ternational Editions). 8. S. Fligge, Practical quantum mechanics (Springer-Verlag

3. R. ShankarPrinciples of quantum mechanicsecond edition Berlin Heidelberg, 1971).
(Plenum Press, New York 1994). 9. H. Es@n, Am. J. Phys46 (1978) 983.

4. G. Bonneau, J. Faraut, and G. ValeAtn. J. Phys69 (2001) 15 | g Gradshteyn and I.M. RyzhiRable of integrals, series, and
322. products sixth edition (Academic Press, Harcourt India) p. 955
5. B. PodolskyPhys. Rev321928 812. 8.7331.

Rev. Mex. is. E54(2) (2008) 160167



