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Some intricacies of the momentum operator in quantum mechanics
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In quantum mechanics textbooks, the momentum operator is defined in Cartesian coordinates and the form of the momentum operator in
spherical polar coordinates is rarely discussed. Consequently one always generalizes the Cartesian prescription to other coordinates and
falls into a trap. In this work, we introduce the difficulties one faces when the question of the momentum operator in general curvilinear
coordinates arises. We have tried to elucidate the points related to the definition of the momentum operator, taking spherical polar coordinates
as our specimen coordinate system and proposing an elementary method in which we can ascertain the form of the momentum operator in
general coordinate systems.

Keywords:Momentum operator; quantum mechanics.

En los libros de mećanica cúantica, el operador de momento se define en coordenadas cartesianas y raramente se discute la forma de este
operador en coordenadas polares. En consecuencia, siempre se generaliza la prescripción de este operador en coordenadas cartesianas al caso
de otras coordenadas con lo cual se suele caer en una trampa. En este trabajo, introducimos las dificultades que se encuentran cuando surge
la pregunta de ćomo se escribe el operador de momento en coordenadas curvilı́neas generales. Tratamos de dilucidar los puntos relacionados
con la definicíon del operador de momento tomado como ejemplo el caso de las coordenadas esféricas y proponemos un método elemental
con el cual podemos establecer la forma del operador de momento en sistemas coordenados generales.

Descriptores:Operador de momento; mecánica cúantica.

PACS: 02.30.Tb; 45.20.df; 03.65.-w

1. Introduction

In classical mechanics, the definition of momentum (both lin-
ear and angular) in Cartesian coordinates is simple. Linear
momentum is defined as mass times velocity, and angular
momentum is the cross-product of the position vector with
the linear momentum vector of a particle or a body in motion.
In classical mechanics, a particle must have a unique position
and velocity and consequently the definition of momentum is
unambiguous. When we are using generalized coordinates,
then the definition of the generalized momenta straightfor-
ward. We have to know the LagrangianL of the system writ-
ten in the generalized coordinates, and the momentum conju-
gate to the generalized coordinateqi is simply

pi ≡ ∂L
∂q̇i

. (1)

In quantum mechanics the position of a particle is not unique;
one has to revert to wave functions and then find out the
probability density of finding the particle in some portion of
space. Naturally the definition of momentum becomes a bit
arbitrary. Elementary textbooks on quantum mechanics [1–3]
invariably define the momentum operators in Cartesian coor-
dinates, where ambiguities are fortunately fewer. In Cartesian
coordinates we have three coordinates which have the same
dimensions, and the linear momentum operator is defined as:

pi = −i~
∂

∂xi
, (2)

wherei = 1, 2, 3. The angular momentum vectors are defined
as:

L = −i~(r ×∇) . (3)

All of the above definitions of momentum operators seem to
be flawless in Cartesian coordinates. But one soon realizes
that the definitions above are not all satisfatory if we have to
generalize our results to various coordinate systems. In this
article we shall illustrate the problems of defining the mo-
mentum operators in general curvilinear coordinates.

If we choose spherical polar coordinates, then the diffi-
culty we face is that not all momentum components are of the
same status (as in Cartesian coordinates), as one is a linear
momentum and the other two are angular momenta. More-
over in quantum mechanics we do not have a relation cor-
responding to Eq. (1) to find out the momenta in arbitrary
circumstances. The nice world of separate linear and angular
momenta vanished and we must find how to define the mo-
menta under these new circumstances. In addition to these
difficulties we also have to consider whether the momentum
operators defined are actually self-adjoint. In this article we
shall not speak about the self-adjointness of the operators;
for a better review on this topic, readers may consult [4]. In
quantum mechanics, whenever we speak about angular mo-
menta, in the back of our mind we conceive of the gener-
ators of rotation which follow the Lie algebra. But strictly
speaking this fact is not true. In spherical polar coordinates,
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[pθ , pφ] = 0 although both of them are angular momentum
operators. The Lie algebra of the angular momenta follows
only when we are working in Cartesian coordinates.

In the present article, we try to formulate the important
properties of the momentum operator which can be gener-
alized to non-Cartesian coordinates, and in this process we
point out which properties cannot be generalized. We try to
treat both angular and linear momenta on the same footing
and try to find out the properties of these operators. In the
following section, we start with a general discussion of the
momentum operator. Section 3 is dedicated to a description
of the momentum operator in the Cartesian and the spheri-
cal polar coordinate systems, but its content is general and
can be used to understand the form of the momentum oper-
ators in other coordinates as well. We conclude with a brief
discussion on the topics described in the article in Sec. 4.

2. The momentum operator

Particularly in this section when we speak of momentum we
shall not distinguish between linear and angular momenta.
The coordinate system in which the position and momentum
operators are represented is general with no bias in favour
of the Cartesian system. The basic commutation relations in
quantum mechanics are:

[qi , pj ] = i~δij , (4)

and

[qi , qj ] = [pi , pj ] = 0 (5)

whereqj andpj are the generalized coordinate and momen-
tum operator andδi j = 1 wheni = j and zero for all other
cases, andi, j = 1, 2, 3. From Eq. (4) we can infer that
the most general form of the momentum operator in quan-
tum mechanics, in position representation, is:

pi = −i~
[

1
f(q)

∂

∂qi
f(q) + hi(q) + ci

]
, (6)

wheref(q) andhi(q) are arbitrary functions of coordinates
q, andci are constants all of which may be different for dif-
ferent components of the momentapi. If we put this general
form of the momentum operator into Eq. (5) we see that it
restrictsh(q) to being a constant and so the general form of
the momentum operator must be:

pi = −i~
[

1
f(q)

∂

∂qi
f(q) + ci

]
. (7)

The form off(q) is arbitrary and has to be determined in dif-
ferent circumstances. In this article we show that one of the
ways in which the functionf(q) can be determined is by im-
posing the condition that the momentum operator must have
a real expectation value. The expectation value of the mo-
mentum operator is given as:

〈pi〉 ≡
∫ √

−g(q)ψ∗(q) pi ψ(q) d3q , (8)

where g(q) is the determinant of the metric of the three-
dimensional space. The constantci in the general form of
the momentum operator in Eq. (7) turns out to be zero. Be-
fore going into the actual proof of the last statement, it should
be noted that in any arbitrary coordinate system some of the
canonical conjugate momenta will be linear and some will
be angular. As the expectation values of the canonical mo-
mentum operators must be real, so for bound quantum states
the expectation value of the linear momentum operators must
be zero in any arbitrary coordinate system. Physically this
means that coordinates with linear dimensions are in gen-
eral non-compact and extend to infinity and for bound states,
if the expectation value of the momenta conjugate to those
non-compact coordinates is not zero, then it implies a mo-
mentum flow to infinity, which contradicts the very essence
of a bound state. On the other hand, in an arbitrary coordinate
system the expectation values of the angular momentum op-
erators for any bound/free quantum state can be zero or of the
form M~ (from purely dimensional grounds), whereM can
be any integer (positive or negative) including zero. To prove
thatci = 0, we first take those components of the momentum
operator for which its expectation value turns out to be zero
in an arbitrary coordinate system for a bound quantum state.
Choosing those specific components of the momentum, we
assume that for these casesci 6= 0 and it has a unique value.
The value ofci may depend on our coordinate choice but in
any one coordinate system it must be unique. Suppose in the
special coordinate systemq the normalized wave function of
an arbitrary bound state is given byψ(q). Then, from the
definition of the general momentum operator in Eq. (7) this
implies:

〈pi〉 = 0 = −i~F [ψ(q)] + ci , (9)

whereF [ψ(q)] is a functional ofψ(q) given by:

F [ψ(q)]=
∫ √

−g(q)ψ∗(q)
[

1
f(q)

∂

∂qi
{f(q)ψ(q)}

]
d3q, (10)

which depends on the functional form ofψ(q). If we choose
another bound state in the same coordinate system whose
normalized wave function is given byφ(q) then we can also
write

−i~F [φ(q)] + ci = 0 . (11)

Comparing Eq. (9) and Eq. (11) we see that the value ofci

does not remain unique. The only way out is thatci must be
zero at least for those components of the momentum oper-
ator that have vanishing expectation values in bound states.
Next we take those components of the momentum opera-
tor whose expectation values are of the formM~. In these
case also we can take two arbitrary but different bound state
wave-functionsψ(q) andφ(q). Evaluating〈pi〉 using these
two different wave-functions will yield two similar spectra of
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momenta asM~ andN~ whereM andN belong to the set
of integers including zero. In this case also we see that two
quantum systems with different wave-functions yield simi-
lar momentum expectation values. Consequently in this case
also we must haveci = 0, otherwise it will not be unique.
Although we utilized some properties of bound systems in
quantum mechanics to show thatci = 0 in general, we as-
sume that the form of the canonical momentum operator is
the same for bound and free quantum states. Thus the most
general form of the canonical momentum operator for any
quantum mechanical system in any coordinate system must
be of the form:

pi = −i~
1

f(q)
∂

∂qi
f(q), (12)

which still contains the arbitrary functionf(q) whose form
is coordinate system dependent. From Eq. (6) we dropped
the functionhi(q) because the momentum components must
satisfy[pi , pj ] = 0. The last condition is not always true as
in the case of charged particles in the presence of an exter-
nal classical electromagnetic field. For charged particles in
the presence of a classical external electromagnetic field the
momentum components do not commute and in those cases
the most general form of the momentum operator will con-
tain hi(q) as in Eq. (6) whileci will be zero. In presence
of an electromagnetic field the momenta components of the
electron are defined in the Cartesian coordinates as

πi ≡ −i~
∂

∂xi
+ ieAi(x),

wheree is the negative electronic charge andAi(x) is the
electromagnetic gauge field. In this case[πi , πj ] = −ieFij

whereFij is the electromagnetic field-strength tensor. As
seen in these caseshi(q) will be proportional to the electro-
magnetic gauge field.

In this article, we assume that the form of the momentum
operator in general orthogonal curvilinear coordinate sys-
tems is dictated by the basic commutation relations as given
in Eq. (4) and Eq. (5) and the condition that the expectation
value of the momentum operator must be real in any coor-
dinate system. To find out the form off(q) we shall follow

a heuristic method. A more formal approach to something
similar to the topics discussed in this article can be found in
Refs. 5 and 6. As the present article is purely pedagogical in
intent we shall try to follow the path as (probably) taken by
young graduate students who generalize the concepts of the
Cartesian coordinates to any other coordinate system and in
doing so fall into a trap. Then after some thinking the student
understands the error in his/her thought process and mends
his/her way to proceed towards the correct result. Conse-
quently, the ansatz which we shall follow to find out the form
of f(q) is the following. First we will blindly assume, in any
specific coordinate system, thatf(q) = 1 as in the Cartesian
coordinates and try to see whether the momentum operator
yields a real expectation value. If this choice off(q) pro-
duces a real expectation value of the momentum operator,
then the choice is perfect and we have the desired form of
the momentum operator. If on the other hand with our initial
choice off(q) = 1 we do not get a real expectation value of
the momentum operator, then we shall choose an appropriate
value for it so that the redefined momentum yields real ex-
pectation values. In the cases which we shall consider in this
article the form off(q) will be evident as soon as we demand
that the momentum operators must have real expectation val-
ues.

In this article we assume that in general the wave func-
tions we deal with are normalized to unity and the coordi-
nate systems to be orthogonal. Moreover the wave functions
are assumed to vanish at the boundaries or satisfy periodic
boundary conditions.

3. The momentum operator in various coordi-
nate systems

3.1. Cartesian coordinates

According to our ansatz here we initially takef(x, y, z) = 1,
which implies that thex component of the momentum oper-
ator is as given in Eq. (2). If the normalized wave function
solution of the time-independent Schrödinger equation of any
quantum system is given byψ(x), whereψ(x) vanishes at the
boundaries of the region of interest, the expectation value of
px is:

∫
ψ∗(x) px ψ(x) d3x = −i~

∫ ∫
dy dz




L∫

−L

ψ∗(x, t)
∂ψ(x)

∂x
dx




= −i~
∫ ∫

dy dz


ψ∗(x)ψ(x)|L−L −

L∫

−L

ψ(x)
∂ψ∗(x)

∂x
dx


 . (13)

If the wave function vanishes at the boundariesL and−L or are periodic or anti-periodic at those points, then the first term on
the second line on the right-hand side of the above equation drops and we have,
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∫
ψ∗(x) px ψ(x) d3x = −i~

∫ ∫
dy dz

[∫ L

−L

ψ∗(x)
∂ψ(x)

∂x
dx

]

= i~
∫ ∫

dy dz




L∫

−L

ψ(x)
∂ψ∗(x)

∂x
dx


 =

∫
ψ(x) p∗x ψ∗(x) d3x . (14)

This shows that the expectation value ofpx is real and so in
Cartesian coordinates we havef(x, y, z) = 1. In a similar
way it can be shown that with the same choice off(x, y, z)
the expectation values ofpy andpz are also real. The above
analysis can also be done when the wave functions are sepa-
rable. Consequently in Cartesian coordinates the momentum
operators are given as in Eq. (2).

3.2. Spherical polar coordinates

3.2.1. The radial momentum operator

If we start with f(r, θ, φ) = 1 then the radial momentum
operator looks like:

p′r = −i~
∂

∂r
. (15)

If the solution of the time-independent Schrödinger equation
for any particular potential isψ(r, θ, φ) ≡ ψ(r), then the ex-
pectation value ofp′r is

〈p′r〉 = −i~
∫

dΩ



∞∫

0

r2 ψ∗(r)
∂ ψ(r)

∂r
dr


 , (16)

wheredΩ = sin θ dθ dφ and consequently,

〈p′r〉 = −i~
∫

dΩ



∞∫

0

r2ψ∗(r)
∂ψ(r)

∂r
dr




= −i~
∫

dΩ
[
r2ψ∗(r)ψ(r)

∣∣∞
0

−
∞∫

0

(
2rψ∗(r) + r2 ∂ψ∗(r)

∂r

)
ψ(r) dr


 . (17)

If ψ(r) vanishes asr → ∞ then the above equation reduces
to

〈p′r〉 = i~
∫

dΩ



∞∫

0

r2ψ(r)
∂ψ∗(r)

∂r
dr




+ 2i~
∫

dΩ

∞∫

0

r|ψ(r)|2 dr

= 〈p′r〉∗ + 2i~
∫

dΩ

∞∫

0

r|ψ(r)|2 dr . (18)

The above equation implies that〈p′r〉 is not real in spherical
polar coordinates. On the other hand if we write Eq. (18) as:

〈p′r〉 − i~
∫

dΩ

∞∫

0

r|ψ(r))|2 dr = 〈p′r〉∗

+i~
∫

dΩ

∞∫

0

r|ψ(r))|2 dr , (19)

then the left-hand side of the above equation can be written
as:

〈p′r〉 − i~
∫

dΩ

∞∫

0

r|ψ(r)|2 dr

= −i~
∫

dΩ

∞∫

0

[
r2ψ∗(r)

∂ψ(r)
∂r

+ r|ψ(r)|2
]

dr

= −i~
∫

dΩ
∫ ∞

0

r2ψ∗(r)
[

∂

∂r
+

1
r

]
ψ(r) dr . (20)

A similar manipulation on the right side of Eq. (19) can be
done and it yields:

〈p′r〉∗ + i~
∫

dΩ

∞∫

0

r|ψ(r)|2 dr

= i~
∫

dΩ

∞∫

0

[
r2ψ(r)

∂ψ∗(r)
∂r

+ r|ψ(r)|2
]

dr

= i~
∫

dΩ

∞∫

0

r2ψ(r)
[

∂

∂r
+

1
r

]
ψ∗(r) dr . (21)

Now if we redefine the radial momentum operator as:

pr ≡ p′r −
i~
r

= −i~
(

∂

∂r
+

1
r

)
= −i~

1
r

∂

∂r
r , (22)

then from Eq.(19) we observe that the expectation value of
pr must have real values. This fact was derived in a different
way by Dirac [7, 8]. Now this form ofpr we can identify as
f(r, θ, φ) = r in Eq. (7).
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We end our discussion on the radial component of the
momentum operator with an interesting example. Here we
shall calculate the expectation value of the radial component
of the force acting on an electron in the Hydrogen atom. The
main purpose of this exercise is to generalize Heisenberg’s
equation of motion in spherical polar coordinates, which is
not found in the elementary quantum mechanics text books.
Although in the Heisenberg picture we deal with operators,
to specify the relevant quantum numbers we first write down
the wave-function of the Hydrogen atom explicitly. In the
present case the wave-function is separable and it is given as:

ψnLM (r, θ, φ) = NrRnL(r)YLM (θ, φ),

= Nre
−r/na0

[
2r

na0

]L

L2L+1
n−L−1

×
(

2r

na0

)
YLM (θ, φ), (23)

wherea0 = ~2/me2 is the Bohr radius andm is the reduced
mass of the system comprising the proton and the electron,
n is the principal quantum number which is a positive in-
teger,L2L+1

n−L−1(x) are the associated Laguerre polynomials,
YL M (θ, φ) are the spherical-harmonics, andNr is the nor-
malization arising from the radial part of the eigenfunction.
The domain ofL is made up of positive integers including
zero andM are such that for eachL, −L ≤ M ≤ L. The
radial normalization constant is given by:

Nr =

[(
2

na0

)3 (n− L− 1)!
(n + L)!2n

]1/2

. (24)

The spherical-harmonics are given by,

YL M (θ, φ) = (−1)M

[
2 L + 1

4π

(L−M)!
(L + M)!

]1/2

× PL
M (cos θ)eiMφ , (25)

wherePM
L (cos θ) are the associated Legendre functions.

From elementary quantum mechanics textbooks we know
that in Cartesian coordinates the time evolution of the mo-
mentum operator in one dimension is given as:

dpx

dt
=

1
i~

[px,H] = − d

dx
V (x) , (26)

which is the operator version of Newton’s second law. Now
if we take the expectation values of both sides of Eq. (26) in
any basis we get:

d〈px〉
dt

= −
〈

d

dx
V (x)

〉
, (27)

which is called the Ehrenfest theorem. In the case of the Hy-
drogen atomV (r) = −e2/r and if we follow the Cartesian
prescription we shall write,

dpr

dt
= − d

dr
V (r) = −e2

r2
, (28)

which implies that the only force acting on the electron is
the centripetal force supplied by the Coulomb field. But the
above equation presents some difficulties. First from our
knowledge of particle mechanics in central force fields we
know that there must be some centrifugal reaction also which
is absent in Eq. (28). Secondly as the Hydrogen atom is a
bound system, the expectation value of its radial component
of the momentum vanishes and consequently the time rate of
change of the radial momentum expectation value must also
vanish. But if we take the expectation value of the right-hand
side of Eq. (28) it does not vanish. So Eq. (28) is a wrong
equation and we cannot blindly use the Cartesian prescrip-
tion in such a case.

The correct way to proceed in the present circumstance
is to write Heisenberg’s equation of motion in spherical polar
coordinates using Eq. (22) as the radial momentum operator.
In this way we will get all the results right. The Hamiltonian
of the Hydrogen atom is:

H = − ~
2

2m

1
r

∂2

∂r2
r +

1
2mr2

L2 − e2

r
, (29)

where,

L2 = −~2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
, (30)

whose eigenvalues are of the form~2L(L + 1) in the basis
YL M (θ, φ). In the expression of the Hamiltonianm is the
reduced mass of the system comprising the proton and elec-
tron. Next we try to apply Heisenberg’s equation to the radial
momentum operator. Noting that the first term of the Hamil-
tonian is nothing butp2

r the Heisenberg equation is:

dpr

dt
= − L2

2m

[
1
r

∂

∂r
r ,

1
r2

]
+ e2

[
1
r

∂

∂r
r ,

1
r

]
,

=
L2

mr3
− e2

r2
. (31)

The above equation is the operator form of Newton’s sec-
ond law in spherical polar coordinates. The first term on the
right-hand side of the above equation gives the centrifugal
reaction term in a central force field. Evaluating the expec-
tation value of both the sides of the above equation using the
wave-functions given in Eq. (23) we get [1],

〈
1
r2

〉
=

1
n3 a2

0(L + 1
2 )

, (32)

〈
1
r3

〉
=

1
a3
0 n3L(L + 1

2 )(L + 1)
. (33)

Using the above expectation values in Eq. (31) and noting
that 〈L2〉 = ~2L(L + 1) we see that the time derivative of
the expectation value of the radial momentum operator of the
Hydrogen atom vanishes. The interesting property to note
is that, although the Heisenberg equation of motion forpr

shows that a force is acting on the system due to whichpr is
changing, as soon we go to the level of expectation values the

Rev. Mex. F́ıs. E54 (2) (2008) 160–167



SOME INTRICACIES OF THE MOMENTUM OPERATOR IN QUANTUM MECHANICS 165

force equation collapses to give a trivial identity. The cause
of this is the reality of the radial momentum operator, which
is bound to have a real value.

3.2.2. The angular momentum operator canonically conju-
gate toφ andθ

The canonically conjugate momenta corresponding to the an-
gular variables must be angular momentum operators. Let
pφ be the angular momentum operator canonically conjugate
to φ. In this case if we setf(r, θ, φ) = 1 the form of the
momentum operator is:

pφ = −i~
∂

∂φ
, (34)

which can be shown to posses real expectation values by fol-
lowing a similar proof to that of Eq. (13) and Eq. (14), if
we assumeΦ(0) = Φ(2π). The periodic boundary condi-
tion forces the solution to the time-independent Schrödinger
equation to be of the form:

ψ(r, θ, φ) ∝ 1√
2π

eiMφ , (35)

whereM = 0,±1,±2, ··. The solution cannot have any other
form of M dependence as in that case the expectation value
of Lφ will not be of the formM~. So for the case ofφ, our
initial choice off(r, θ, φ) = 1 turns out to be correct.

Next we compute the expectation value ofpθ with
f(r, θ, φ) = 1. The expectation value of〈pθ〉 is as follows:

〈pθ〉 = −i~
∫ ∫

r2drdφ




π∫

0

ψ∗(r)
∂ψ(r)

∂θ
sin θdθ




= −i~
∫ ∫

r2drdφ


 sin θ ψ∗(r)ψ(r)|π0 −

π∫

0

(
cos θ ψ∗(r) + sin θ

∂ψ∗(r)
∂θ

)
ψ(r) dθ




=
∫ ∫

r2drdφ


i~

π∫

0

sin θ ψ(r)
∂ψ∗(r)

∂θ
dθ


 + i~

∫ ∫
r2drdφ

π∫

0

cos θ |ψ(r)|2 dθ

= 〈Lθ〉∗ + i~
∫ ∫

r2drdφ

π∫

0

cos θ |ψ(r)|2 dθ . (36)

The above equation shows that〈pθ〉 is not real and so our
choice off(r, θ, φ) is not correct. Following similar steps as
done for the radial momentum operator we can redefine the
angular momentum operator conjugate toθ as [9]:

pθ ≡ −i~
(

∂

∂θ
+

1
2

cot θ

)
. (37)

From the form of pθ we find that in this case
f(r, θ, φ) =

√
sin θ in Eq. (7).

3.2.3. The signature of the unequal domain of the angular
variables in spherical polar coordinates

It is known that bothθ andφ are compact variables,i.e., they
have a finite extent. But there is a difference between them.
In spherical polar coordinates the ranges ofφ andθ are not
the same:0 ≤ φ < 2π and0 ≤ θ ≤ π. This difference has an
interesting result. Sinceφ runs over the whole angular range,
the wave-function has to be periodic in nature, whereas due to
the range ofθ, the wave-function need not be periodic. Con-
sequently there can be a net angular momentum along theφ
direction while there cannot be any net angular momentum

along theθ direction. Whatever the quantum system may
be, we will always have the expectation value ofpθ equal to
zero although the wave-functions may not be periodic inθ
or it may not vanish atθ = 0 and θ = π. In this article
we shall show the validity of this observation for those cases
where the wave-functions are separable, but the result holds
for non-separable wave-functions also.

The time-independent Schrödinger equation for a cen-
tral potential yields the wave-function corresponding toθ as
Θ(θ), given by:

Θ(θ) = Nθ PL
M (cos θ) , (38)

whereNθ is a normalization constant depending onL, M
and PL

M (cos θ) is the associated Legendre function, which
is real. In the above equationL andM are integers where
L = 0, 1, 2, 3, ·· andM = 0,±1,±2,±3, ··. A requirement
of the solution of the Schrödinger equation for a central po-
tential is that−L ≤ M ≤ L. Now we can calculate the
expectation value ofpθ using the above wave-function and it
is:
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〈pθ〉 = −i~N2
θ

π∫

0

PL
M (cos θ)

(
dPL

M (cos θ)
dθ

+
1
2

cot θPL
M (cos θ)

)
sin θdθ

= −i~N2
θ




π∫

0

PL
M (cos θ)

dPL
M (cos θ)

dθ
sin θdθ +

1
2

π∫

0

PL
M (cos θ)PL

M (cos θ) cos θ dθ


 .

(39)

To evaluate the integrals on the right-hand side of the above
equation we can takex = cos θ and then the expectation
value becomes:

〈pθ〉 = −i~N2
θ



−1∫

1

PL
M (x)

dPM
L (x)
dx

(1− x2)
1
2 dx

− 1
2

−1∫

1

PL
M(x)P

L
M(x)

x√
1− x2

dx


 . (40)

The second term on the right-hand side of the above equation
vanishes as the integrand is an odd function in the integration
range. For the first integral we use the following recurrence
relation [10]:

(x2−1)
dPL

M (x)
dx

= MxPL
M (x)−(L+M)PL

M−1(x) , (41)

the last integral can be written as

〈pθ〉 = i~N2
θ


M

−1∫

1

x(1− x2)−
1
2 PL

M (x)PL
M (x) dx

− (L + M)

−1∫

1

(1− x2)−
1
2 PL

M (x)PL
M−1(x)dx


 . (42)

Since

PL
M (x) = (−1)L+MPL

M (−x) , (43)

we can see immediately that both integrands on the right-
hand side of Eq. (42) are odd and consequently〈pθ〉 = 0 as
expected. A similar analysis gives〈pφ〉 = M~. As the mo-
tion alongφ is closed, there can be a net flow of angular mo-
mentum along that direction; but because the motion along
θ is not so, a net momentum along theθ direction will not
conserve probability, and consequently for probability con-
servation we must have an expectation value for the angular
momentum along this direction equal to zero.

4. Conclusion

Before concluding, we would like to point out that the form
of the momentum operators in the other widely used curvi-
linear coordinates as the cylindrical polar coordinates or the
plane polar coordinates can be found in the same way as for

spherical polar coordinates. The form of the momentum op-
erator in most of the commonly used coordinates can be de-
duced from the ansatz which we presented in Sec. 2. Al-
though the treatment presented in this article is not a general
technique which can be applied in all circumstance as in that
case one has to proof that this process of fixing the form of
the momentum is unique and can be applied to all coordinate
systems, no matter how pathological they may be.

The points discussed above are rarely dealt with in ele-
mentary quantum mechanics textbooks. Most often the lin-
ear momentum operator is defined in Cartesian coordinates
and it is intuitively attached to the generator of translations.
The difficulty in such an approach is that it becomes very dif-
ficult to generalize it to other curvilinear coordinates where
the concept of translation is non-trivial. Moreover in arbitrary
coordinate systems the concept of the uncertainty of the po-
sition and momentum operators becomes a difficult and non-
trivial concept. As curvilinear coordinates contain compact
dimensions it may happen that the uncertainties in those di-
rections exceed the domain of the coordinate for a sharply
defined conjugate momentum and so the conventional under-
standing of the uncertainty relation in general breaks down.

In the present work, we have emphasized the reality of
the momentum expectation value and using the reality of the
expectation value as a bench mark we found the form of the
momentum. Linear and angular momenta were not dealt with
differently. This process of deduction is interesting as in most
cases the actual expectation value of the momentum is zero.
It may seem that the deductions were incorrect as we ma-
nipulated zeros. In this regard it must be understood that the
actual expectation values of the momenta in bound state turns
out to be zero in many cases because the expectation values
are required to be real. As in bound state problems we have
real wave-functions so the expectation value of the momenta
operators can be real only when it is zero. Consequently the
reality of the expectation value is a concept which is more
important than the fact that in many cases the expectation
value turns out to be zero. In the present work the same pre-
scriptions which yield the forms of the linear momenta also
gives us the forms of the angular momenta. It was shown
that regardless of the nature of the potential, the expectation
value of the angular momentum conjugate toθ in spherical
polar coordinates is zero. This is more a geometric fact than
a physical effect.
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