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The exact solution of the inhomogeneous wave equation in one dimension, when the square of the velocity is a linear function of the position,
can be written in terms of Bessel functions of the first kind. We use this solution as the zero order approximation for a perturbation expansion
and apply it to the case when the square of the velocity can be written as a polynomial in the position. The first and second order perturbation
terms, corresponding to quadratic and cubic terms for the square of the velocity, are obtained. A closed formuladodéheorrection in

terms of integrals of the Bessel functions of the first kind was also explicitly obtained, this expression can be solved analytically for the first
and second order corrections and numerically for higher terms.

Keywords:Inhomogeneous media; perturbation theory; wave propagation.

La solucbn exacta de la ecudsi de onda inhomdmea en una dimerisi, cuando el cuadrado de la velocidad es una mtheal de

la posicbn, puede escribirse edrminos de las funciones Bessel de primera especie. Usamos estarsaoeio la aproximadn de

orden cero de un desarrollo perturbativo y lo aplicamos al caso cuando el cuadrado de la velocidad puede escribirse como un polinomio de
gradon. Obtuvimos exgktitamente las perturbaciones de primer y segundo orden correspondientésainsed cuadaticos y dibicos para

el cuadrado de la velocidad. Tarehise enconéruna expregin cerrada para la correéei a ordem en £rminos de integrales de funciones

Bessel de primera especésta puede resolverse dtishmente para el primer y segundo orden y gtisemente para ordenes superiores.

Descriptores:Medios inhomog@neos; teda de perturbaciones; propagatide ondas.

PACS: 04.25.Nx; 42.25Bs; 41.20Jb

1. Introduction used, is the geometrical optics approximation or WKB
(Wentzel-Kramers-Brillouin). In this method the homoge-
The inhomogeneous wave equation describes a great vafieous wave equation is the starting point, and the correction
ety of physical systems, such as: mechanical systems, elastfg made by changing in the plane wave solution the dielec-
systems, electromagnetic propagation and transmission, elei¢ic constant of the homogeneous media by a function to be
tronic devices, quantum systems, and others [1]. In severdletermined; the first approximation is obtained when the un-
cases the propagation or transmission of a physical quanti@etermined function is the square root of the dielectric func-
can be modelled by a wave equation (WE) in which the veloction. This approximation is equivalent to the first order cor-
ity is a function of the propagation coordinate: for instance,rection in perturbation theory [3]. A second approach is the
the cases of electromagnetic waves in normal incidence onfumerical solution of the WE either by direct solution [5]
region whose electric permeability depends on the positio®r by means of the Green function [6, 7]. These methods
in the medium, thin film coating of optical surfaces wherehave become extensively used due to the power of modern
antireflection is of practical interest, radio wave reflection,computer machines and techniques, providing very realistic
propagation or transmission of electromagnetic field in thedescriptions for several systems; however, without an ana-
ionosphere, optical systems with variable index of refractionlytical solution the physical interpretation and analysis be-
etc. For this kind of system, several dielectric constant procomes cumbersome. Other useful methods are the transfer
files have been solved analytically: the inverse squared pranatrix theory [8] and iterative methods [9], these methods
file [2], exponential, linear and quadratic polynomiadsg( share the same problem with numerical solutions. An im-
V. Ginzburg [3] and references therein) and the inverse of afortant method is the perturbative approximation, which de-
even polinomial of the fourth degree [4]. In elastic media,Pends on the goodness of the zero order solution and the pos-
under certain physical conditions, wave motion can be modsibility of solving the remaining differential equations, this
elled by a WE with a velocity depending on the coordinatemethod provides analytical solutions that can be interpreted
of propagation; for example, a stratified fluid, a solid with and analyzed [10, 11].
a density or elastic coefficients depending on the position, a |n this work, we use the solution of the WE where the
solid subject to a strong temperature or pressure gradient, et§guare of the velocity is a linear function of the position,
When the WE cannot be solved analytically several apwhich is given in terms of the Bessel functions of the first
proximative methods are available. The first one, widelykind; then, we use this solution as the zero order approxi-
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mation and apply perturbation theory to solve the case of 8. Perturbative approach
polynomial of any degree for the square of the velocity. The . ] .
first perturbative approximation includes the quadratic ternf\nalytical solutions for a velocity dependence beyond the
while the second one corresponds to the cubic term, etc.; @uadratic termin Eq. (1) are not possible; however, when the

closed expression is obtained for higher order approximaYF is @ slowly varying function of the position, a perturba-
tions, where numerical integration is required. tive approach could be useful. Although there is an analytical

solution to the second order polynomial VF in terms of hy-
) pergeometric functions (Ginzburg [3] and references therein),
2. Model equation we choose the solution to the linear velocity profile of Eq. (4)
) ) ) o as the zero order solution; the reason for this is that Bessel
A wide range of physical phenomena taking place in inhO+,ctions are easer to handle and compute than hypergeomet-
mogeneous media can be modelled by the inhomogeneoys ones e write the VF in terms of a smallness parameter

WE with a velocity function; for many of these systems, itis . yhat would depend of the physical properties of the specific
enough to study this phenomenon in one dimension. For th'§ystem:

kind of system, we assume the following WE:

vi(z) = (kE + K2xz) + ek2a® + k223 + ... 8

v2(x)82\11(x,t) _92U(x,t) (2) = (ko + ki) + ey ° ®)
ox2 o2

the function¥ (x, t) describes the quantity of interest: elec- {k§+kiatekia®+ k5 + ..} Vip=—w’p(z). (9)

tric or magnetic field, dilatation, pressure, etc. The solution
to Eq. (1) can be expanded in Fourier components: The solution to this equation can also be expanded in terms

of the smallness parameter [10] in the following way:

Y(x) = Yo(x) + ey (x) + o () + ..., (10)

\g/herewo(z) is the solution to Eqg. (4). After the substitution
of (8) and (10) the general WE can be written as:

(1) then, Eqg. (3) becomes:

U, 1) = exp(—iwt)i(z). @

If the velocity functionv?(x) (VF) is an analytical function,
a Taylor series expansion can be performed so that the W
can be written as:

2 (k3 + k22 + ekiz? + +e2k3a® + ..))
(kE + kix + k32 4+ k32® + )d ¢(235) = —wp(x), (3) ) )
dz « d (’g/}()(l) + ewl(x) +e€ 1/}2(%) + )
where the parameté is the velocity in the corresponding dx?
homogeneous mediuny, is the frequency in the Fourier ex- - k:ng (wo(w) + ethy () + o (z) + ) =0. (11)

pansion, and? are just coefficients in the VF.

As the first step, we take into account the linear velocityln order to find the first order approximation we equate all
profile assuming that the linear term adequately represent€rms in the first power of and neglecting all terms in higher
the phenomenon or can be taken as the first order approxim@owers ofe, this gives the differential equation for the first

tion; in this case the WE becomes: order approximation denoted by :
d*y(x 5 oy @ho(x) 5, o\ PPi(a)
(kg + kiz) dx(2 ) = —wip(x). 4) ¢ (k327) a2 € (kg + ki) A2
+ ek k*y (x) = 0. (12)

A change of variable transforms this to the Bessel equation:
If in the previous equation: we change to the variabgven

d [(1d
ko k? {ud ( ﬁ(u)ﬂ + k3k*)(u) = 0 (5) by (6), include the solution (7) fap,, and arrange terms, we
WA du obtain the differential equation fab;;
with
d (1d
s u (uduwl(u)> +1h1(u) = f (u), (13)
PN L T 2 _ 12;2
u=2 ki ho ki, Wt =Rk ©) " Where the function on the right hand side is defined by

wherek is the wave number. The solution to Eq. (5)isa f(u) = <au2 —b— %) [Crudy(u) + CouYy(u)], (14)
linear combination of the Bessel functions of first kihdw) v

andY; (u): and the parameters involved depend only on the wave number
and the parameters of the VF:
P(u) = Crudy(u) + CouYy(u); @ o k2 - o2h3 - _4k2k8k§ as)
the border condition will provide the constaidts andCs. Akgk? ki ko
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The method of the undetermined parameters [12] providewe arrive at the following equations:
the solutiony;; which can be expanded in terms of the Bessel

functions.Jy, Ji, Yy andY; as follows: Suu (W™ (Jo (0)) = =2(m — D)u™ " (J; (u))
+ —u"™ (Jo (u))
dr(u) = Y (Amou™ Jo (u) + Bpou™Yy (u)) +m(m—2)z™2(Jo (u)  (18)
m=0
£ 3 Cont™ () + Doy (). 1) O (07 (o () = =20m = DuE (Y (u)
= + —u" (Yo (u))

+m(m — 2)um72 (Yo (u)) (19)
Suu (U™ (Jy (1)) = (n = 1) (n = 3) w2 (Jy (u))
d (1d +2(n— 1) (Jo (u) +)
P = [udu ( ﬂ ’ ) — W™ (J () (20)
Suu (U™ (Y1 (u))) = (n = 1) (n = 3)u" "2 (Y1 (u))

If we define the second order differential operator:

udu

apply it to the Bessel functions of Eq. (16), and use the prop-
erties for the derivatives of the Bessel functions [13] +2(n—1)u""" (Yo (u))

| —u™ (Y1 (u)). (21)

Using these results, the first term in the left hand side of Eq. (13) becomes:

Bu (1 (1)) = ; Ao [=2(m = =1 (g (w) = u™ (Jo () + m(m — 2)u™ 2 (Jo (u))]
+ Z Byn,o [=20m = 1)u™ " (Vi (w)) = w™ (Yo () + m(m — 2)u™ > (Yo ()]
X ; Cha [(n —D(n—=3)u""2(J (u)+2(n—1)u""1(J(u) —u" (J; (u))]
+ Zn: Dypi[(n=1)(n-3) u" 2 (Y1 (u) +2(n— 1w (Yp (u) —u"™ (Y3 (w)] - (22)

Substitution of Eq. (22) into Eq. (13) imposes the condition for the coefficients in (16). Taking into account that the set of
productsu! J;(u) andu'Y;(u) are linearly independent, we arrive at the conditions for the zero order Bessel functions

Z Ao [m(m — 2)um_2 (Jo (u))] + B [m(m — 2)um_2 (Yo (u))]
+> Coa [2(n=1)u" 1 (Jo ()] + Daa [2(n = 1) u" " (Yo (u)] =0, (23)

and for the first order Bessel functions

D Amo [=2(m = Du™ " (1 ()] + By [<2(m = Du™ ! (Y1 (w))]
XY [Coa [(n—=1) (n = 3)u""2 (J1 ()] + Dyt [(n = 1) (n = 3) u" Y5 (u)]]

+ (au3 +bu+ 5) (CL 1 (u) + CoYi (u)) = 0. (24)
Collecting terms inu!.J;(u) andu'Y; (u) and equating them to zero we arrive at the following conditions:

Ano=0 if m#0,2,4 Bno=0 if m#0,2,4
Coa=0 if n#1,3,5 Dpy1=0 if n#1, 3,5 (25)
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and in addition we find that The proof of this statement is as follows: first, we substitute
Eqg. (29) into Eg. (13) and, taking into account that the Bessel

C51=0 D51 = 0. (26)  functions satisfy the following identity:
The non-null coefficients are: 9
e b a J1(u)¥o(u) = Jo(w)Yi(u) = —, (31)
Ao = 701 Az = 501 Ay = 601
we obtain the required result. Expression (29) is a formal so-
Boo = ;CCQ By = 902 Byo = 902 lution obtained by the method of variation of parameters and
2 2 6 will become very useful in the subsequent development of the
—b —a erturbative calculation.
Cia=5C1 Ca1=—C P
Diy = %bCQ D3, = %acg. (27) 4. Second order approximation
With this result the first order approximation becomes The second order approximation is obtained by equating all
1 b terms ine? from Eq. (11) and neglecting all terms in higher
1 (u) = — (u <3au2 + 2)) [ChJy (u) 4 Co Y7 (u)] powers ofe, thus leading to the following condition fafr,:
1 1
43 (me s et ) (O ) + CaYo )], (28) g9 L00E) | (0 (0
2 3 (Ka%) 0 o+ (3a?)
where the coefficients, b, andc are given by Eq. (15). The 245 ()
first approximation is a combination of Bessel functiohs + (kg + ki) + kgk*a(z) = 0. (32)

- L . dz?
Y1, Jo andYy, multiplied by polynomials in the new variable
u. For further purposes, it is useful to write this solution asChanging to the variable, including the solutions for the

follows: zero and first order approximations, after a few algebraic
steps we arrive at the following differential equation for the
Y1 = [Crudy (u) + CauYy (u)] second order approximation:
7T | 4
- Juln (Vi@ f ) de Butialu) +au) + 3 (Cyu? P (O (u) + CaYi (u)])
L J =0
u T 4
+Zu | Yi () / L@ f@)de|, @) (@ PO () + CaYo (w)]) =0, (33)
=0
L uo .

wheref (z) is defined by (14) and the lower limit of integra- Where the coefficients?, , and¢?,, depend on the constants

tion corresponds te = 0, ko, k1, k2, k3 andk. In a similar procedure to that used in
the last section, we propose the solution for the second order
kgk? approximation as a series of Bessel functions, in this case in-
up = 2 e (30)  volving J, andY, with v = 0,1 and2. Using the fact that

the products! J; (u) andu'Y; (u) are linearly independent we
| obtain the following expression faf.:

2 2u3 2
Va(u) = (—i - + (2(55 - % — % 5 f;) u7) [C1Jy (u) + CaY7 (u)]
G 3
) [C1Jo (u) + CoYo (w)] + (2 — ¢3> [C1Jo (u) + C2Yy (u)]

+21 < (6% + ) [CuJo (w) + CoYo (w) + 1 (w) + oY (w)

2 2 2
; (24 . 8‘5) Wt [Cra (u) + CoYs (u)] + (”5 - §O> a0 [C1Ja (u) + CaYs (u)]

u

_ 7r¢2 |: /Y1 V[C1 T2 (u') + CoYa (u')] du/] T %d)%u [Yl (u) / Ji (u') [C1 2 (u') + CoYa (W)] du’ |, (34)

uo
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whereuy is given by the formula (30), and we have used the  The solution to the differential equation (39) is
well known recurrence formulas for Bessel functions:

2(v+1) Un(u) = [Crudy (u) + Coui (u)]

Ju(u) = Jy+1(u) — Jyro(u). (35)

s
The second approximation turns out to be a combination of — U J1 (u)/Y1 (y) [fn (v)] dy
Bessel functions for = 0, 1, 2 multiplied by a polinomial in i o

u. In analogy to the first order solution, the second one can

u

also be written as follows: 0
squn@ [Hwlh ] @
1/}2 = [CﬂLJl (U) + Cgqu (u)] L wug i
_ Ty |:J1 (u)/ Y1 () [f2 ()] dx} wherey is just a variable of integration andis defined by
2 uo Eq. (6). The proof of this assertion is easy: by substitution

T u of (40) in (41) and of the latter in (39), and taking into account
TR {Yl (w) / Ji () [f2 (2)] d“f”} ) (36)  the property expressed by Eq. (31), we obtain an identity. Of
oo course, the special cases wher- 1 and2 are appropriately
where reproduced by this last result.
a2 _ g 2 The n-order approximation given by the formula (41)
2 (W - ) 1d1ld presents a few difficulties. For the first valuesrothe in-

falu) = A? wduadn W tegrals involved can be done analytically; howeverpas-
A2u? 3 creases the number of terms of the functfgriu) grows very
9 ( cz B) 1d1ld rapidly and analytical integration is not longer possible. Be-
o k3Tﬂ@;@ (o), (37) sides, forn > 3 then-order approximation involves multiple

integration, quickly diminishing the accuracy of the calcula-
tion and making any further analysis difficult.

It is instructive to arrange the n-order correction to the
wave motion in the following way:

where the constantsl, B, C are defined by

kg

k2
A= —
ki

= B:
2kok’

C =K. (38)

It is instructive to compare the similarities between the first -

order approximation given by (29) and the second order ex- "¢y, (u) = CiuJ; (u) [e” <1 — 2Cg(u))]

pressed in (36). !
+ CouY; (u) {e (1 + 7rh(u))] . (42

5. n-order approximation 202

Third and higher order approximations can be obtained wittwhereg(u) andh(u) are the integrals on the second and third

the procedure outlined above, although the algebraic stegerms in the right hand side of Eq. (41) respectively. By

involved and the expressions for each solution become moreomparison of this result with the zero order solution (corre-

and more cumbersome as the order of the approximation irsponding to the linear VF) given by Eq. (7), we observe that

creases. However, by an iterative procedure it is easy to shothe effect of the: order correction is to change the amplitude

that the n-order approximatiafy, satisfies the following dif- at each point of the unperturbegve These corrections de-

ferential equation: pend, in the last instance, on the parametgis the VF and

the wave vectok in the corresponding homogeneous media.

d (1d
w (L) + ot = fow @9
with the functionf,, (u) defined by: 6. Examples
A%u? 2 . . .
9 (W - B) 1d1d In order to illustrate the general behavior of the perturbative
fa(u) = —{k; A2 wduudu (¥n-1) solution we shall consider the case of a plane monochromatic
) 3 wave travelling in an homogeneous mediumc 0 which is
) (AC—?; — B) 1d1d incident on an inhomogeneous region> 0, with a linear
+ k3 T A2 uduudu (Yn—2) + -+ VF; the wave amplitude in the homogeneous medium is writ-
it ten as
A%y?
) ( oz B) 1d1d
th sy uw gu (Y0 b (40) U(z,t) = exp(i(kx — wt)). (43)
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] F In Fig. 1 we illustrate the wave behavior for the following
1.0 parameters of the VF and wave number,

N
i 9 K1
k=10, k§ = 10, —= = —.

05 % i $ o k2 10

, As can be seen from this figure, the amplitude increases
Al \ very slowly as the wave penetrates the medium, because the
05 -\
B A A R S S |

—

et
e
=
::.b

i

.
I:
==
=
A==

(46)

i
[}

medium is non-dissipative and beconmesderfor this set of
parameters.
g As a second example we consider the quadratic VF. The
exact solution for it can be written in terms of confluent hy-
pergeometric functions and has the following form [3]:

¢($) = 01(2]€233 + ki + a1)7a2(2k:2x + ki — al)

a

2kox + k1 + a1

+ 02(2]621' + kl + a1)7a2(2k21 + kl — al)
ai

B a— 47
2/45233—‘1-]4}1—"-0,1)7 ( )
F(a, 8,7, x) is the hypergeometric function, the coefficients

I —
e

'
]
|
N
U
N
o
N

X/ F(_blaanb?nz
FIGURE 1. The amplitude of the wave at the passage from a ho-
mogeneougz < 0) to an inhomogeneous mediufr > 0); the

horizontal line is drawn to guide the eye. x F(by,byg,bs5,2

L4 10 | T o are listed below:
= \/ k1% — 4 koo
0.5 Vs —ivV/Aw? — kg
as =
2 NG
0.0 b —3Vko +ivV4w? — ko
1=
2V ko
0.5 - Vs —ivAw? — kg
2 2vks
\/E — i\/4w2 — k‘g
1.0 by = =
| | 1 L 1 1 1 k2
0.0 05 1.0 15 2.0 2.5 3.0 Vs +ivVEw? — ks
b =
X/ 4 Wk
FIGURE 2. The doted curve is the exact solution to the quadratic Vs +ivVAw? —ky
VF, the continuos curve is the first perturbative correction. bs = Vi ) (48)

The border conditions that define the constants in Eq. (7) are: N Fig. 2 we compare the first order solution (28) with the
continuity of the wave function and of its first derivative. The €Xact solution given by (47) for the quadratic VF; the param-
resulting amplitude for: > 0 becomes: eters for this case are defined in (46) where we changed the

sign ink? and selected the valug /k3 = —1, ande = 0.01,
U(x) = C1y\/k§ + kfz(Yo(uo) J1(u) — Jo(uo)Y1(u))

meaning that the medium in the positive half spaceofier
than the medium for < 0. As expected, the amplitude
+C (VI + e (u0) (0 = ua)a(w) ) (@4
whereuy is given as before and

decreases with the position. Agreement between the exact
and approximate solution is very good for small values of the
position; however, it fails for: values of the order of a few
wavelengths\ = 27 /k. This can be understood by looking at
Egs. (28): the correctioti; depends om™ withn = 1,2, 3,

1 and4, and besides, it is proportional kg. As the wave pen-
C1 = o (1 (o) Yo (o) — Jo(tu0) Y1 (uo)) etrates the inhomogeneous m_ediqm this c.orrection loses its
smallness. However, the applicability of this method would
Cy = 1 ) (45) depend on the specific problem; for example, thin film coat-
ko(J1(uo)Yo(uo) — Jo(uo)Yi(uo)) ing is usually smaller than a wavelength.
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7. Concluding remarks involves numerical integration, making any further analysis
difficult. This method could be useful for some specific sys-
The novelty in the present approach is the solution of the intem when second and third order approximations are enough
homogeneous WE by perturbative series with a better zerg, gescribe the system and when the medium has a small fi-
order solution; we choose the Bessel functions of the firshite size. It is worth noting that there is an analytical solu-
kind, solutions of an inhomogeneous wave equation with gjon for the square velocity profile in terms of hypergeomet-
linear VF, instead of the harmonic solutions of the homogeyic functions; therefore other zero order perturbative solution
neous wave equation. The WE for a polynomial VF has beefy the inhomogeneous wave equation would be constructed
solved by a perturbative expansion, explicitly for the first andg,gm hypergeometric functions. However, the differential

second order approximation, that includes the quadratic angqyations and their solutions arising from the perturbative se-
cubic terms of the VF, and in a closed formula for any orderiies hecome increasingly difficult.

however, starting with the third correction the computation

1. K.F. Graff, Wave Motion in Elastic Soliddover, N.Y., 1991). 8. W.H. Southwell Appl. Opt.24 (1985) 457.
2. J.W.S. RayleighProc. London Math. Sod.1 (1880)51.

9. S.M , Q. Su, and R. Grolehys. Rev. B7(2003) 046619.
3. V.L. Ginzburg,Electromagnetic waves in a plasr{Rergamon, enon, Q. Su. an rotRys. Rev. B7( )

N.Y., 1967). 10. B.J. McCartin,J. Acoust. Soc. Am.02(1997) 160.
4. A.B. Shvartsburg, G. Petite, and P.J .HecqueQpt. Coc. Am.
A 17 (2000) 2267. 11. B.J. McCartin|EEE Micro. Wave Guid. Wav Lef.(1996) 354.
5. S. Mehdiand M. SahimPhys. Rev, Let6 (2006) 075507. 12. M. Broun, Differential Equations and Their Applications
6. D.van Manen and J.0.A. Robertsséys Rev Let94 (2005) (Springer-Verlag, New York, 1983).
164301.
7. Y.L. Li, C.H. Liu, and S.J. Franke). Acoust. Soc. An87 13. M. Abramowitz and A.l. StegunHandbook of Mathematical
(1990) 2285. Functions(Dover, N.Y., 1965).

Rev. Mex. 5. E54(2) (2008) 168-174



