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H. Yépez-Mart́ınez
Universidad Aut́onoma de la Ciudad de Ḿexico, Prolongacíon San Isidro 151,
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The exact solution of the inhomogeneous wave equation in one dimension, when the square of the velocity is a linear function of the position,
can be written in terms of Bessel functions of the first kind. We use this solution as the zero order approximation for a perturbation expansion
and apply it to the case when the square of the velocity can be written as a polynomial in the position. The first and second order perturbation
terms, corresponding to quadratic and cubic terms for the square of the velocity, are obtained. A closed formula for then-order correction in
terms of integrals of the Bessel functions of the first kind was also explicitly obtained, this expression can be solved analytically for the first
and second order corrections and numerically for higher terms.
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La solucíon exacta de la ecuación de onda inhomoǵenea en una dimensión, cuando el cuadrado de la velocidad es una función lineal de
la posicíon, puede escribirse en términos de las funciones Bessel de primera especie. Usamos esta solución como la aproximación de
orden cero de un desarrollo perturbativo y lo aplicamos al caso cuando el cuadrado de la velocidad puede escribirse como un polinomio de
gradon. Obtuvimos expĺıcitamente las perturbaciones de primer y segundo orden correspondientes a los términos cuadŕaticos y ćubicos para
el cuadrado de la velocidad. También se encontró una expresión cerrada para la corrección a ordenn en t́erminos de integrales de funciones
Bessel de primera especie;ésta puede resolverse analı́ticamente para el primer y segundo orden y numéricamente para ordenes superiores.

Descriptores:Medios inhomoǵeneos; teorı́a de perturbaciones; propagación de ondas.

PACS: 04.25.Nx; 42.25Bs; 41.20Jb

1. Introduction

The inhomogeneous wave equation describes a great vari-
ety of physical systems, such as: mechanical systems, elastic
systems, electromagnetic propagation and transmission, elec-
tronic devices, quantum systems, and others [1]. In several
cases the propagation or transmission of a physical quantity
can be modelled by a wave equation (WE) in which the veloc-
ity is a function of the propagation coordinate: for instance,
the cases of electromagnetic waves in normal incidence on a
region whose electric permeability depends on the position
in the medium, thin film coating of optical surfaces where
antireflection is of practical interest, radio wave reflection,
propagation or transmission of electromagnetic field in the
ionosphere, optical systems with variable index of refraction,
etc. For this kind of system, several dielectric constant pro-
files have been solved analytically: the inverse squared pro-
file [2], exponential, linear and quadratic polynomials (e.g.,
V. Ginzburg [3] and references therein) and the inverse of an
even polinomial of the fourth degree [4]. In elastic media,
under certain physical conditions, wave motion can be mod-
elled by a WE with a velocity depending on the coordinate
of propagation; for example, a stratified fluid, a solid with
a density or elastic coefficients depending on the position, a
solid subject to a strong temperature or pressure gradient, etc.

When the WE cannot be solved analytically several ap-
proximative methods are available. The first one, widely

used, is the geometrical optics approximation or WKB
(Wentzel-Kramers-Brillouin). In this method the homoge-
neous wave equation is the starting point, and the correction
is made by changing in the plane wave solution the dielec-
tric constant of the homogeneous media by a function to be
determined; the first approximation is obtained when the un-
determined function is the square root of the dielectric func-
tion. This approximation is equivalent to the first order cor-
rection in perturbation theory [3]. A second approach is the
numerical solution of the WE either by direct solution [5]
or by means of the Green function [6, 7]. These methods
have become extensively used due to the power of modern
computer machines and techniques, providing very realistic
descriptions for several systems; however, without an ana-
lytical solution the physical interpretation and analysis be-
comes cumbersome. Other useful methods are the transfer
matrix theory [8] and iterative methods [9], these methods
share the same problem with numerical solutions. An im-
portant method is the perturbative approximation, which de-
pends on the goodness of the zero order solution and the pos-
sibility of solving the remaining differential equations, this
method provides analytical solutions that can be interpreted
and analyzed [10,11].

In this work, we use the solution of the WE where the
square of the velocity is a linear function of the position,
which is given in terms of the Bessel functions of the first
kind; then, we use this solution as the zero order approxi-
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mation and apply perturbation theory to solve the case of a
polynomial of any degree for the square of the velocity. The
first perturbative approximation includes the quadratic term
while the second one corresponds to the cubic term, etc.; a
closed expression is obtained for higher order approxima-
tions, where numerical integration is required.

2. Model equation

A wide range of physical phenomena taking place in inho-
mogeneous media can be modelled by the inhomogeneous
WE with a velocity function; for many of these systems, it is
enough to study this phenomenon in one dimension. For this
kind of system, we assume the following WE:

v2(x)
∂2Ψ(x, t)

∂x2
=

∂2Ψ(x, t)
∂t2

; (1)

the functionΨ(x, t) describes the quantity of interest: elec-
tric or magnetic field, dilatation, pressure, etc. The solution
to Eq. (1) can be expanded in Fourier components:

Ψ(x, t) = exp(−iωt)ψ(x). (2)

If the velocity functionv2(x) (VF) is an analytical function,
a Taylor series expansion can be performed so that the WE
can be written as:

(k2
0 + k2

1x + k2
2x

2 + k2
3x

3 + ...)
d2ψ(x)

dx2
= −ω2ψ(x), (3)

where the parameterk0 is the velocity in the corresponding
homogeneous medium,ω is the frequency in the Fourier ex-
pansion, andk2

i are just coefficients in the VF.
As the first step, we take into account the linear velocity

profile assuming that the linear term adequately represents
the phenomenon or can be taken as the first order approxima-
tion; in this case the WE becomes:

(k2
0 + k2

1x)
d2ψ(x)

dx2
= −ω2ψ(x). (4)

A change of variable transforms this to the Bessel equation:

k2
0k

2

[
u

d

du

(
1
u

dψ(u)
du

)]
+ k2

0k
2ψ(u) = 0 (5)

with

u = 2

√
k2
0k

2

k4
1

√
k2
0 + k2

1x, ω2 = k2
0k

2, (6)

wherek is the wave number. The solution to Eq. (5) is a
linear combination of the Bessel functions of first kindJ1(u)
andY1(u):

ψ(u) = C1uJ1(u) + C2uY1(u); (7)

the border condition will provide the constantsC1 andC2.

3. Perturbative approach

Analytical solutions for a velocity dependence beyond the
quadratic term in Eq. (1) are not possible; however, when the
VF is a slowly varying function of the position, a perturba-
tive approach could be useful. Although there is an analytical
solution to the second order polynomial VF in terms of hy-
pergeometric functions (Ginzburg [3] and references therein),
we choose the solution to the linear velocity profile of Eq. (4)
as the zero order solution; the reason for this is that Bessel
functions are easer to handle and compute than hypergeomet-
ric ones. We write the VF in terms of a smallness parameter
ε that would depend of the physical properties of the specific
system:

v2(x) =
(
k2
0 + k2

1x
)

+ εk2
2x

2 + ε2k2
3x

3 + ... (8)

then, Eq. (3) becomes:
{
k2
0+k2

1x+εk2
2x

2+ε2k2
3x

3+ . . .
}∇2ψ=−ω2ψ(x). (9)

The solution to this equation can also be expanded in terms
of the smallness parameter [10] in the following way:

ψ(x) = ψ0(x) + εψ1(x) + ε2ψ2(x) + ..., (10)

whereψ0(x) is the solution to Eq. (4). After the substitution
of (8) and (10) the general WE can be written as:

(k2
0 + k2

1x + εk2
2x

2 + +ε2k2
3x

3 + ...)

× d2
(
ψ0(x) + εψ1(x) + ε2ψ2(x) + ...

)

dx2

= k2
0k

2
(
ψ0(x) + εψ1(x) + ε2ψ2(x) + ...

)
= 0. (11)

In order to find the first order approximation we equate all
terms in the first power ofε and neglecting all terms in higher
powers ofε, this gives the differential equation for the first
order approximation denoted byψ1:

ε
(
k2
2x

2
) d2ψ0(x)

dx2
+ ε

(
k2
0 + k2

1x
) d2ψ1(x)

dx2

+ εk2
0k

2ψ1(x) = 0. (12)

If in the previous equation: we change to the variableu given
by (6), include the solution (7) forψ0, and arrange terms, we
obtain the differential equation forψ1;

u
d

du

(
1
u

d

du
ψ1(u)

)
+ ψ1(u) = f (u) , (13)

where the function on the right hand side is defined by

f(u) =
(
au2 − b− c

u2

)
[C1uJ1(u) + C2uY1(u)] , (14)

and the parameters involved depend only on the wave number
and the parameters of the VF:

a = − k2
2

4k2
0k

2
b =

2k2
2k

2
0

k4
1

c = −4k2k6
0k

2
2

k8
1

. (15)
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The method of the undetermined parameters [12] provides
the solutionψ1; which can be expanded in terms of the Bessel
functionsJ0, J1, Y0 andY1 as follows:

ψ1(u) =
∑
m=0

(Am,0u
mJ0 (u) + Bm,0u

mY0 (u))

+
∑
n=0

(Cn,1u
mJ1 (u) + Dn,1u

mY1 (u)) . (16)

If we define the second order differential operator:

δuu =
[
u

d

du

(
1
u

d

du

)]
, (17)

apply it to the Bessel functions of Eq. (16), and use the prop-
erties for the derivatives of the Bessel functions [13]

we arrive at the following equations:

δuu (um (J0 (u))) = −2(m− 1)um−1 (J1 (u))

+−um (J0 (u))

+ m(m− 2)xm−2 (J0 (u)) (18)

δuu (um (Y0 (u))) = −2(m− 1)um−1 (Y1 (u))

+−um (Y0 (u))

+ m(m− 2)um−2 (Y0 (u)) (19)

δuu (un (J1 (u))) = (n− 1) (n− 3)un−2 (J1 (u))

+ 2 (n− 1) un−1 (J0 (u) +)

− un (J1 (u)) (20)

δuu (un (Y1 (u))) = (n− 1) (n− 3)un−2 (Y1 (u))

+ 2 (n− 1) un−1 (Y0 (u))

− un (Y1 (u)) . (21)

Using these results, the first term in the left hand side of Eq. (13) becomes:

δuu (ψ1(u)) =
∑
m

Am,0

[−2(m− 1)um−1 (J1 (u))− um (J0 (u)) + m(m− 2)um−2 (J0 (u))
]

+
∑
m

Bm,0

[−2(m− 1)um−1 (Y1 (u))− um (Y0 (u)) + m(m− 2)um−2 (Y0 (u))
]

×
∑
m

Cn,1

[
(n− 1) (n− 3)un−2 (J1 (u)) + 2 (n− 1) un−1 (J0 (u))− un (J1 (u))

]

+
∑

n

Dn,1

[
(n− 1) (n− 3)un−2 (Y1 (u)) + 2 (n− 1)un−1 (Y0 (u))− un (Y1 (u))

]
. (22)

Substitution of Eq. (22) into Eq. (13) imposes the condition for the coefficients in (16). Taking into account that the set of
productsulJi(u) andulYi(u) are linearly independent, we arrive at the conditions for the zero order Bessel functions

∑
m

Am,0

[
m(m− 2)um−2 (J0 (u))

]
+ Bm,0

[
m(m− 2)um−2 (Y0 (u))

]

+
∑

n

Cn,1

[
2 (n− 1) un−1 (J0 (u))

]
+ Dn,1

[
2 (n− 1)un−1 (Y0 (u))

]
= 0, (23)

and for the first order Bessel functions
∑

n

Am,0

[−2(m− 1)um−1 (J1 (u))
]
+ Bm,0

[−2(m− 1)um−1 (Y1 (u))
]

×
∑

n

[
Cn,1

[
(n− 1) (n− 3)un−2 (J1 (u))

]
+ Dn,1

[
(n− 1) (n− 3)un−2Y1 (u)

]]

+
(
au3 + bu +

c

u

)
(C1J1 (u) + C2Y1 (u)) = 0. (24)

Collecting terms inulJi(u) andulYi(u) and equating them to zero we arrive at the following conditions:

Am,0 = 0 if m 6= 0, 2 , 4 Bm,0 = 0 if m 6= 0, 2 , 4

Cn,1 = 0 if n 6= 1, 3 , 5 Dn,1 = 0 if n 6= 1, 3 , 5, (25)
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and in addition we find that

C5,1 = 0 D5,1 = 0. (26)

The non-null coefficients are:

A0,0 =
−c

2
C1 A2,0 =

b

2
C1 A4,0 =

a

6
C1

B0,0 =
−c

2
C2 B2,0 =

b

2
C2 B4,0 =

a

6
C2

C1,1 =
−b

2
C1 C3,1 =

−a

3
C1

D1,1 =
−b

2
C2 D3,1 =

−a

3
C2. (27)

With this result the first order approximation becomes

ψ1(u) = −
(

u

(
1
3
au2 +

b

2

))
[C1J1 (u) + C2Y1 (u)]

+
1
2

(
−c + bu2 +

1
3
au4

)
[C1J0 (u) + C2Y0 (u)] , (28)

where the coefficientsa, b, andc are given by Eq. (15). The
first approximation is a combination of Bessel functionsJ1,
Y1, J0 andY0, multiplied by polynomials in the new variable
u. For further purposes, it is useful to write this solution as
follows:

ψ1 = [C1uJ1 (u) + C2uY1 (u)]

− π

2
u


J1 (u)

u∫

u0

Y1 (x) f (x) dx




+
π

2
u


Y1 (u)

u∫

u0

J1 (x) f (x) dx


 , (29)

wheref (x) is defined by (14) and the lower limit of integra-
tion corresponds tox = 0,

u0 = 2

√
k4
0k

2

k4
1

. (30)

The proof of this statement is as follows: first, we substitute
Eq. (29) into Eq. (13) and, taking into account that the Bessel
functions satisfy the following identity:

J1(u)Y0(u)− J0(u)Y1(u) =
2

πu
, (31)

we obtain the required result. Expression (29) is a formal so-
lution obtained by the method of variation of parameters and
will become very useful in the subsequent development of the
perturbative calculation.

4. Second order approximation

The second order approximation is obtained by equating all
terms inε2 from Eq. (11) and neglecting all terms in higher
powers ofε, thus leading to the following condition forψ2:

(
k2
3x

3
) d2ψ0(x)

dx2
+

(
k2
2x

2
) d2ψ1(x)

dx2

+
(
k2
0 + k2

1x
) d2ψ2(x)

dx2
+ k2

0k
2ψ2(x) = 0. (32)

Changing to the variableu, including the solutions for the
zero and first order approximations, after a few algebraic
steps we arrive at the following differential equation for the
second order approximation:

δuuψ2(u) + ψ2(u) +
4∑

i=0

(
ζ2
i+1u

2i−3 [C1J1 (u) + C2Y1 (u)]
)

+
4∑

i=0

(
φ2

i+1u
2i−2 [C1J0 (u) + C2Y0 (u)]

)
= 0, (33)

where the coefficientsζ2
i+1 andφ2

i+1 depend on the constants
k0, k1, k2, k3 andk. In a similar procedure to that used in
the last section, we propose the solution for the second order
approximation as a series of Bessel functions, in this case in-
volving Jν andYν with ν = 0, 1 and2. Using the fact that
the productsulJi(u) andulYi(u) are linearly independent we
obtain the following expression forψ2:

ψ2(u) =
(
− ζ2

1

4u
− φ2

3u
3

4
+

(
2φ2

5

5
− φ2

4

8
− ζ2

5

10
u5 − φ2

5

12

)
u7

)
[C1J1 (u) + C2Y1 (u)]

− ζ2
2

2
[C1J0 (u) + C2Y0 (u)] +

(
ζ2
3

2
− φ2

3

)
u2 [C1J0 (u) + C2Y0 (u)]

+
1
8

(
φ2

1 + ζ2
1

)
[C1J0 (u) + C2Y0 (u) + C1J2 (u) + C2Y2 (u)]

+
(

φ2
4

2
− ζ2

4

6
+

2ζ2
5

5
− 8φ2

5

5

)
u4 [C1J2 (u) + C2Y2 (u)] +

(
2φ2

5

5
− ζ2

5

10

)
u6 [C1J2 (u) + C2Y2 (u)]

− πφ2
2

2
u


J1 (u)

u∫

u0

Y1 (u′) [C1J2 (u′) + C2Y2 (u′)] du′


 +

πφ2
2

2
u


Y1 (u)

u∫

u0

J1 (u′) [C1J2 (u′) + C2Y2 (u′)] du′


 , (34)
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whereu0 is given by the formula (30), and we have used the
well known recurrence formulas for Bessel functions:

Jν(u) =
2 (ν ± 1)

u
Jν±1(u)− Jν±2(u). (35)

The second approximation turns out to be a combination of
Bessel functions forν = 0, 1, 2 multiplied by a polinomial in
u. In analogy to the first order solution, the second one can
also be written as follows:

ψ2 = [C1uJ1 (u) + C2uY1 (u)]

− π

2
u

[
J1 (u)

∫ u

u0

Y1 (x) [f2 (x)] dx

]

+
π

2
u

[
Y1 (u)

∫ u

u0

J1 (x) [f2 (x)] dx

]
, (36)

where

f2(u) = −k2
2

(
A2u2

C2 −B
)2

A2

1
u

d

du

1
u

d

du
(ψ1)

− k2
3

(
A2u2

C2 −B
)3

A2

1
u

d

du

1
u

d

du
(ψ0) , (37)

where the constantsA,B, C are defined by

A =
k2
1

2k0k
, B =

k2
0

k2
1

, C = k2
1. (38)

It is instructive to compare the similarities between the first
order approximation given by (29) and the second order ex-
pressed in (36).

5. n-order approximation

Third and higher order approximations can be obtained with
the procedure outlined above, although the algebraic steps
involved and the expressions for each solution become more
and more cumbersome as the order of the approximation in-
creases. However, by an iterative procedure it is easy to show
that the n-order approximationψn satisfies the following dif-
ferential equation:

u
d

du

(
1
u

d

du
ψn(u)

)
+ ψn(u) = fn (u) (39)

with the functionfn(u) defined by:

fn(u) = −{k2
2

(
A2u2

C2 −B
)2

A2

1
u

d

du

1
u

d

du
(ψn−1)

+ k2
3

(
A2u2

C2 −B
)3

A2

1
u

d

du

1
u

d

du
(ψn−2) + · · ·

+ k2
n+1

(
A2u2

C2 −B
)n+1

A2

1
u

d

du

1
u

d

du
(ψ0) }. (40)

The solution to the differential equation (39) is

ψn(u) = [C1uJ1 (u) + C2uY1 (u)]

− π

2
u


J1 (u)

u∫

u0

Y1 (y) [fn (y)] dy




+
π

2
u


Y1 (u)

u∫

u0

J1 (y) [fn (y)] dy


 , (41)

wherey is just a variable of integration andu is defined by
Eq. (6). The proof of this assertion is easy: by substitution
of (40) in (41) and of the latter in (39), and taking into account
the property expressed by Eq. (31), we obtain an identity. Of
course, the special cases whenn = 1 and2 are appropriately
reproduced by this last result.

The n-order approximation given by the formula (41)
presents a few difficulties. For the first values ofn the in-
tegrals involved can be done analytically; however, asn in-
creases the number of terms of the functionfn (u) grows very
rapidly and analytical integration is not longer possible. Be-
sides, forn ≥ 3 then-order approximation involves multiple
integration, quickly diminishing the accuracy of the calcula-
tion and making any further analysis difficult.

It is instructive to arrange the n-order correction to the
wave motion in the following way:

εnψn(u) = C1uJ1 (u)
[
εn

(
1− π

2C1
g(u)

)]

+ C2uY1 (u)
[
εn

(
1 +

π

2C2
h(u)

)]
. (42)

whereg(u) andh(u) are the integrals on the second and third
terms in the right hand side of Eq. (41) respectively. By
comparison of this result with the zero order solution (corre-
sponding to the linear VF) given by Eq. (7), we observe that
the effect of then order correction is to change the amplitude
at each point of the unperturbedwave. These corrections de-
pend, in the last instance, on the parameterski of the VF and
the wave vectork in the corresponding homogeneous media.

6. Examples

In order to illustrate the general behavior of the perturbative
solution we shall consider the case of a plane monochromatic
wave travelling in an homogeneous mediumx < 0 which is
incident on an inhomogeneous regionx ≥ 0, with a linear
VF; the wave amplitude in the homogeneous medium is writ-
ten as

Ψ(x, t) = exp(i(kx− ωt)). (43)
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FIGURE 1. The amplitude of the wave at the passage from a ho-
mogeneous(x < 0) to an inhomogeneous medium(x ≥ 0); the
horizontal line is drawn to guide the eye.

FIGURE 2. The doted curve is the exact solution to the quadratic
VF, the continuos curve is the first perturbative correction.

The border conditions that define the constants in Eq. (7) are:
continuity of the wave function and of its first derivative. The
resulting amplitude forx > 0 becomes:

ψ(x) = C1

√
k2
0 + k2

1x(Y0(u0)J1(u)− J0(u0)Y1(u))

+ C2

(√
k2
0 + k2

1x(Y1(u0)J1(u)− J1(u0)Y1(u))
)

, (44)

whereu0 is given as before and

C1 =
1

k0(J1(u0)Y0(u0)− J0(u0)Y1(u0))

C2 = i
1

k0(J1(u0)Y0(u0)− J0(u0)Y1(u0))
. (45)

In Fig. 1 we illustrate the wave behavior for the following
parameters of the VF and wave number,

k =
√

10, k2
0 = 10,

k2
1

k2
0

=
1
10

. (46)

As can be seen from this figure, the amplitude increases
very slowly as the wave penetrates the medium, because the
medium is non-dissipative and becomesharder for this set of
parameters.

As a second example we consider the quadratic VF. The
exact solution for it can be written in terms of confluent hy-
pergeometric functions and has the following form [3]:

ψ(x) = C1(2k2x + k1 + a1)−a2(2k2x + k1 − a1)

× F (−b1, b2, b3, 2
a1

2k2x + k1 + a1
)

+ C2(2k2x + k1 + a1)−a2(2k2x + k1 − a1)

× F (b1, b4, b5, 2
a1

2k2x + k1 + a1
), (47)

F (α, β, γ, x) is the hypergeometric function, the coefficients
are listed below:

a1 =
√

k1
2 − 4 k2k0

a2 =
√

k2 − i
√

4 ω2 − k2

2
√

k2

b1 =
−3

√
k2 + i

√
4 ω2 − k2

2
√

k2

b2 =
√

k2 − i
√

4 ω2 − k2

2
√

k2

b3 =
√

k2 − i
√

4 ω2 − k2√
k2

b4 =
√

k2 + i
√

4 ω2 − k2

2
√

k2

b5 =
√

k2 + i
√

4 ω2 − k2√
k2

, (48)

In Fig. 2 we compare the first order solution (28) with the
exact solution given by (47) for the quadratic VF; the param-
eters for this case are defined in (46) where we changed the
sign ink2

1 and selected the valuek2
2/k2

0 = −1, andε = 0.01,
meaning that the medium in the positive half space issofter
than the medium forx < 0. As expected, the amplitude
decreases with the position. Agreement between the exact
and approximate solution is very good for small values of the
position; however, it fails forx values of the order of a few
wavelengthsλ = 2π/k. This can be understood by looking at
Eqs. (28): the correctionψ1 depends onun with n = 1, 2, 3,
and4, and besides, it is proportional tok2. As the wave pen-
etrates the inhomogeneous medium this correction loses its
smallness. However, the applicability of this method would
depend on the specific problem; for example, thin film coat-
ing is usually smaller than a wavelength.
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7. Concluding remarks

The novelty in the present approach is the solution of the in-
homogeneous WE by perturbative series with a better zero
order solution; we choose the Bessel functions of the first
kind, solutions of an inhomogeneous wave equation with a
linear VF, instead of the harmonic solutions of the homoge-
neous wave equation. The WE for a polynomial VF has been
solved by a perturbative expansion, explicitly for the first and
second order approximation, that includes the quadratic and
cubic terms of the VF, and in a closed formula for any order;
however, starting with the third correction the computation

involves numerical integration, making any further analysis
difficult. This method could be useful for some specific sys-
tem when second and third order approximations are enough
to describe the system and when the medium has a small fi-
nite size. It is worth noting that there is an analytical solu-
tion for the square velocity profile in terms of hypergeomet-
ric functions; therefore other zero order perturbative solution
to the inhomogeneous wave equation would be constructed
from hypergeometric functions. However, the differential
equations and their solutions arising from the perturbative se-
ries become increasingly difficult.
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