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An alternative solution to the general tautochrone problem
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In 1658, Blaise Pascal put forward a challenge for solving the area under a segment of a cycloid and also its center of gravity. In 1659,
motivated by Pascal challenge, Huygens showed experimentally that the cycloid is the solution to the tautochrone problem, namely that of
finding a curve such that the time taken by a particle sliding down to its lowest point, under uniform gravity, is independent of its starting
point. Ever since, this problem has appeared in many books and papers that show different solutions. In particular, the fractional derivative
formalism has been used to solve the problem for an arbitrary potential and also to put forward the inverse problem: what potential is needed
in order for a particular trajectory to be a tautochrone? Unfortunately, the fractional derivative formalism is not a regular subject in the
mathematics curricula for physics at most of the Universities we know. In this work we develop an approach that uses the well-known
Laplace transform formalism together with the convolution theorem to arrive at similar results.
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En 1658, Blaise Pascal labzl reto de determinar érea debajo de la curva de un segmento de cicloideso®so su centro de gravedad.
En 1659, motivado por el reto de Pascal, Huygens demuestra experimentalmente que la cicloide eéheaspiatilema de la taberona,
es decir, al problema de encontrar una curva tal que, si unylarengarzada en ella se mueve por la@tael campo gravitacional

y articulos con diferentes soluciones. En particular, el formalismo de derivadas fraccionales ha sido utilizado para resolver el problema en
el caso de un potencial arbitrariol@®mo el problema inverso: ¢guotencial se requiere para que una trayectoria, en particular, sea una
taubcrona? Desafortunadamente, el formalismo de derivadas fraccionales no forma parte deuk cera carrera deisica de muchas

de las Universidades que conocemos. En este trabajo desarrollam@swio que utiliza el bien conocido formalismo de la transformada

de Laplace, que junto con el teorema de convalucnos lleva a resultados similares.

Descriptores: Taubcrona; transformada de Laplace; teorema de comvmiuci

PACS: 45.20.-d; 02.30.Uu

1. Introduction The problem has been, and still is, of interest, espe-
cially because of its similarity with the brachistochrone prob-
As stated in the abstract, Huygens showed experimentalllem [3-5]. Great mathematicians such as Joseph Louis La-
that a cycloid is the tautochrone curve for a particle slidinggrange and Leonhard Euler looked for an analytical solution
without friction in the uniform gravitational field. He pub- to the problem and Niels H. Abel used the Laplace formalism
lished this result in his bookliorologium oscillatorium[1] ~ to solve it [6]. Ever since, many papers have been published
and some years later, when J. Bernoulli found that the cyedealing with tautochrone curves under special physical con-
cloid is also a brachistochrone, he wrote [2]: ditions, such as: the tautochrone with friction [7], the rela-
tivistic tautochrone [8], the tautochrone in rotating frames of
reference [9] and the tautochrone under an arbitrary poten-
tial [10]. In this last paper, Flores and Osler introduced the
fractional derivatives formalism to solve the problem and to
generalize to an arbitrary potential energy function, and also
to solve the inverse problem. However, the fractional deriva-
tive formalism is not a regular subject in the under graduate
syllabus of physics or mathematics studies. In this paper we
develop the same type of generalization, but using the more
accessible and well-known formalism of Laplace transform.

Before | end | must voice once more the admi-
ration | feel for the unexpected identity of Huy-
gens’ tautochrone and my brachistochrone. |
consider it especially remarkable that this coin-
cidence can take place only under the hypothe-
sis of Galileo, so that we even obtain from this
a proof of its correctness. Nature always tends
to act in the simplest way, and so it here lets
one curve serve two different functions, while
under any other hypothesis we should need two
curves. ..
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2. The Laplace transform formalism T), where the ending point has been taken, without lost of
?enerality ag = 0, so that equation can be written as:
Before we move toward the tautochrone problem, we shall' . y=0
recall a pair of definitions and the convolution theorem [11]: ‘ B do
/\/29dt = V29T = — / (vo—y) " (dy> dy
1.- The Laplace transfornf(s) of a functionF'(¢) is de- 0 y=vo
fined as: v
o - do
. =/(yo—y) e <d> dy @)
f6) =L{F®} = [ Fwa @ / v
0 For a tautochrone, the time of descent T is to be constant

independent ofjy, so that the upper limit of Eq. (7) is ar-
bitrary and this fact makes it possible to take the integrand
as the convolution oflo /dy. The convolution theorem then
/F1(Z)F2 (t—2z)dz =F1 x Fy (2)  states that
do

0 V29T =y /% % o ®)
Y
2.- The convolution theorem:

and the convolution between two functions as:

t

and calculating the corresponding Laplace transforms one
If f1(s) andf2(s) are the Laplace transforms 61(¢)  obtains

and F5(t), respectively, then
5(t) /Qng = dﬁ L{y—l/z} I dﬁ I ©)
t S dy dy S
fi(s) f2(s)=1L /F1 (2) Fy (t— 2)dz because the Laplace transform of a constant A is A/s and that
) of y~1/2is \/n/s. Applying the inverse transform yields:
— L(F + ) 3) Zﬁ _ V2T (10)
Y T

. . Squaring, separating variables, and integrating we arrive
3. The Laplace formalism in the Tautochrone at the parametric equations of a cycloid passing through the
problem origin [11]. This is the usual method for solving the tau-
The path-time employed in a given trajectory defined by ar;[ochrone in the homogeneous gravitational field._ The_same
arc element d method can be used to solve the general case, in which the

potential energy function is arbitrary. We give the solution in
dazm:\/ 1+ (dx/dy)Qdy:mdy 4) the next section.

with a velocity v 4. General case

v=1/(2/m)[U (y0) — U (y)], (5) Inthe general case for an arbitrary potential, we cannot use
the convolution theorem because the left side of Eq. (6) does
where m is the mass of the particle and U(y) is the potentiahot contain a termyy — y [as in Eq. (7)] However, making
energy function, can be written as: z = U(y) we can write
t do do dz do daUu ,
/dt _ [do dydyf e dydyf o0z and dz= T dy=U'dy (11)
i v v so then Eq. (6) takes the form

Yy T z
=- flfy@/m)w(yww(y)}d% (6) \/Z / df—ﬁ = /<>/<ff)d (12)

Yo

Under the isochronal condition, the left side of Eq. (12)

the minus sign is becausi/di < 0. As stated before, the s a constant, so the right side does not depend on the integra-
standard way to solve the problem using the Laplace formalkion limits and we can apply the convolution theorem; then
ism was put forward by Abel [6], and it can be seen, for in-
stance, in Arfken’s book [11]. However, we include it here L{ QT} _ 2T - {Z—l/z} I {dU}
for the sake of completeness: m ms dz
In the constant and uniform gravitational potential case,
U(y) =mgy, the last integral of Eq. (6) is from the top of — \/?L {d"} (13)
the trajectory § = yo, t= 1ty = 0) to its bottom; { =0, t = S dz
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because the Laplace transform of a constant A is A/s and that Proceeding as in the Cartesian coordinates case, we call
of z='/2is \/7/s. Solving for L {do/dz} we obtain: z = U(r) so that

do 2T s ? o
L{dz} = ( mw) e (14) \/ZT:/(Z()—Z)l/z dTiz)dz (23)

Applying the inverse transform, and substituting= Repeating the previous steps one obtains:

U(y), yields
do 2T
2T — === 24
di — \/>U—1/2 (15) dz \/;7'(2 (24)
dUu m Soth
so that omen
U 27T 1/2
5 o=%/22UY?2 = BJVU (25)
1/——/U1/2dU:/da, (16) mm
mT ] and because
wherel = 0 is taken at the end point of the trajectory. Then: do _dodr _1do _ WTU1/2 (26)
dU  drdU U’ dr m
o= 21/ ~ Lo — a4y (17)  we arrive at
2 12
and because 0= / 1/ ﬂl — 1@. (27)
mn2 U r
do  do dy 1 do 2T )
W dydU T dy ——U (18) Equations (25) and (27) are the polar equivalents of

Egs. (17) and (19) for central potential energy functions.
The purpose of this work is to develop a simpler alter-
I e native to the fractional derivative method [9]. As was men-
x = / \| == — ldy (19) tioned in the introduction, several examples of tautochrone
ma® U curves have been published using their results, so it is not
worth extending this paper with those examples. We shall
only point out that once Eqgs. (19), and (27) are known, the

drect problem is formally solved, as shown in the following
examples.

we obtain, from Eq. (4):

Equation (17) makes it possible to find the potential en-
ergy function that “makes” a given curve a tautochrone. As
was stated in the introductory section, the results establlshe
in Egs. (17) and (19) were previously derived using the frac-
tional derivative formalism [10]. However, this formalism is
far from usual at the undergraduate level. On the other hand. Examples
the Laplace transform formalism is a main part of any mathe- i i
matic methods course, not only in Physics and Mathematic$-1-  Potential energy functions of the (Ay+B} form

but also in Engineering. In this case

5. Generalization to central potentials U(r) T = \/n2A2 Ay+B)"" " —1dy  (28)

In the case of central potentiéll(r), the movement of a parti-  which has simple solutions for the following cases:
cleis in a plane¢ = constant), so the arc elemeiat in polar

coordinates is: in=1
do\? 272
— 2 2 .
o= e (Y @) o= [\ iy -
and the speed of the particle along the trajectory is: _ / C—(Ay+B)y "
2 Ay+ B
= 2 W0 -V () 1) A=)
. A . . 1 —
so the time from the initial point to the bottom of the trajec- = —/ C—u du (29)
tory will be: a u

T i, with u = Ay + B and C = 2F/mn? the solution is an
:/dt:— / dﬁz_/ \/ do/dr i (22) inverted cycloid and corresponds to the constant uni-
m T)]

form gravitational field with A = mg. This is Arfken’s
result, obtained in one line!
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ii)n =2

[RT2 A2
mf/ TA ——— —1dy=Cy

(30)

215

If U = +Ar?,theU’? /U = 4A2, so the square root of the
integral is a constant C and the trajectory is

which is a straight I|ne and corresponds to the linear

harmonic oscillator potential.

iii)n =3

2 A2
:L'/\/18T§1(Ay+B)1dy
mm

:/\/Dy+Edy

Dy+E
3D(y+)

v)n =4

(1)

2 A2
/\/32TA (Ay+ B)?> —1dy

z/\/cyQ—&—by—i—ady
ey +b) eyt +by+a

4c
1. .1/ 2cy+0d )
+ = sinh —_—
c <\/4acb2

Central Potential energy functions

6.2.

(32

r = rgexp (—k0) (33)
where k = 1/C.
If the potential is such that
2T2 U/2
—-1=8B 4
mm2 U " (34)
then the trajectory will be
=28 (rg/ 27’1/2) (35)

The potential energy function that satisfies Eq. (34) is
readily obtained by solving that equation and it is

U— 2B2 mn?

= [(B +1)%2 - (Br+1)3/2]2

(36)

7. Conclusions

An alternative method to solve the tautochrone problem for
an arbitrary potential energy function based on the Laplace
transform formalism, instead of the fractional derivative for-
malism, has been developed. The method has the advan-
tage of being accessible to students of physics, mathemat-

In the case of central force fields, there are also some cas&$ and engineering at the undergraduate level. Moreover, the
in which the integral of the trajectory, Eq. (27) has simplemethod is also developed for polar coordinates, useful in cen-

solutions:

tral potential problems.

—_

. http://historical.library.cornell.edu/kmoddl/tdwygensl.html

N

http://www-history.mcs.st-andrews.ac.uk/HistTopics/

Brachistochrone.html
3. R. ChanderAm. J. Phys45(1977) 848.
4. J.M. McKinley, Am. J. Phys47(1979) 81.
5
6

. H.H. DenmanAm. J. Phys53(1985) 224.
. N.H. Abel,

Solution of queleques pralithes a l'aide
d’intégrales definieDeuvres comgltes Vols. 1.,

Edit. Jacques

Gabay (1992) (Nouv. Edit. de L. Sylow y S. Lie, Chrisfian
Imprim. Grondahl & Sons, 1881).

7. D. Dimitrovski and M Mijatovic,Phys. Maced48 (1998) 43.
8. S.G. Kammath). Math. Phys33(1992) 934.
9. M. Mijatovic, Eur. J. Phys21 (2000) 385.

10. E. Flores and T.J. OsleAm. J. Phys67 (1999) 718.

11. G. Arfken, Mathematical Methods for Physicis{g.cademic
Press Inc., New York, 1970) p. 713.

Rev. Mex. is. E54(2) (2008) 212-215



