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Pure dipole distributions of electric charges on the surfaces of prolate and oblate spheroids are identified from the construction of the
respective electrostatic potential and intensity fields, inside and outside the spheroids. The Euler connection between the respective prolate
and oblate dipole spheroidal harmonics is emphasized; their transition via the spherical harmonics is also recognized; and their limits of a
needle surface and a disk surface, respectively, are readily obtained.
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Se identifican distribuciones puramente dipolares de carga eléctrica sobre la superficie de esferoides prolatos y oblatos a partir de la con-
struccíon de los respectivos campos elctrostáticos de potencial e intensidad, dentro y fuera de los esferoides. Se destaca la conexión a la
Euler entre los respectivos armónicos esferoidales prolatos y oblatos; se reconoce la transición entre ellos v́ıa los arḿonicos esf́ericos; y sus
lı́mites de superficies de aguja y de disco, respectivamente, se obtienen fácilmente.

Descriptores: Campos y fuentes electrostáticos dipolares puros; arḿonicos esferoidales prolatos y oblatos; conexión de Euler;

PACS: 41.20.Cv1

1. Introduction

The writing of this paper has been motivated by the investi-
gations on electron capture by polar molecules, in which the
latter have been modeled as point and finite electric dipole
moments [1]. The interested reader may profit by reading [2],
in which the connection with Fermi and Teller’s work on
“The capture of Negative Mesotrons in Matter” [3] recog-
nizes the discovery by these authors of the minimum dipole
moment required to bind an electron, twenty years earlier
than the molecular theorists. Two recent works, with the ti-
tles “Electron structure of a dipole-bound anion confined in
a spherical box” and “Addendum to ‘Electron structure of a
dipole-bound anion confined in a box’: the case of a finite
dipole” [4,5], are the motivation for reviewing some simple
dipole electrostatic field configurations and their sources, em-
phasizing their different behaviours in the internal and exter-
nal regions of the sources [6,7].

Most textbooks introduce the finite electric dipole with
two point charges of the same magnitude, one negative -q
and one positive q, and the relative position vector~d from
the first to the second, by defining the electric dipole moment
as [8-10]:

~p = q~d· (1)

Then the point dipole moment is obtained in the limit in
which q →∞ andd → 0.

For other charge distributions, the extensions of the defi-
nition of Eq. (1) are directly obtained:

~p =
N∑

i=1

qi~ri (2)

for a collection of point charges;

~p =
∫

V

dvρ (~r)~r (3)

for charges with a volume densityρ (~r) inside a volumeV ;
and

~p =
∫

A

daσ (~r)~r (4)

for charges with a surface densityσ ~(r) over an area A.
The electrostatic potential for any of the above dipole mo-

ments, in the regions far from the sources, has the familiar
form associated with the point dipole,

φ ~(r) =
~p · r̂
r2

· (5)

Its form follows from the application of the superposition
principle and the multipole expansion of the Coulomb po-
tential, keeping only the terms withl = 1, m = 0 [8-10].

Reference 11 recognizes that the multipole expansion is
also valid for the regions inside the sources. For instance, in
the case of a sphere of radiusr′ = a with a surface charge
density

σ = σ0 cosθ, (6)

the associated electrostatic potential inside the sphere is

φ (~r) =
∫

da′ σ0 cosθ′
r̂′ · ~r
a2

, (7)

where the radial unit vector is given by

r̂′ = î sinθ′ cosϕ′ + ĵ sinθ′ sinϕ′ + k̂ cosθ′, (8)
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and the area element isda′ = a2 sin θ′ dθ′ dϕ′. The integra-
tions overϕ′ vanish for the terms in cosϕ′ and sinϕ′, with
the net result:

φ (~r) =
4πσ0

3
r cosθ =

4πσ0

3
z (9)

Correspondingly, the electric intensity field in the interior of
the sphere is uniform:

~E (~r) = −k̂
4πσ0

3
(10)

It is also instructive to evaluate the charges associated
with each hemisphere and the dipole moment of the distri-
bution of Eq. (6):

q=
∫

daσ (~r)=

π/2∫

0

2π∫

0

a2 sin θdθdϕσ0 cos θ=πa2σ0, (11)

~p = k̂

π∫

0

2π∫

0

a2 sin θdθdϕσ0 cos2 θ=k̂
4πa3σ0

3
· (12)

Comparison of Eq. (1) with Eqs. (11) and (12) per-
mits the identification of the separation of the centers of pos-
itive and negative charge of the respective hemispheres as
d = 4a/3 in the equivalent finite dipole.

This contribution extends the exact results of
Eqs. (5)-(12) for spheres to the cases of prolate and oblate
spheroids, identifying their respective dipole surface charge
distributions and alternative sources. The electrostatic poten-
tial is constructed in Sec. 2 as the solutions to the Laplace
equation in the corresponding spheroidal coordinates with
multipolarity restricted tol = 1, m = 0, subject to the con-
ditions of being well-behaved inside and outside the charged
spheroidal surfaces, and being continuous at the surface. The
electric intensity field is evaluated in Sec. 3, as the negative
gradient of the electrostatic potential both inside and outside
the spheroid, checking that its tangential components at the
surface are also continuous. In Sec. 4, it is recognized that
its normal components at the surface are discontinuous, and
according to Gauss’s law their discontinuity measures the
surface charge distribution; the charges associated with each
hemisphere and the dipole moment of the charge distribu-
tion are also evaluated and interpreted. Section 5 illustrates
the connection, the transition, and the limits anticipated in
the abstract. For the sake of continuity in the reading of the
main text, the details about the spheroidal coordinates and
harmonic functions, emphasizing the Euler connection, are
described in the Appendix. This work is also complementary,
in methodology and content, to the lecture on “Electrostatics
of Prolate and Oblate Spheroidal Conductorsà la Euler” [12].

2. Pure dipole electrostatic potential inside
and outside prolate and oblate spheroids

The geometry of the spheroids is incorporated into the re-
spective coordinates defined by Eqs. (A.1) and (A.2). In

the prolate case, fixed values ofξ correspond to confocal
spheroids with foci at(x=0, y=0, z= ± f) and eccentric-
ity 1/ξ, fixed values ofη correspond to two-sheath confo-
cal hyperboloids with the same foci and eccentricity1/η,
and fixed values ofϕ are the usual meridian half-planes. In
the oblate case the foci are on a circle on thexy plane at
(x=f cos ϕ, y=f sin ϕ, z=0), fixed values of ζ correspond
to confocal spheroids with eccentricity1/

√
ζ2 + 1, fixed val-

ues ofη correspond to one-sheath confocal hyperboloids with
eccentricity1/η, and the already mentioned commonϕ coor-
dinate.

The general solutions to the Laplace equation in
spheroidal coordinates of Eqs. (A.18) and (A.20), leading to
pure electrostatic dipole fields involve non-vanishing coeffi-
cients only forl = 1 andm = 0. Additionally, the solutions
for the interior of the spheroids can involve only Legendre
polynomial in both the spheroidal and hyperboloidal coordi-
nates:

φ (ξ 6 ξ0, η, ϕ) = N int
p P1 (ξ) P1 (η) = N int

p ξη (13)

φ (ζ 6 ζ0, η, ϕ) = −iN int
0 P1 (iζ)P1 (η) = N int

0 ζη (14)

using their forms from Eqs. (A.21) and (A.22). The same
equations for the Legendre fuctions of the second kind, which
are well-behaved far away from the sources, determine the
exterior solutions:

φ (ξ > ξ0, η, ϕ) = Next
p Q1 (ξ) P1 (η)

= Next
p

[
ξ

2
ln

ξ + 1
ξ − 1

− 1
]

η, (15)

φ (ζ > ζ0, η, ϕ) = Next
0 Q1 (iζ) P1 (η)

= Next
0

[
ζ

(π

2
− tan−1 ζ

)
− 1

]
η· (16)

The imaginary uniti in Eq. (14) is included anticipating
that all the physical quantities involved are real. Comparison
of Eqs. (9), (13) and (14) show the common linear poten-
tial in thez coordinate for the spherical and both spheroidal
dipole harmonics. Notice that Eq. (16) does not need the
imaginary unit associated with Eq. (14) becauseQ1(iξ) is
a real function, Eq. (A.22).

The continuity of the electrostatic potential at the surface
of the charged spheroids permits the rewriting of Eqs. (13)
and (15) in the form

φ(ξ, η, ϕ) = NpP1(ξ<)Q1(ξ>)P1(η) (17)

whereξ< andξ> are the the smaller and larger ofξ andξ0.
Similarly Eqs. (14) and (16) become

φ(ζ, η, ϕ) = −iN0P1(iζ<)Q1(iζ>)P1(η) (18)

with the corresponding relationships amongζ<, ζ>, andζ0.
The determination of the proportionality constantsNp

andN0 in Eqs. (17) and (18) for the electrostatic potentials
associated with the respective prolate and oblate spheroids is
implemented in the following sections.
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3. Pure dipole electric intensity field inside and outside prolate and oblate spheroids

The evaluation of the electric intensity field inside and outside the charged spheroidal surfaces is obtained as the negative
gradient of the respective potential functions of Eqs. (17) and (18). The successive results are:

~E (ξ 6 ξ0, η, ϕ) = −Np

[
ξ̂

hξ

dP1 (ξ)
dξ

Q1 (ξ0) P1 (η) +
η̂

hη
P1 (ξ) Q1 (ξ0)

dP1 (ξ)
dξ

]

= −NpQ1 (ξ0)

[
ξ̂η

√
ξ2 − 1 + η̂ξ

√
1− η2

√
ξ2 − η2

]
= −NpQ1 (ξ0) k̂ (19)

~E (ξ > ξ0, η, ϕ) = −Np

[
ξ̂

hξ
P1 (ξ0)

dQ1 (ξ)
dξ

P1 (η) +
η̂

hη
P1 (ξ0) Q1 (ξ)

dP1 (η)
dη

]

= −Npξ0

[
ξ̂

hξ

(
1
2

ln
ξ + 1
ξ − 1

− ξ2

ξ2 − 1

)
+

η̂

hη

(
ξ

2
ln

ξ + 1
ξ − 1

− 1
)]

(20)

~E (ζ 6 ζ0, η, ϕ) = +iN0

[
ζ̂

hζ

dP1 (iζ0)
dζ

Q1 (iζ0)P1 (η) +
η̂

hη
P1 (iζ) Q1 (iζ0)

dP1 (η)
dη

]

= −N0Q1 (iζ0)

[
ζ̂η

√
ζ2 + 1 + η̂ζ

√
1− η2

√
ζ2 + η2

]
= −N0Q1 (iζ0) k̂ (21)

~E (ζ > ζ0, η, ϕ) = +iN0

[
ζ̂

hζ
P1 (iζ0)

dQ1 (iζ)
dζ

P1 (η) +
η̂

hη
P1 (iζ0) Q1 (iζ)

dP1 (η)
dη

]

= −N0ζ0

[
ζ̂

hζ

(
π

2
− tan−1 ζ − ζ2

1 + ζ2

)
+

η̂

hη

(
ζ

(π

2
− tan−1 ζ

)
− 1

)]
(22)

where the last form of each equation uses the explicit forms of the Legendre functions of Eqs. (A.21)-(A.22). Notice also the
uniform fields in the interior of the spheroids, Eqs. (19) and (21), where the unit vectork̂ along their rotational axis is obtained
from Eqs. (A.6) and (A.7); of course, they also follow directly from the linear electrostatic potentials of Eqs. (13)-(14),
respectively.

The determination of the proportionality constantsNp andN0 requires the analysis of the contuinity of the tangential
components and the discontinuity of the normal components of the electric intensity field at theξ = ξ0 andζ = ζ0 spheroidal
boundaries, respectively. Equations (19) and (20), and (21) and (22) immediately show the continuity of the respective internal
and external̂η components. The same pairs of equations exhibit the discontinuities of the normal components,ξ̂ andζ̂, which
determine the respective surface charge densities according to Gauss’s law, as shown next.

4. Surface electric charge densities on prolate and oblate spheroids

Gauss’s law, in its boundary condition form at the prolate and oblate spheroidal surfaces, becomes:
[
~E

(
ξ = ξ+

0 , η, ϕ
)− ~E

(
ξ = ξ−0 , η, ϕ

)] · ξ̂ = 4πσ (ξ = ξ0, η, ϕ) (23)
[
~E

(
ζ = ζ+

0 , η, ϕ
)− ~E

(
ζ = ζ−0 , η, ϕ

)] · ζ̂ = 4πσ (ζ = ζ0, η, ϕ) · (24)

Then the respective substitutions of Eqs.(19) and(20) in (23), and of Eqs.(21) and(22) in (24) lead to

Np
1

hξ0

[
−P1 (ξ0)

dQ1 (ξ0)
dξ0

+
dP1 (ξ0)

dξ0
Q1 (ξ0)

]
P1 (η) = 4πσ (ξ = ξ0, η, ϕ) (25)

iN0
1

hζ0

[
−P1 (iζ0)

dQ1 (iζ0)
d (iζ0)

+
dP1 (iζ0)
d (iζ0)

Q1 (iζ0)
]

P1 (η) = 4πσ (ζ = ζ0, η, ϕ) (26)
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The expressions inside the brackets are identified as the
known Wronskians of the Legendre functions [13], which can
also be evaluated from the explicit forms of Eqs. (19)-(22),
with the values1/(ξ2 − 1) and−i/(ζ2 + 1). Therefore, the
surface electric charge densities take on the respective forms:

σ (ξ = ξ0, η, ϕ) =
Np

4π

1
f
√

(ξ2
0 − η2) (ξ2

0 − 1)
P1 (η)

=
fNp

4πhη (ξ0, η)hϕ (ξ0, η)
P1 (η) , (27)

σ (ζ = ζ0, η, ϕ) =
N0

4π

1
f
√

(ζ2
0 + η2) (ξ2

0 − 1)
P1 (η)

=
fN0

4πhη (ζ0, η)hϕ (ζ0, η)
P1 (η) , (28)

where Eqs. (A.4) and (A.5) for the scale factors have been
used. The expressions in Eqs. (27) and (28) are the coun-
terparts of Eq. (6), sharing the same Legendre polynomial
of order one “angular” dependence, and differing in the scale
factors associated with the “radial” area element.

It is also straightforward to evaluate the charges of
the hemispheres and the dipole moments of both types of
spheroids, as their counterparts of Eqs. (11) and (12) for the
spheres, with the succesive results:

q =

1∫

0

2π∫

0

σ (ξ0, η, ϕ)hηhϕdηdϕ =
fNp

4
(29)

q =

1∫

0

2π∫

0

σ (ζ0, η, ϕ)hηhϕdηdϕ =
fN0

4
(30)

~p = k̂

1∫

−1

2π∫

0

σ (ξ0, η, ϕ) fξ0ηhηhϕdηdϕ

= k̂
f2Npξ0

3
= k̂q

4fξ0

3
(31)

~p = k̂

1∫

−1

2π∫

0

σ (ζ0, η, ϕ) fζ0ηhηhϕdηdϕ

= k̂
f2N0ζ0

3
= k̂q

4fζ0

3
(32)

According to Eqs. (29)-(30) the proportionality constants
are determined by the electric charges of the hemispheres
and the focal distances of the respective spheroids. On the
other hand, the centers of positive and negative charge are
located at

z± = ±2
3
fξ0, z± = ±2

3
fξ0 (33)

according to Eqs. (31) and (32), respectively. Notice thatfξ0

andfζ0 are the major and minor radius along the axis of ro-
tation for the respective spheroids. Both become the radius
of a sphere in the limits off → O andξ0 → ∞, ζ0 → ∞,
coinciding witha in Eq. (12).

5. Discussion on asymptotic and near fields

The initial discussion in this section is centered on the
asymptotic fields, focusing on the potential functions of
Eqs. (15)-(16) in the limits ofξ and ζ becoming infinite.
The discussion of the near fields outside the spheroids is bet-
ter illustrated using the electric intensity fields of Eqs. (20)
and (22), forξ = ξ0 andζ = ζ0, respectively. Discussions of
extensions or connections with other electrostatic configura-
tions are also included.

The potential function of Eq. (15), using the normaliza-
tion constant in terms of the magnitude of the dipole moment
in Eq. (31), and the asymptotic form ofQ1(ξ) in Eq. (A.21),
takes the form for the prolate spheroid

φ (ξ, η, ϕ) =
pη

f2ξ2
(34)

which is the same as Eq. (9) for the sphere.

Similarly, for the oblate spheroid the use of the corre-
sponding Eqs. (16) ,(32), and (A.22) forQ1(iζ), leads to

φ (ζ, η, ϕ) =
pη

f2ζ2
(35)

which is also equivalent to Eqs. (9) and (34) far away from
the dipole. Notice the differences in signs in the normaliza-
tion constants of Eqs. (17) and (18), and in the asymptotic
forms of theQ1 function of Eqs. (A.21) and (A.22), behind
the equivalence in Eqs. (34) and (35).

Comparison of the surface charge densities of Eq. (6)
for the sphere and of Eqs. (27) and (28) for the prolate and
oblate spheroids, shows their common cosθ or η dependence,
and their differences associated with their respective scale
factors. They are positive and negative in the northern and
southern hemispheres, with maximum and minimun value at
the north and south poles, and vanishing at the equator. In
the limit of ξ0 → 1, for which the spheroid becomes like a
needle with the foci at its ends, the charge densities become
infinite at both polesη → ±1, on account of the vanishing
of the scale factors in the denominator of Eq. (27), describ-
ing the point effects in the limiting geometry. The limits of
f → 0, ξ0 → ∞ andf → 0, ζ0 → ∞ with fξ0 → a and
fζ0 → a, describe the transition of the respective prolate
and oblate spheroids to spheres, withη → cos θ. Notice also
that the limit in which the oblate spheroid becomes a disk,
ζ0 = 0, its edge withη → 0 also has a vanishing factor in
the denominator of Eq. (28) for the surface charge density;
nevertheless, the latter is zero at the equator as discussed in
general in the second sentence of this paragraph.

The electric dipole intensity field from the electrostatic
potential of Eq. (5) has the familiar form

~E (~r) =

(
2r̂ cos θ − θ̂ sin θ

)

r3
(36)
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By taking its value at the surface of the sphere withr = a,
the radial direction̂r as that of the vertical and the tangential
direction θ̂ as that of the horizontal, the inclination of the
electric field is given by its tangent function:

tan i =
2 cos θ

sin θ
= 2 cot θ (37)

The counterparts for the prolate and oblate spheroids fol-
low from Eqs. (20) and (22), respectively:

tan i =

√
ξ2
0 − 1

1− η2

1
2 ln ξ0+1

ξ0−1 −
ξ2
0

ξ2
0−1

ξ0
2 ln ξ0+1

ξ0−1 − 1
η (38)

tan i =

√
ζ2
0 + 1

1− η2

π
2 − tan−1 ζ0 +

ζ2
0

ζ2
0+1

ζ0

(
π
2 − tan−1 ζ0

)− 1
η (39)

The common factor in Eqs. (37)-(39) is the one in the po-
lar angle or hyperbolidal coordinates, and the differences are
associated with the respective logarithmic derivatives of the
Q1 functions in the respective spheroidal coordinates. The
inclination is 90◦ at the poles and0◦at the equator; it is only
latitude dependent for the sphere, but for the spheroids it also
depends on their eccentricities.

The grounded prolate and oblate spheroidal conductors
in an external uniform electric field studied in Ref. 12 also
involve electric dipole fields and surface charges complemen-
tary to the ones involved in the present study. For the conduc-
tors the fields vanish in the interior, and are the superposition
of the uniform field and the respective fields of Eqs. (20)
and (22) in the exterior. The superposed fields are perpendic-
ular to the surface of the spheroids.

Appendix

The prolate(1 6 ξ < ∞,−1 6 η 6 1, 0 6 ϕ 6 2π) and oblate(0 6 ζ < ∞,−1 6 η 6 1, 0 6 ϕ 6 2π) spheroidal
coordinates are defined via their transformation equations to cartesian coordinates [13]:

x =f
√

(ξ2 − 1) (1− η2)cosϕ, y = f
√

(ξ2 − 1) (1− η2)sinϕ, z = fξη (A.1)

x =f
√

(ζ2 + 1) (1− η2)cosϕ, y = f
√

(ζ2 + 1) (1− η2)sinϕ, z = fζη. (A.2)

Their scale factors and unit vectors follow from

d~r = îdx + ĵdη + k̂dz = ˆξhξdξ + η̂hηdη + ϕ̂hϕdϕ = ˆζhζdζ + η̂hηdη + ϕ̂hϕdϕ (A.3)

taking the respective forms

hξ = f

√
ξ2 − η2

ξ2 − 1
, hη = f

√
ξ2 − η2

1− η2
, hϕ = f

√
(ξ2 − 1) (1− η2) (A.4)

hζ = f

√
ζ2 + η2

ζ2 + 1
, hη = f

√
ζ2 + η2

1− η2
, hϕ = f

√
(ζ2 + 1) (1− η2) (A.5)

ξ̂ =
(̂i cosϕ + ĵ sin ϕ)ξ

√
1− η2 + k̂η

√
ξ2 − 1√

ξ2 − η2
,

η̂ =
−(̂i cos ϕ + ĵ sin ϕ)η

√
ξ2 − 1 + k̂ξ

√
1− η2

√
ξ2 − η2

, ϕ̂ = −î sin ϕ + ĵ cos ϕ (A.6)

ζ̂ =
(̂i cosϕ + ĵ sin ϕ)ζ

√
1− η2 + k̂η

√
ζ2 + 1√

ζ2 + η2
,

η̂ =
−(̂i cos ϕ + ĵ sin ϕ)η

√
ζ2 + 1 + k̂ζ

√
1− η2

√
ζ2 + η2

, ϕ̂ = −î sinϕ + ĵ cos ϕ (A.7)

The respective Laplace operator and Laplace equation in the prolate and oblate spheroidal coordinates are constructed from
Eqs. (4),(5), and take the respective forms:

{
1

f2 (ξ2 − η2)

[
∂

∂ξ

(
ξ2 − 1

) ∂

∂ξ
+

∂

∂η

(
1− η2

) ∂

∂η

]
+

1
f2 (ξ2 − 1) (1− η2)

∂2

∂ϕ2

}
φ (ξ, η, ϕ) = 0 (A.8)

{
1

f2 (ζ2 + η2)

[
∂

∂ζ

(
ζ2 + 1

) ∂

∂ζ
+

∂

∂η

(
1− η2

) ∂

∂η

]
+

1
f2 (ζ2 + 1) (1− η2)

∂2

∂ϕ2

}
φ (ξ, η, ϕ) = 0 (A.9)

Rev. Mex. F́ıs. E55 (1) (2009) 1–7



6 E. LEY-KOO

Both equations admit factorizable solutions

φ (ξ, η, ϕ) = Ξ (ξ)H (η) Φ (ϕ) (A.10)

φ (ζ, η, ϕ) = Z (ζ)H (η)Φ (ϕ) (A.11)

each factor satisfying the respective ordinary differential equations
[

d

dξ

(
ξ2 − 1

) d

dξ
− m2

ξ2 − 1

]
Ξ (ξ) = l (l + 1) Ξ (ξ) (A.12)

[
d

dη

(
1− η2

) d

dη
− m2

1− η2

]
H (η) = −l (l + 1) H (η) (A.13)

d2Φ
dϕ2

= −m2Φ (A.14)

[
d

dζ

(
ζ2 + 1

) d

dζ
− m2

ζ2 + 1

]
Z (ζ) = l (l + 1) Z (ζ) (A.15)

Herem2 and l(l + 1) are the separation constants with the restrictionsm = 0, 1, 2, 3, ...due to the periodicity of the
ϕ coordinate, andl = 0, 1, 2, 3, ...in order to ensure good behavior of the regular solutions at the hyperboloidal coordinate
regular singular pointsη = ±1.

The solutions to the eigenvalue Eq. (A.14) are the familiar Fourier basis with the Euler connection:

eimϕ= cos mϕ + i sin mϕ (A.16)

The solutions to Eq. (A.13) are the associated Legendre polynomalsPm
l (η) and associated Legendre functions of the

second kindQm
l (η), divergent atη = ±1, which may be familiar to the reader in spherical coordinates via the identification

η = cos θ. Notice that Eqs. (A.13) and (A.12) have the same form, except for the domains of their respective variables,
Eq. (A.1). Therefore, the most general solution to the Laplace Eq. (A.8) is the linear combination of prolate spheroidal
harmonics:

Φ(ξ, η, ϕ) =
∞∑

l=0

l∑
m=0

[Am
l Pm

l (ξ) + Bm
l Qm

l (ξ)] [Cm
l Pm

l (η) + Dm
l Qm

l (η)] [Em cosmϕ + Dm sin mϕ] (A.18)

Notice also that if in Eq. (A.15) we make the change of variablez = iζ, we obtain

−
[

d

dz

(−z2 + 1
) d

dz
− m2

−z2 + 1

]
Z = l (l + 1) Z (A19)

which is of the same form as Eqs. (A.12) and (A.13). Correspondingly the potential function of Eq. (A.9) is the linear
combination of oblate spheroidal harmonics

Φ(ζ, η, ϕ) =
∞∑

l=0

l∑
m=0

[Am
l Pm

l (iζ) + Bm
l Qm (iζ)] [Cm

l Pm
l (η) + Dm

l Qm
l (η)] [Em cos mϕ + Fm sin mϕ] (A.20)

For the analysis of the problems in Secs. 2 and 3 thel = 1, m = 0 spheroidal harmonics are needed, so we list their prolate
and oblate dependencies:

P1 (ξ) = ξ, Q1 (ξ) =
ξ

2
ln

ξ + 1
ξ − 1

− 1 (A.21)

P1 (iζ) = iζ, Q1 (iζ) =
iζ

2
ln

iζ + 1
iζ − 1

− 1 = ζ
(π

2
− tan−1 ζ

)
− 1 for ζ > 1

Q1 (iζ) =
iζ

2
ln

1 + iζ

1− iζ
− 1 = −ζ tan−1 ζ − 1 for ζ < 1 (A.22)
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The last equations distinguish the intervalsζ > 1 and
0 < ζ < 1, in order to obtain the correct phase of the re-
spective fractions. The interested reader can work out the
details of going from the logarithmic forms to the form in
terms of the arc-tangent function ofQ1(iζ) for any value of
0 6 ζ < ∞. The difference between the values ofQ1(iζ)
for ζ > 1 andζ < 1 is the linear term inζ. Its presence
guarantees thatQ1(iζ) vanishes in the limit ofζ → ∞. The
continuity of the potential function atζ = 1, requires that
the solutions in the interval0 < ζ < 1 be the surperposition
(π/2)ζ + Q1(iζ), which extends the validity ofQ1(iζ) for
ζ > 1 to the interval under discussion.

In order to illustrate and appreciate the Euler connection
in the context of harmonic functions, we may consider the so-
lutions to the Laplace equation in two dimensions and carte-
sian coordinates:

Φ(x, y) =
(
Aekx + Be−kx

) (
Ceiky + De−iky

)

= [(A + B) cos kx + (A−B) sinh kx]

× [(C + D) cos ky + i (C −D) sin ky] (A.23)

The important mathematical elements behind the connec-
tion are:

i) the second order of the Laplace equation and of the or-
dinary differential equations in which it separates, and

ii) the opposite signs of the separation constants in the lat-
ter equations. The respective consequences follow:

iii) the equations in each independent coordinate admit
two independent solutions, and

iv) the solutions in the respective coordinates are con-
nected via the analytical continuationx → iy.

The reader can identify the corresponding elements and
consequences in the spheroidal harmonic functions. In fact,
while Eqs. (A.13) and (A.14) are common for both types
of spheroidal coordinates; in the prolate case Eq. (A.12) is
the same as Eq. (A.13) but in different real domains, and
in the oblate case analytical continuation of either of those
equations, from the real to the imaginary domainiζ, leads
to Eq. (A.15). The Euler connection within Eq. (A.20) in
the oblate spheroidal coordinates is similar to that within the
cartesian coordinates in Eq. (A.23). The Euler connection
between the prolate and oblate spheroidal coordinates is in
operation when going between Eqs. (A.12) and (A.19). The
explicit forms of the connection forl = 1, m = 0 are exhib-
ited by Eqs. (A.21)-(A.22), in which the logarithmic versus
the ζtan−1ζ behaviors of the respectiveQ1 functions is the
analog of the real versus imaginary exponential behaviours
in Eq. (A.23).
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