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Complete pure dipole spheroidal electrostatic fields and sources
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Pure dipole distributions of electric charges on the surfaces of prolate and oblate spheroids are identified from the construction of the
respective electrostatic potential and intensity fields, inside and outside the spheroids. The Euler connection between the respective prolat
and oblate dipole spheroidal harmonics is emphasized; their transition via the spherical harmonics is also recognized; and their limits of a
needle surface and a disk surface, respectively, are readily obtained.
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Se identifican distribuciones puramente dipolares de cafgarigla sobre la superficie de esferoides prolatos y oblatos a partir de la con-
struccbn de los respectivos campos elctétigios de potencial e intensidad, dentro y fuera de los esferoides. Se destaca larcaraxi
Euler entre los respectivos abmicos esferoidales prolatos y oblatos; se reconoce la trangcitre ellos ia los arndnicos esricos; y sus
limites de superficies de aguja y de disco, respectivamente, se obéeiiaefhte.

Descriptores: Campos y fuentes electrasicos dipolares puros; afmicos esferoidales prolatos y oblatos; cobexie Euler;

PACS: 41.20.Cvl

1. Introduction for a collection of point charges;
The writing of this paper has been motivated by the investi- p= /dvp (7) 7 (3)
gations on electron capture by polar molecules, in which the 7

latter have been modeled as point and finite electric dipole . o
moments [1]. The interested reader may profit by reading [2]for charges with a volume densigy (i) inside a volumé/;
in which the connection with Fermi and Teller's work on and

“The capture of Negative Mesotrons in Matter” [3] recog- . .

nizes the discovery by these authors of the minimum dipole pP= /d‘w (7)7 (4)
moment required to bind an electron, twenty years earlier A

than the molecular theorists. Two recent works, with the ti- -

tles “Electron structure of a dipole-bound anion confined infor charges with a surface densityr) over an area A.

a spherical box” and “Addendum to ‘Electron structure of ame;r;e ienl iﬁgorseta%%zizn#?n:o{haengg::Bgsabhoa\llse tdk:gof[:mni]l?a_r
dipole-bound anion confined in a box’: the case of a finite ’ 9 '

dipole” [4,5], are the motivation for reviewing some simple form associated with the point dipole,
dipole electrostatic field configurations and their sources, em- - P 5
phasizing their different behaviours in the internal and exter- ¢(r) = r2 ®)

nal regions of the squrces [6.7]- o o . Its form follows from the application of the superposition
Mo;t textbooks introduce the flnltg electric dipole \{wth principle and the multipole expansion of the Coulomb po-
two point charges of the same magnitude, one negative “fential, keeping only the terms with= 1, m = 0 [8-10].

and one positive g, and the_rglative positi(_)n ye(zidrom Reference 11 recognizes that the multipole expansion is
the first to the second, by defining the electric dipole moment s, \41id for the regions inside the sources. For instance, in

as [8-10]: the case of a sphere of radit's= a with a surface charge

. . density
p=qd 1)

=

o = 0o cosb, (6)
Then the point dipole moment is obtained in the limit in . . o _
which ¢ — oo andd — 0. the associated electrostatic potential inside the sphere is

)

For other charge distributions, the extensions of the defi- . , LT
nition of Eq. (1) are directly obtained: ¢ () = /da 09 COSO" —5-, )

where the radial unit vector is given by

N
F=Y ai 2
i=1

7 =ising cosy’ + jsing’ sing’ + kcost’, (8)
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and the area elementda’ = a2 sin®’ df’ d¢'. The integra- the prolate case, fixed values éfcorrespond to confocal
tions overy’ vanish for the terms in cog’ and siny’, with  spheroids with foci a{z=0,y=0, z= + f) and eccentric-

the net result: ity 1/¢, fixed values ofy) correspond to two-sheath confo-
. droy Aoy cal hyperboloids with the same foci and eccentricifi,
¢ (7) = 3 " cost = z () and fixed values o are the usual meridian half-planes. In

the oblate case the foci are on a circle on theplane at
(x=f cos p,y=f sin @, 2=0), fixed values of { correspond
to confocal spheroids with eccentricity /(2 + 1, fixed val-
7 (7) = —i dmog (10) ues ofn _cc_)rrespond to one-sheath con_focal hyperboloids with
3 eccentricityl /n, and the already mentioned commpgoor-
It is also instructive to evaluate the charges associatedinate.
with each hemisphere and the dipole moment of the distri- The general solutions to the Laplace equation in
bution of Eq. (6): spheroidal coordinates of Egs. (A.18) and (A.20), leading to
pure electrostatic dipole fields involve non-vanishing coeffi-
5 . 5 cients only forl = 1 andm = 0. Additionally, the solutions
q=/da0 (r) = / /a sin §dfdpog cos=ma0o, (11)  for the interior of the spheroids can involve only Legendre
0 0 polynomial in both the spheroidal and hyperboloidal coordi-
T 27 nates:

“ ~4dralo
7= 24 20= 0. i in
p=Fk / / o sin dfdpoo cos™ =k 12) gl <&un o) = NP PL(n) = Nj™en (13)
0 0

Correspondingly, the electric intensity field in the interior of
the sphere is uniform:

/2 21

_ __sATint . _ int
Comparison of Eq. (1) with Egs. (11) and (12) per- O(C< Qo) = —iNg™ P (iC) Pr (n) = No™Cn - (14)

mits the identification of the separation of the centers of posysing their forms from Egs. (A.21) and (A.22). The same
itive and negative charge of the respective hemispheres agyuations for the Legendre fuctions of the second kind, which

d = 4a/3 in the equivalent finite dipole. are well-behaved far away from the sources, determine the
This contribution extends the exact results of exterior solutions:

Egs. (5)-(12) for spheres to the cases of prolate and oblate

spheroids, identifying their respective dipole surface charge @ (& = &0,n,%) = N5™'Q1 (€) Py (n)

distributions and alternative sources. The electrostatic poten- £ E41

tial is constructed in Sec. 2 as the solutions to the Laplace = N;* [2 In 1 1} 7, (15)

equation in the corresponding spheroidal coordinates with &

multipolarity restricted td = 1, m = 0, subject to the con- # (¢ = Coymy ) = NE'Q4 (i€) Py (1)

ditions of being well-behaved inside and outside the charged -

spheroidal surfaces, and being continuous at the surface. The = Ng* [C (5 — tan~! C) - 1} n- (16)

electric intensity field is evaluated in Sec. 3, as the negative ) ) . o o

gradient of the electrostatic potential both inside and outside  1h€ imaginary unit in Eq. (14) is included anticipating

the spheroid, checking that its tangential components at thihat all the physical quantities involved are real. _Comparlson

surface are also continuous. In Sec. 4, it is recognized th&l! EAs: (9), (13) and (14) show the common linear poten-

its normal components at the surface are discontinuous, arfftl In the z coordinate for the spherical and both spheroidal

according to Gauss's law their discontinuity measures th&iPole harmonics. Notice that Eq. (16) does not need the

surface charge distribution: the charges associated with eadf@ginary unit associated with Eq. (14) becad@gi<) is
hemisphere and the dipole moment of the charge distribu@ "€@! function, Eq. (A.22). _ _
tion are also evaluated and interpreted. Section 5 illustrates ' "€ continuity of the electrostatic potential at the surface
the connection, the transition, and the limits anticipated ir®f the charged spheroids permits the rewriting of Egs. (13)
the abstract. For the sake of continuity in the reading of thénd (15) in the form
main text, the Qetails about _th_e spheroidal coordina}tes and S(€,71,0) = NpPy(€<)Q1(E5)P1(n) 17)
harmonic functions, emphasizing the Euler connection, are
described in the Appendix. This work is also complementarywhereé. andé-, are the the smaller and larger ©Bnd&.
in methodology and content, to the lecture on “ElectrostaticsSimilarly Egs. (14) and (16) become
of Prolate and Oblate Spheroidal Conductota Euler” [12].

P(¢m, ) = —iNoP1(iC<)Q1(iC>)Pr(n)  (18)

2. Pure dipole electrostatic potential inside with the corresponding relationships amahng ¢, and(p.

and outside prolate and oblate spheroids The determination of the proportionality constar¥g
and N, in Egs. (17) and (18) for the electrostatic potentials

The geometry of the spheroids is incorporated into the reassociated with the respective prolate and oblate spheroids is
spective coordinates defined by Egs. (A.1) and (A.2). Inimplemented in the following sections.
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COMPLETE PURE DIPOLE SPHEROIDAL ELECTROSTATIC FIELDS AND SOURCES 3
3. Pure dipole electric intensity field inside and outside prolate and oblate spheroids

The evaluation of the electric intensity field inside and outside the charged spheroidal surfaces is obtained as the negative
gradient of the respective potential functions of Egs. (17) and (18). The successive results are:

—

¢ 4P
E (€ <&,m9) =—Ny ¢ 4R (6)

he dg

dp; (§)
dg§

Q1 (%) P (n )+} Py (£) Q1 (&)

N0 [&)\/52 1+9ey/1—1
- p

£ —n?

deg(g)Pl () + 1Py (€) Q1 (&) dpénm)

€ (1,611 & No(E, E+1
P;
d

] = —N,Q1 (&) k (19)

—

B(e> tomp) = —N, ,ipl ()

hay

—

E (¢ <o, ¢) =+iNg C 4P (i) ()

=T i) Py )+ PO @ Gi6o) T

Iy U]

—_

= —NoQ1 (i¢o) lm e S ——Nle(z'co)l% (21)

VAGES

d@, (i¢)
d¢

= —Ny(o l}i <72T —tan"!' ¢ — 15;2(2) + a2 (C (g —tan~! §) - 1)] (22)

where the last form of each equation uses the explicit forms of the Legendre functions of Egs. (A.21)-(A.22). Notice also the
uniform fields in the interior of the spheroids, Egs. (19) and (21), where the unit \Iéatong their rotational axis is obtained

from Eqgs. (A.6) and (A.7); of course, they also follow directly from the linear electrostatic potentials of Eqs. (13)-(14),
respectively.

The determination of the proportionality constaifs and N, requires the analysis of the contuinity of the tangential
components and the discontinuity of the normal components of the electric intensity field attheand( = ¢, spheroidal
boundaries, respectively. Equations (19) and (20), and (21) and (22) immediately show the continuity of the respective internal
and externafy components. The same pairs of equations exhibit the discontinuities of the normal comp@aedts which
determine the respective surface charge densities according to Gauss’s law, as shown next.

—

E(C = 40777, 50) = +ZNO C

By

dP; (n)
dn

Py (1) + 2L Py (i) Qs (i€)

Pl (ZCO) h
n

4. Surface electric charge densities on prolate and oblate spheroids

Gauss's law, in its boundary condition form at the prolate and oblate spheroidal surfaces, becomes:

[E(€=&ne) =6 ,m¢)|-€=1ro(c=5n) (23)
[B(C=6 o) =B (=G me)| & =m0 (C=Gome)- (24)
Then the respective substitutions of EGE) and(20) in (23), and of Eqs(21) and(22) in (24) lead to
Ny [ en) ) 4 g, ()] Py 1) = a6 = om0 25)
o |- (i) ST ) S8 g, i) | Py ) =m0 ¢ = o) (26)
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The expressions inside the brackets are identified as the. Discussion on asymptotic and near fields
known Wronskians of the Legendre functions [13], which can
also be evaluated from the explicit forms of Egs. (19)-(22),The initial discussion in this section is centered on the
with the valuesl/(¢? — 1) and—i/(¢? + 1). Therefore, the asymptotic fields, focusing on the potential functions of
surface electric charge densities take on the respective formggs. (15)-(16) in the limits of and ¢ becoming infinite.

1 The discussion of the near fields outside the spheroids is bet-
o (§=%mp) = 47T INGEOICE )Pl () ter illustrated using the electric intensity fields of Egs. (20)
0 0 and (22), fort = &, and¢ = ¢, respectively. Discussions of
_ pr () 27) extensions or connections with other electrostatic configura-
dmhy (€0, 1) by (§0.m) 7 tions are also included.
No 1 The potential function of Eq. (15), using the normaliza-
(¢ =Co,m,9) = N e 2GS Py () tion constant in terms of the magnitude of the dipole moment
]?N ") in Eq. (31), and the asymptotic form &f; (¢) in Eq. (A.21),
_ 0 takes the form for the prolate spheroid
4mhy (Co,n) by (Cosm) Bilm,  (@8)
where Egs. (A.4) a_nd (A.5) for the scale factors have been b (&m, ) = 2 5 (34)
used. The expressions in Egs. (27) and (28) are the coun- 1€

terparts of Eq. (6), sharing the same Legendre polynomial . =

of order one “angular” dependence, and differing in the scalé("hICh is the same as Eq. (9) for the sphere.

factors associated with the “radial” area element. Similarly, for the oblate spheroid the use of the corre-
It is also straightforward to evaluate the charges ofsponding Egs. (16),(32), and (A.22) f@r (i¢), leads to

the hemispheres and the dipole moments of both types of

spheroids, as their counterparts of Egs. (11) and (12) for the b (Com, ) = 2 -

spheres, with the succesive results: f C

1 27w

(35)

N which is also equivalent to Egs. (9) and (34) far away from
fNp . . : ) .
q= 7 (€o. 11, ) hnhgdndp = — (29)  the dipole. Notice the differences in signs in the normaliza-
0 0 tion constants of Egs. (17) and (18), and in the asymptotic
1 27 forms of the@, function of Egs. (A.21) and (A.22), behind
= //U (Cor 1, ) hhpdndp — I No (30) the equwalgnce in Egs. (34) and (35). B
4 Comparison of the surface charge densities of Eq. (6)
for the sphere and of Eqgs. (27) and (28) for the prolate and

A LT oblate spheroids, shows their common&osn dependence,
p= k//g(ﬁoﬂlﬂﬂ) f&onhnhedndye and their differences associated with their respective scale
210 factors. They are positive and negative in the northern and
PN gt southern hemispheres, with maximum and minimun value at
pS0 kq o (31)  the north and south poles, and vanishing at the equator. In
3 3 the limit of £, — 1, for which the spheroid becomes like a
1 27

needle with the foci at its ends, the charge densities become
p= l%//a Cos1,¢) fConhyhedndy infinite at both poles; — +1, on account of the vanishing
1Y of the scale factors in the denominator of Eq. (27), describ-
ing the point effects in the limiting geometry. The limits of
_]%f NoCo 4f¢o (32) f—0, & — occandf — 0, (g — oo with f§g — a and

_ 3 3 o féo — a, describe the transition of the respective prolate
According to Egs. (29)-(30) the proportionality constantsand oblate spheroids to spheres, with- cos 6. Notice also

are determined by the electric charges of the hemisphergfat the limit in which the oblate spheroid becomes a disk,
and the focal distances of the respective spheroids. On the — 0, its edge withy — 0 also has a vanishing factor in
other hand, the centers of positive and negative charge affe denominator of Eq. (28) for the surface charge density;
located at nevertheless, the latter is zero at the equator as discussed in

2 2 i i

sy = 2 fy = 2 fE (33) general in the.sec_ond s_enten(_:e o_f this paragraph. _

3 3 The electric dipole intensity field from the electrostatic

potential of Eq. (5) has the familiar form

according to Egs. (31) and (32), respectively. Notice fifgt
and f(, are the major and minor radius along the axis of ro-
tation for the respective spheroids. Both become the radius
of a sphere in the limits of — O and¢y — oo, (y — oo,
coinciding witha in Eq. (12).

27 cos ) — O sin 6)

r3

E(F) = ( (36)
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By taking its value at the surface of the sphere with a, The common factor in Eqgs. (37)-(39) is the one in the po-
the radial directior* as that of the vertical and the tangential lar angle or hyperbolidal coordinates, and the differences are
direction 6 as that of the horizontal, the inclination of the associated with the respective logarithmic derivatives of the

electric field is given by its tangent function: @1 functions in the respective spheroidal coordinates. The
 2cosh inclination is 90 at the poles and°at the equator; it is only
tant = snd 2cot 0 (37)  latitude dependent for the sphere, but for the spheroids it also

The counterparts for the prolate and oblate spheroids foldepends on their eccentricities.

low from Egs. (20) and (22), respectively: The grounded prolate and oblate spheroidal conductors

213 I Eoﬂ _ 525;1 !n an externa_l uniform_electric field studied in Ref. 12 also
tani = NI °—n (38) involve electric dipole fields and surface charges complemen-
ToFnge -1 tary to the ones involved in the present study. For the conduc-
tors the fields vanish in the interior, and are the superposition

5 T tan~l( + S of the uniform field and the respective fields of Egs. (20)
. CO + 132 an 0 (2+1 . . . .
tani = 5 — — (39) and(22) in the exterior. The superposed fields are perpendic-
=" Co (5 — tan CO) -1 ular to the surface of the spheroids.
Appendix
The prolate(l < € < 00,—1 <1 < 1,0 < ¢ < 27) and oblate(0 < ¢ < c0,—1 < 7 < 1,0 < ¢ < 27) spheroidal
coordinates are defined via their transformation equations to cartesian coordlnates [13]
—n?)cosp,  y=f\(&—1)(1—n?)sing,z= f&n (A1)
(+ 1) (L=n?cosp,  y=fV(+1)(1—n?)sing,z= f(n. (A.2)
Their scale factors and unit vectors follow from
dF = idx + jdn + kdz = Ehed€ + fhydn + $hodp = ChedC + fhydn + $hydyp (A.3)

taking the respective forms

2 _ 2 2 _,
he = f 227_”1 hy = f 57’, he = f/(€—1) (112 (A.4)
2+ 2 + 2
he = f <<2+”1, _:2, @+ -7 (A.5)
5_(%cosso+3'sine0)§\/1—772+kn\/§2—1
o /€2 — 2 ’
7') iy . /271 i{\: /17 2 . R
n= (ZC05¢+]SIH¢); 3 = R T p=—isinp+jcosy (A.6)
Ver =1
éi(%cosgaJrjsingo)C\/lan+I§:77\/C2+1
VE+ 12 ’
0 AL 5 ~ 5 X X
j— —Ucosptjsnelny VARGV =0 o o4 Geose (A7)

P
V7
The respective Laplace operator and Laplace equation in the prolate and oblate spheroidal coordinates are constructed frot
Egs. (4),(5), and take the respective forms:

1 o 0 N 1 52 B
(e [ @03 3 01 ) e >a¢}¢“’”’@)—0 49
1 PR g - g 1 &
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6 E. LEY-KOO
Both equations admit factorizable solutions
o (&m0) =E(§) H (n)®(p) (A.10)

¢ (Cmyp) = Z(C) H (n) ®(p) (A.11)

each factor satisfying the respective ordinary differential equations

eyt M lzg-ia+1z (A12)
dﬁg_ d§_£2_1“£— (¢ .
2
[dcf? (1—772)(27—1mn2}H(n)=—l(l+1)H(n) (A.13)
Z:I;——mz@ (A.14)
{ (2+1) o 4 __m ]Z(C)—Z(H—I)Z((j) (A.15)
AR ey RAC -

Herem? andi(l + 1) are the separation constants with the restrictions= 0, 1,2, 3, ...due to the periodicity of the
o coordinate, and = 0,1, 2, 3, ...in order to ensure good behavior of the regular solutions at the hyperboloidal coordinate
regular singular pointg = +1.

The solutions to the eigenvalue Eq. (A.14) are the familiar Fourier basis with the Euler connection:

e"™P=cos mp + i sin mep (A.16)

The solutions to Eq. (A.13) are the associated Legendre polynaRialg) and associated Legendre functions of the
second kindQ;"(n), divergent at; = +1, which may be familiar to the reader in spherical coordinates via the identification
n = cosf. Notice that Eqs. (A.13) and (A.12) have the same form, except for the domains of their respective variables,

Eq. (A.1). Therefore, the most general solution to the Laplace Eq. (A.8) is the linear combination of prolate spheroidal
harmonics:

%) l
(Eme) =) Z [A7"P™ (&) + B Q™ (O] [CI"P™ () + D" Q)™ (n)] [ cos mp + D, sin my) (A.18)
=0 m=0

Notice also that if in Eq. (A.15) we make the change of variabte i(, we obtain

d d m?
—[dz( z +1)dz - Z=1(1+1)Z (A19)

which is of the same form as Egs. (A.12) and (A.13). Correspondingly the potential function of Eq. (A.9) is the linear
combination of oblate spheroidal harmonics

(1, ¢) Z Z (AP (i) + B"Q™ (i) [C["P™ () + D" Q" ()] [E™ cosmep + F™ sinmyp] — (A.20)
1=0m=0

For the analysis of the problems in Secs. 2 and 3 thel, m = 0 spheroidal harmonics are needed, so we list their prolate
and oblate dependencies:

£+1

_ & _
Py(§) =¢, Ql(ﬁ)—21n§_1 1 (A.21)
Py (i¢) =ic, Q1(iC)=%ln§gti—1:C(g—tan_lg)—lfor(>l
Q1 (i) = ZC ilg 1=—Ctan'¢—1for¢ <1 (A.22)
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The last equations distinguish the intervdls> 1 and i) the opposite signs of the separation constants in the lat-
0 < ¢ < 1, in order to obtain the correct phase of the re- ter equations. The respective consequences follow:
spective fractions. The interested reader can work out the
details of going from the logarithmic forms to the form in iii) the equations in each independent coordinate admit

terms of the arc-tangent function &%, (i¢) for any value of two independent solutions, and

0 < ¢ < oo. The difference between the values@f(i¢)

for ( > 1 and({ < 1 is the linear term in. Its presence iv) the solutions in the respective coordinates are con-
guarantees thap, (i¢) vanishes in the limit of — oo. The nected via the analytical continuatien— iy.

continuity of the potential function af = 1, requires that

the solutions in the intervdl < ¢ < 1 be the surperposition The reader can identify the corresponding elements and
(r/2)¢ + Q1(i¢), which extends the validity of); (i¢) for ~ consequences in the spheroidal harmonic functions. In fact,
¢ > 1to the interval under discussion. while Egs. (A.13) and (A.14) are common for both types

In order to illustrate and appreciate the Euler connectiorof spheroidal coordinates; in the prolate case Eq. (A.12) is
in the context of harmonic functions, we may consider the sothe same as Eqg. (A.13) but in different real domains, and
lutions to the Laplace equation in two dimensions and cartein the oblate case analytical continuation of either of those
sian coordinates: equations, from the real to the imaginary domé&jn leads
o e ke iky iky to Eq. (A.15). The Euler connection within Eq. (A.20) in
® (z,y) = (Ae™ + Be™™) (Ce™ + De™ ™) the oblate spheroidal coordinates is similar to that within the

=[(A+ B) coskz + (A — B)sinh ka] cartesian coordinates in Eq. (A.23). The Euler connection
between the prolate and oblate spheroidal coordinates is in
x [(C+ D)cosky +i(C —D)sinky] (A23)  operation when going between Egs. (A.12) and (A.19). The
. . . explicit forms of the connection fdr= 1, m = 0 are exhib-
tionT;r?mportant mathematical elements behind the connec: by Egs. (A.21)-(A.22), in which the logarithmic versus
' the (tan~!¢ behaviors of the respectiv@; functions is the
i) the second order of the Laplace equation and of the oranalog of the real versus imaginary exponential behaviours
dinary differential equations in which it separates, andin Eq. (A.23).
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