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The magnitude of the angular momentud?) in quantum mechanics is greater than expected from a classical model. We explain this
deviation in terms of quantum fluctuations. A standard quantum mechanical calculation gives the correct interpretation of the components
of the angular momentum in the vector model in terms of projections and fluctuations. We show that the addition of angular momentum in
guantum mechanics gives results consistent with the classical intuition in this vector model.
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La magnitud del momento angulaf¥) en meénica céantica es mayor que lo esperado en un modeisich. Explicamos esta diferencia

en erminos de las fluctuacionesamticas. Un alculo eshndar de meinica ciantica da la interpreta@n correcta a las componentes del
momento angular en el modelo vectorial @ntinos de proyecciones y fluctuaciones. Mostramos que la suma de momento angular en
med@nica cintica da resultados consistentes con la inbniciasica en este modelo vectorial.

Descriptores:Momento angular; mé&mica c@ntica; modelo vectorial.

PACS: 03.65.Sq; 03.65.-w; 01.40.gb

1. Introduction sincem is an integer, but not with Eq. (1a). For example,

if we have one unit of angular momentum & 1), then
The operator of angular momentum in quantum mechanicg2) — 952, that is, the magnitude of the angular momentum
is always a confusing topic for new students. The quantunjs /2 rather than 1 (from now on we shall express angular
description of angular momentum involves differential oper-momentum in units of)). Only thez projection of the an-
ators or new algebra rules that seem to be disconnected frogmar momentum comes in units bfand not the magnitude.
the classical intuition. For small values of angular momen-How can we reconcile these two expressions? There is a nice
tum one needs a quantum description because the quantufgrivation that explains the expression {6t by averaging
fluctuations are as large as the angular momentum itself. lghe value of/2 [2-4]. There are also ways to give an heuris-
this regime, the simple classical models generally do not givgic derivation of the properties of angular momentum [5]. We

the right result. In this paper | describe the use of fluctuawould like to gain some intuition as to where the extra 1 in
tions in the angular momentum components to produce a vegq. (1a) comes from.

tor model compatible with the quantum mechanical result. | The vector model is often introduced to give a classical
show that the addition of angular momenta from a standard

guantum mechanical calculation is consistent with the classﬁnalogy to quantum angular momentum [6]. To describe the

cal intuition using the vector model. The paper is organizedﬁJlngular momentum classically by a vector, we must specify

as follows: Section 2 shows the problems encountered witr'1ts threg componenl;gx, Jy and J... The magnitude of the.
ector is obtained from the components. The problem with

the vector model, Sec. 3 works out the details for a spin 1/ . g ot :
hat scheme in qguantum mechanics is that it is impossible

particle, Sec. 4 explains the addition of angular momenta fO{? measure the three components of the angular momentum

two spin 1/2 particles, Sec. 5 describes the general case Of. o
o . . ith absolute precision. If one measurgsand.J, exactly,
addition of angular momenta and | give some conclusions o ) .
en the uncertainty i, grows, that is, there is an uncer-

the end. tainty relation for the components of the angular momentum
analogous to the uncertainty relation between position and
2. Vector model of angular momentum momentum.
: . The natural choice for the components of an-
The presentation of angular momentu_m in quz_intum meCharb'uIar momentum in the vector model would be
ics textbooks demonstrates the following relations: [1] T=({1.), (J,),(J.)). We shall show that this choice

9 . 9 (choice A) gives an incorrect value fof72. A better
(S5 =3 +1)n (12) choice (choice B) for the angular momentum vector is
(J.) = mh, by  J=((J2)2,(J2)%,(J2)%). With this choice, the magnitude
square of the angular momentum vector gives the correct
with —j < m < j. Itis usually said that the angular mo- value: 7° = (J2) + (J;7) + (JZ). In the following section,
mentum comes in units @ This is consistent with Eq. (1b), we shall give a classical interpretation of the components of
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the angular momentum vector in terms of fluctiations, and  The expression foy? is

we shall use this interpretation to explain the origin of the ) ) ) ) )
extra 1in Eq. (1a). J2=Jg+ Jy + I = (Se1 + Si2)

+ (Sy1 + Sy2)? + (S21 + S22)%, (5)

3. Spin1/2 case , ,
where the subscripts 1 and 2 refer to particles 1 and 2 re-

The key point for explaining Eqg. (1a) lies in the fluctuations. Spectively. There is no question as to how to calculate the
Take the case of a state with spin 1/2,# s = 1/2) and  expectation values in quantum mechanics, but if we think in
ms = 1/2. The values of(S,), (S,) and (S.) are 0, 0 terms of the vector model we are in trouble since we have to
and 1/2 respectively. Choice A for the vector model givesadd two vectors that are a mixture of projections and fluctu-
S = (0,0,1/2) and the magnitude square of this vector isations. We show the correct recipe for adding these vectors
S? = 1/4, which differs from the resultS?) = 3/4 ob-  from a quantum mechanical calculation and show that it is
tained from Eq. (1a). Choice B gives the correct value forconsistent with the classical intuition.

S? since it was constructed that way. What is the meaning Take 7. first. The sum is again simplified since we use
of each component3, = (52)z = ((5.)2)z = (S.),and an eigenstate of the operator. We have

this component reduces to therojection of the operator S. oy 1

For S, we cannot use the same trick since we are not using Tz = (((S=1 + 522)7))2 = (Sa1) + (Sz2),

an eigenstate of,.. Still, we can relate that component to the
fluctuations. The fluctuations of an operatérin quantum
mechanics are given by [1]

that is, 7, is just the direct sum of the individual projections.
Thex component gives

To = ({(Se1 + Su2)®)% = ((S%) +2(Sz1S02) + (S2,))*
= (AS? + AS%)%. (6)

AA% = (A%) — (A)2. )

For the present state and the operatpthe result is
The two contributions add up in quadrature. This is to be
AS2 = (53). (3)  expected since the component for each spin in the vector
model corresponds to fluctuations (or noise), and the proper

_/q2\i _ 2y4 _ ; ;
ThenS, = (5;)2 = (AS;)? = AS, and this componentis 5y 5 add uncorrelated noise is in quadrature. For a classical
equal to the fluctuations in theaxis of the operata$. They variablew = u + v, whereu andv are fluctuating variables,
component gives the same result. The meaning of the VeCtQha noise inw is given by [7]

components in choice B is th&t, andS, are fluctuations and
S. is the projection in the corresponding axis. The quantum 02 =02+ 0% 4202, (7)
mechanical calculation of the fluctuations gives

) ) The guantum mechanical expression for the fluctuations of

,> — (4) J. = Sz1 + S0 for the present state is

AS§:<%‘S§ 2/~

47
so thatAS, = 1/2, and similarlyAS, = 1/2. The vector is
S = (1/2,1/2,1/2) and the magnitude square of the vectorhere the similarity between the last two expressions is evi-

o\ 2) <
is §? = 3/4, which is the correct value. The value 8 gent The state we are considering has the two spins aligned.

: . e . . : \ _ S alig
n ch_0|ce A '523 = 1/4. Instead In chope. BS. andS,  gince the two spins are independent, we expect their noise to
contribute taS* through the fluctuations, giving the value of g yncorrelated. The calculation of the correlation term [last

s(s+1)=3/4. term in Eq. (8)] gives

AJ7 = (S31) + (SZs) + 2(Sa15a2), ®)

4. Addition of angular momenta <% %‘ S218z2 % %> =0, 9)

We construct any value of angular momentum by adding sevand the sum for7, reduces to Eq. (6).

eral spin 1/2 particles. We show how the vector model works We can understand the addition of angular momentum in
for two spin 1/2 particles. The sum of two spin 1/2 particlesthe vector model: the components that are projections add
gives a total angular momentum ¢f= 1 or j = 0. Take up directly, whereas the components that are fluctuations add
first the case of the state with= 1 andm = 1. The state up as noise. The noise can have different degrees of correla-
is represented in quantum mechanicgbi2, 1/2) where the  tion as calculated by the last term in Eq. [8]. The noise for the
numbers represent theprojection of the spin of particles 1 present state happens to be uncorrelated [Eq. (9]. The vectors
and 2 respectively. The objective is to calculate the value ofor the individual spins aré&; = S» = (1/2,1/2,1/2), and

(J?), with J = S; + Sy, the sum of the spin contributions. their sum gives7 = (1/v/2,1/+/2,1), where we have added
The quantum mechanical result from Eq. (la).#8) = 2,  thez andy components in quadrature and theomponents
and we want to explain this in terms of the vector model.  directly. The magnitude square of the vector gives = 2
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in accordance with Eq. (1a). The result should be contrasteB. General case
with a naive addition of the vecto& +S» = (1,1, 1), which
gives a magnitude square of 3. The case for the state witAny other value of angular momentum can be constructed

j = 1andm = —1 works the same way. using the same scheme. For example, to objair 3/2
The state withj = 1 andm = 0 is more interesting. The we add three spin 1/2 particles. Each particle contributes
state is the symmetric combination of the spins, some amount to the value ¢f, and also to the fluctuations in
the perpendicular components. There is some degree of cor-
1 1 11 . . .
’—, ——> + ’ - =, 7> /\/5 relation between the spins, depending on itheralue cho-
2 2 2 sen. The correlation between spins can be calculated from

The vectors for the individual spins afe = (1/2,1/2,1/2)  the crossed term in Eq. (8). The correlation term between
andS, = (1/2,1/2,—1/2). We take the negative value of spinsi andk in the z component for the state with angular
the square root i%,, since thez component of the two spins momentumy and projectionn is

point in opposite directions. We choosg, (S2.) positive

(negative), but the opposite is equally correct. In the direct (jym| SziSzk |4, m). (12)
sum of thez components$; ., andS,, cancel each other giv-

ing 0. The correlation term in the component for this state It is not trivial to predict the result of this calculation except

gives for the maximum and minimum projections. All the spins
1 11 11 are uncorrelated ifn = j orm = —j. For any other pro-
— <<, ——‘ + < - =, = D Sz15z2 jection, there will be some intermediate degree of correlation
V2 \\2" 2 22 between spins that can be calculated from Eq. (12). For the
1 1 11 1 1 maximum projection, the (andy) components of all the in-
x (‘2’ _§> ’ Ty 2>) V2 -y (10) dividual spins add up in quadrature to give
and the calculation for the fluctuations from Eq. (8) gives 5 5 5
AJ? = AJ; = 1. The sum vector ig/ = (1,1,0), which Ta = \/ASM + A5+ + A5
gives the correct result for the magnitude squéfe= 2. The - :
noise calculation fof7,, andJ, tells us that we have perfectly = V2i(1/4) = Vj/2. (13)

correlated noise, so instead of adding the two contributions in ] ) )
quadrature, we add them directly (each one equal to 1/2 givIhe vector sum is7 = (1/j/2,/j/2, j) with a magnitude
ing a total of 1). Itis not surprising that the noise behaves in $AUare7* = j/2+j/2+ j* = j(j + 1), where the 1 comes
correlated manner, since we use the symmetric combinatiofiom the perpendicular components.
of the spins.

Finally we have the case with = 0 andm = 0. .
The state is the anti-symmetric combination of the spins,6' Conclusions

and we expect the noise to be anti-correlated. The vector&v lain the 1 in th Gfi 1) i fth
for the indivicual spins are stils; = (1/2,1/2,1/2) and e explain the 1 in the expressigy + 1) in terms of the

S» = (1/2,1/2,—1/2). The correlation term in the com- guantum fluctuations of the andy components of the an-
ponent for this state is now gular momentum. We include the fluctuations to describe the

addition of angular momenta in the vector model. The vector

1 (<1 _}| _ < 1 1> .5 components can be projections or fluctuations, and they have
V2 \\2" 2 2’2 e different formulas for addition. The correlations in the fluc-
1 1 11 1 1 tuations cannot be ignored.'Formula(la)'tells us 'Fhat angular
<’2, —§> — ’ — 3 2>) 7 =7 (12) _mom_entum does not come in units/afbut mst_ead it comes
in units of /1 + (1/4)A. This is not even a uniform unit, but

and the calculation for the fluctuations from Eq. (8) givesdepends on the value gfin a complicated way. This hap-
AJZ = AJ} = 0. The sum vector is7 = (0,0,0), pens because some of the components afid up directly
with a magnitude square ¢gf? = 0 as expected. The anti- and others in quadrature. Only in the limit of a largean
symmetric combination of the spins results in noise that isye recover the well-knowh unit of angular momentum. For
perfectly anti-correlated (due to the minus sign in the wavea small value ofj, the quantum noise cannot be ignored.
function). The noise subtracts directly/¢ — 1/2 = 0) and

not in quadrature for the andy components. It seems that

the noise in/,, J, and.J. is zero for the state. From the point Acknowledgments
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