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The magnitude of the angular momentum (J2) in quantum mechanics is greater than expected from a classical model. We explain this
deviation in terms of quantum fluctuations. A standard quantum mechanical calculation gives the correct interpretation of the components
of the angular momentum in the vector model in terms of projections and fluctuations. We show that the addition of angular momentum in
quantum mechanics gives results consistent with the classical intuition in this vector model.
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La magnitud del momento angular (J2) en mećanica cúantica es mayor que lo esperado en un modelo clásico. Explicamos esta diferencia
en t́erminos de las fluctuaciones cuánticas. Un ćalculo est́andar de mećanica cúantica da la interpretación correcta a las componentes del
momento angular en el modelo vectorial en términos de proyecciones y fluctuaciones. Mostramos que la suma de momento angular en
mećanica cúantica da resultados consistentes con la intuición cĺasica en este modelo vectorial.

Descriptores:Momento angular; mecánica cúantica; modelo vectorial.
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1. Introduction

The operator of angular momentum in quantum mechanics
is always a confusing topic for new students. The quantum
description of angular momentum involves differential oper-
ators or new algebra rules that seem to be disconnected from
the classical intuition. For small values of angular momen-
tum one needs a quantum description because the quantum
fluctuations are as large as the angular momentum itself. In
this regime, the simple classical models generally do not give
the right result. In this paper I describe the use of fluctua-
tions in the angular momentum components to produce a vec-
tor model compatible with the quantum mechanical result. I
show that the addition of angular momenta from a standard
quantum mechanical calculation is consistent with the classi-
cal intuition using the vector model. The paper is organized
as follows: Section 2 shows the problems encountered with
the vector model, Sec. 3 works out the details for a spin 1/2
particle, Sec. 4 explains the addition of angular momenta for
two spin 1/2 particles, Sec. 5 describes the general case of
addition of angular momenta and I give some conclusions at
the end.

2. Vector model of angular momentum

The presentation of angular momentum in quantum mechan-
ics textbooks demonstrates the following relations: [1]

〈J2〉 = j(j + 1)~2 (1a)

〈Jz〉 = m~, (1b)

with −j ≤ m ≤ j. It is usually said that the angular mo-
mentum comes in units of~. This is consistent with Eq. (1b),

sincem is an integer, but not with Eq. (1a). For example,
if we have one unit of angular momentum (j = 1), then
〈J2〉 = 2~2, that is, the magnitude of the angular momentum
is
√

2 rather than 1 (from now on we shall express angular
momentum in units of~). Only thez projection of the an-
gular momentum comes in units of~ and not the magnitude.
How can we reconcile these two expressions? There is a nice
derivation that explains the expression forJ2 by averaging
the value ofJ2

z [2–4]. There are also ways to give an heuris-
tic derivation of the properties of angular momentum [5]. We
would like to gain some intuition as to where the extra 1 in
Eq. (1a) comes from.

The vector model is often introduced to give a classical
analogy to quantum angular momentum [6]. To describe the
angular momentum classically by a vector, we must specify
its three componentsJx, Jy andJz. The magnitude of the
vector is obtained from the components. The problem with
that scheme in quantum mechanics is that it is impossible
to measure the three components of the angular momentum
with absolute precision. If one measuresJz andJy exactly,
then the uncertainty inJx grows, that is, there is an uncer-
tainty relation for the components of the angular momentum
analogous to the uncertainty relation between position and
momentum.

The natural choice for the components of an-
gular momentum in the vector model would be
J=(〈Jx〉, 〈Jy〉, 〈Jz〉). We shall show that this choice
(choice A) gives an incorrect value forJ 2. A better
choice (choice B) for the angular momentum vector is
J=(〈J2

x〉
1
2 , 〈J2

y 〉
1
2 , 〈J2

z 〉
1
2 ). With this choice, the magnitude

square of the angular momentum vector gives the correct
value:J 2 = 〈J2

x〉 + 〈J2
y 〉 + 〈J2

z 〉. In the following section,
we shall give a classical interpretation of the components of
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the angular momentum vector in terms of fluctiations, and
we shall use this interpretation to explain the origin of the
extra 1 in Eq. (1a).

3. Spin 1/2 case

The key point for explaining Eq. (1a) lies in the fluctuations.
Take the case of a state with spin 1/2, (j = s = 1/2) and
ms = 1/2. The values of〈Sx〉, 〈Sy〉 and 〈Sz〉 are 0, 0
and 1/2 respectively. Choice A for the vector model gives
S = (0, 0, 1/2) and the magnitude square of this vector is
S2 = 1/4, which differs from the result〈S2〉 = 3/4 ob-
tained from Eq. (1a). Choice B gives the correct value for
S2 since it was constructed that way. What is the meaning
of each component?Sz = 〈S2

z 〉
1
2 = (〈Sz〉2) 1

2 = 〈Sz〉, and
this component reduces to thez projection of the operator S.
For Sx we cannot use the same trick since we are not using
an eigenstate ofSx. Still, we can relate that component to the
fluctuations. The fluctuations of an operatorA in quantum
mechanics are given by [1]

∆A2 = 〈A2〉 − 〈A〉2. (2)

For the present state and the operatorSx the result is

∆S2
x = 〈S2

x〉. (3)

ThenSx = 〈S2
x〉

1
2 = (∆S2

x)
1
2 = ∆Sx and this component is

equal to the fluctuations in thex axis of the operatorS. They
component gives the same result. The meaning of the vector
components in choice B is thatSx andSy are fluctuations and
Sz is the projection in the corresponding axis. The quantum
mechanical calculation of the fluctuations gives

∆S2
x =

〈1
2

∣∣∣ S2
x

∣∣∣1
2

〉
=

1
4
, (4)

so that∆Sx = 1/2, and similarly∆Sy = 1/2. The vector is
S = (1/2, 1/2, 1/2) and the magnitude square of the vector
is S2 = 3/4, which is the correct value. The value ofS2

in choice A iss2 = 1/4. Instead in choice B,Sx andSy

contribute toS2 through the fluctuations, giving the value of
s(s + 1) = 3/4.

4. Addition of angular momenta

We construct any value of angular momentum by adding sev-
eral spin 1/2 particles. We show how the vector model works
for two spin 1/2 particles. The sum of two spin 1/2 particles
gives a total angular momentum ofj = 1 or j = 0. Take
first the case of the state withj = 1 andm = 1. The state
is represented in quantum mechanics by|1/2, 1/2〉 where the
numbers represent thez projection of the spin of particles 1
and 2 respectively. The objective is to calculate the value of
〈J2〉, with J = S1 + S2, the sum of the spin contributions.
The quantum mechanical result from Eq. (1a) is〈J2〉 = 2,
and we want to explain this in terms of the vector model.

The expression forJ2 is

J2 = J2
x + J2

y + J2
z = (Sx1 + Sx2)2

+ (Sy1 + Sy2)2 + (Sz1 + Sz2)2, (5)

where the subscripts 1 and 2 refer to particles 1 and 2 re-
spectively. There is no question as to how to calculate the
expectation values in quantum mechanics, but if we think in
terms of the vector model we are in trouble since we have to
add two vectors that are a mixture of projections and fluctu-
ations. We show the correct recipe for adding these vectors
from a quantum mechanical calculation and show that it is
consistent with the classical intuition.

TakeJz first. The sum is again simplified since we use
an eigenstate of the operator. We have

Jz = (〈(Sz1 + Sz2)2〉) 1
2 = 〈Sz1〉+ 〈Sz2〉,

that is,Jz is just the direct sum of the individual projections.
Thex component gives

Jx = (〈(Sx1 + Sx2)2〉) 1
2 = (〈S2

x1〉+ 2〈Sx1Sx2〉+ 〈S2
x2〉)

1
2

= (∆S2
x1 + ∆S2

x2)
1
2 . (6)

The two contributions add up in quadrature. This is to be
expected since thex component for each spin in the vector
model corresponds to fluctuations (or noise), and the proper
way to add uncorrelated noise is in quadrature. For a classical
variablew = u + v, whereu andv are fluctuating variables,
the noise inw is given by [7]

σ2
w = σ2

u + σ2
v + 2σ2

uv. (7)

The quantum mechanical expression for the fluctuations of
Jx = Sx1 + Sx2 for the present state is

∆J2
x = 〈S2

x1〉+ 〈S2
x2〉+ 2〈Sx1Sx2〉, (8)

where the similarity between the last two expressions is evi-
dent. The state we are considering has the two spins aligned.
Since the two spins are independent, we expect their noise to
be uncorrelated. The calculation of the correlation term [last
term in Eq. (8)] gives

〈1
2
,
1
2

∣∣∣ Sx1Sx2

∣∣∣1
2
,
1
2

〉
= 0, (9)

and the sum forJx reduces to Eq. (6).
We can understand the addition of angular momentum in

the vector model: the components that are projections add
up directly, whereas the components that are fluctuations add
up as noise. The noise can have different degrees of correla-
tion as calculated by the last term in Eq. [8]. The noise for the
present state happens to be uncorrelated [Eq. (9]. The vectors
for the individual spins areS1 = S2 = (1/2, 1/2, 1/2), and
their sum givesJ = (1/

√
2, 1/

√
2, 1), where we have added

thex andy components in quadrature and thez components
directly. The magnitude square of the vector givesJ 2 = 2
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in accordance with Eq. (1a). The result should be contrasted
with a naive addition of the vectorsS1+S2 = (1, 1, 1), which
gives a magnitude square of 3. The case for the state with
j = 1 andm = −1 works the same way.

The state withj = 1 andm = 0 is more interesting. The
state is the symmetric combination of the spins,

(∣∣∣1
2
,−1

2

〉
+

∣∣∣− 1
2
,
1
2

〉) /√
2.

The vectors for the individual spins areS1 = (1/2, 1/2, 1/2)
andS2 = (1/2, 1/2,−1/2). We take the negative value of
the square root inS2z since thez component of the two spins
point in opposite directions. We chooseS1z (S2z) positive
(negative), but the opposite is equally correct. In the direct
sum of thez components,S1z andS2z cancel each other giv-
ing 0. The correlation term in thex component for this state
gives

1√
2

(〈1
2
,−1

2

∣∣∣ +
〈
− 1

2
,
1
2

∣∣∣
)

Sx1Sx2

×
(∣∣∣1

2
,−1

2

〉
+

∣∣∣− 1
2
,
1
2

〉)
1√
2

=
1
4
, (10)

and the calculation for the fluctuations from Eq. (8) gives
∆J2

x = ∆J2
y = 1. The sum vector isJ = (1, 1, 0), which

gives the correct result for the magnitude squareJ 2 = 2. The
noise calculation forJx andJy tells us that we have perfectly
correlated noise, so instead of adding the two contributions in
quadrature, we add them directly (each one equal to 1/2 giv-
ing a total of 1). It is not surprising that the noise behaves in a
correlated manner, since we use the symmetric combination
of the spins.

Finally we have the case withj = 0 and m = 0.
The state is the anti-symmetric combination of the spins,
and we expect the noise to be anti-correlated. The vectors
for the indivicual spins are stillS1 = (1/2, 1/2, 1/2) and
S2 = (1/2, 1/2,−1/2). The correlation term in thex com-
ponent for this state is now

1√
2

(〈1
2
,−1

2
| −

〈
− 1

2
,
1
2
|
)

Sx1Sx2

×
(∣∣∣1

2
,−1

2

〉
−

∣∣∣− 1
2
,
1
2

〉)
1√
2

= −1
4
, (11)

and the calculation for the fluctuations from Eq. (8) gives
∆J2

x = ∆J2
y = 0. The sum vector isJ = (0, 0, 0),

with a magnitude square ofJ 2 = 0 as expected. The anti-
symmetric combination of the spins results in noise that is
perfectly anti-correlated (due to the minus sign in the wave
function). The noise subtracts directly (1/2 − 1/2 = 0) and
not in quadrature for thex andy components. It seems that
the noise inJx, Jy andJz is zero for the state. From the point
of view of the sum, the individual perpendicular fluctuations
are actually not zero, it is because of the correlations that the
fluctuations ofJ become zero.

5. General case

Any other value of angular momentum can be constructed
using the same scheme. For example, to obtainj = 3/2
we add three spin 1/2 particles. Each particle contributes
some amount to the value ofJz and also to the fluctuations in
the perpendicular components. There is some degree of cor-
relation between the spins, depending on them value cho-
sen. The correlation between spins can be calculated from
the crossed term in Eq. (8). The correlation term between
spinsi andk in the x component for the state with angular
momentumj and projectionm is

〈j, m| SxiSxk |j, m〉. (12)

It is not trivial to predict the result of this calculation except
for the maximum and minimum projections. All the spins
are uncorrelated ifm = j or m = −j. For any other pro-
jection, there will be some intermediate degree of correlation
between spins that can be calculated from Eq. (12). For the
maximum projection, thex (andy) components of all the in-
dividual spins add up in quadrature to give

Jx =
√

∆S2
x1 + ∆S2

x2 + ... + ∆S2
x(2j)

=
√

2j(1/4) =
√

j/2. (13)

The vector sum isJ = (
√

j/2,
√

j/2, j) with a magnitude
squareJ 2 = j/2 + j/2 + j2 = j(j + 1), where the 1 comes
from the perpendicular components.

6. Conclusions

We explain the 1 in the expressionj(j + 1) in terms of the
quantum fluctuations of thex andy components of the an-
gular momentum. We include the fluctuations to describe the
addition of angular momenta in the vector model. The vector
components can be projections or fluctuations, and they have
different formulas for addition. The correlations in the fluc-
tuations cannot be ignored. Formula (1a) tells us that angular
momentum does not come in units of~, but instead it comes
in units of

√
1 + (1/j)~. This is not even a uniform unit, but

depends on the value ofj in a complicated way. This hap-
pens because some of the components ofJ add up directly
and others in quadrature. Only in the limit of a largej can
we recover the well-known~ unit of angular momentum. For
a small value ofj, the quantum noise cannot be ignored.
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