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Motion of a falling drop with accretion using canonical methods
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The motion of a falling drop whose mass grows by accretion is studied with canonical methods. This approach requires the introduction of
S-equivalent non natural Lagrangians. That is, we have to consider Lagrangians that give rise to equations of motion that are not exactly the
same as the equations of interest, but anyway they share the same solutions. We study three examples of laws of accretion: mass growing
linearly with time, mass growing linearly with the surface of the drop, and mass growing proportionally to the product of surface and velocity

of the drop. In all cases we recover the results obtained by means of the Newtonian methods, which we expose in table I.

Keywords:Variable mass systems; accretion; S-equivalent Lagrangians; Hamilton-Jacobi formalism.

Se estudia, medianteétodos caanicos, la caida de una gota cuya masa crece por acediste enfoque requiere la introdumtide
Lagrangianos S-equivalentes, no naturales. Esto es, tenemos que considerar Lagrangianos que conducen a ecuaciones de movimiento que no
son exactamente las mismas que las de ie$eipero que comparten con ellas las mismas soluciones. Estudiamos tres ejemplos de leyes de
acrecon: incremento lineal de la masa con el tiempo, incremento de la masa proporcional a la superficie de la gota, e incremento proporcional

al producto de la superficie de la gota por la velocidad de la misma. En todos los casos recobramos los resultados obtenidos mediante los
métodos Newtonianos, los cuales presentamos en la tabla I.

Descriptores:Sistemas de masa variable; aceegiLagrangianos S-equivalentes; Formalismo de Hamilton-Jacobi.

PACS: 45.20. Jj; 02.30.Jr

1. Introduction wherep is the mass density, is the velocity of a “particle” of

] ) o ) the mediump is the body force per unit mass affidis the
Since the 1960's there has been an increasing interest in claggess tensor, associated with the force that comes from the
sical mechanics with the study of chaos in non linear systemsyess at the surface that surrounds the system. In our case
and also with the study of non-autonomous systems, whickyis term would result in the buoyancy force which we dis-
include dissipative and open systems (see for example Refs-c]ard, assuming a small drop. With the aid of the continuity

to 11). In particular there has recently been a great interegyyation this equation can be transformed into the Eulerian
in applying canonical methods to dissipative systems, whichy patial form

requires the introduction of S-equivalent Lagrangians. In this

work we apply this technique to an open, dissipative and non- 8 (pv)

autonomous system. o
As we have argued elsewhere [12,13] (see also Refs. 13

to 16), the equation of motion appropriate for treating vari-

able mass systems is Cauchy’s equation of motion for con-

tinuous media:

=pb—V.pvv. (2)
A volume integration gives, as a result,

op R
p%tf :pb+V~?, ) ¥ —Fb—fpvv-ndS, 3)
S
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TABLE I. In these expressions;,, 7., h are the initial mass, initial radius of the drop and initial height, respectivelyhand h + r, /8.
The last solution giveg implicitly, and after an inversion of the series representation gji&sa function of t.

Accretion Law  Body Force Equation of Motion Solution
dm dv  (b+k)v még m?yg mé“ mlyg
— =0t kv —mg — =—g y(t) =h— -
dt dt m 202(=A+1)  262(A+1) b2(—A2+1)
dm 5 dv 1 2 g 9 To 2
T 1
2 = -
( 8 ) (8Y )2
t (ho—y)" | — 1
dm ter? dv 350> 79 Ty
= A - dat ro+Bh—y@)

()]

where nowp is the momentumF,, is the body force, which
in our case is gravity and friction, an#l is the momentum
flux within the volume given by the first integral in Eq. (3).
Because the assumed spherical symmetry of the drppnd
the surface force are zero, our equation of motion is

physics. This is the technique that will allow us to use the
canonical treatment of a falling drop with accretion. We also
show an example where the Poisson method can be applied to
an open system. The few examples that illustrate the Poisson
method are the harmonic oscillator and the patrticle in free

fall.
— =F, =mg — kv. This work continues the treatment by canonical methods

4)
ot of open systems, such as the rocket and falling rope, given in
This equation of motion, for the three specific laws of ac-previous work [12,29-33].

cretion, gives the results summarized in Table I. The deriva-
tion of these results can be found in Ref. 13. > A i fi o ti
We hope that the present work will be usefull for ad- <* ccretion proportional to ume

vanced undergraduate and beginning graduate students fg, development of the canonical approach requires a La-
well as for teachers of this level. The interested reader Wi”grangian from which the equation of motion of our dynamical
find in these examples a useful illustration of the application§ys,[em can be derived. Then a Hamiltonian can be obtained
of canonical methods to open systems. In this way, he or Shg,  trom it the Hamilton-Jacobi equation can be formed. In

goes beyond the usual problems: the harmonic oscillator, anghq ¢se of a falling drop with accretion proportional to time,
the Kepler problem. These problems are rather simple SiNCg g easy to verify that the Lagrangian

the Hamiltonians are time-independent and can be solved
with the generating functio$ (p, Q=FE, t)=W (p, E)—Et.

Jp

On the other hand, since the end of the 19th, century we L= lmk (t)v® — m t)gy, (5)
have known from Helmholtz [17-19] that not every sec- 2

ond order differential equation can be derived from a vari-leads immediately to the equation

ational principle. One example of this situation is the equa-

. . . . e A\ dv Ab

tion of motion of a harmonic oscillator with friction linear m” () (d + ——v —l—g) =0, (6)
in the velocity. However, we can deal with some of these t - m(t)

cases by introducing non-natural (not of the fakm7T—V’),  whose solutions are the same as those of Eq. (10)AFeil,
S-equivalent Lagrangians [17-20]. These Lagrangians leathis Lagrangian is an instantaneous natural Lagrangian.
to equations of motion that may differ from the equation  From this Lagrangian we obtain the Hamiltonian,

of interest, but somehow both equations have the same so- 9
lutions and permit the canonical treatment of systems with H=P_ (7)
friction and other open systems [21-33]. The Lagrangian can 2m?

be obtained by solving the inverse problem of the calculusvith which we can follow the Hamilton-Jacobi method and
of variations [17-19] or by guessing, as is usually done indescribe the motion as a flux in phase space.

+m* (t) gy,
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50 G. HERNANDEZ AND G. DEL VALLE, I. CAMPQOS, AND J.L.JIMENEZ

Since the Hamiltonian is linear ip, it is convenientto and
use a generating function of tyge that gives

7 92 m)\+1
= B
y=-25 (®) 3 b
- : 0 2
Op X {_b(l+/\) + mot + §t } . (18)

Then the corresponding Hamilton-Jacobi equation is o )
The substitution of Egs. (16) to (18) into Eq. (10) leads

P2 A OF; OFs\ 0 9 to the result we are looking for:
"W\ ) e )70 O
—A1
Thanks to the use of3, the H-J equation is linear, and F5(p,Q,t) = A mT N e
s 1o hy - . (P& % (—r+1))7
therefore is easier to solve even if it depends on time. The (=A+1)
standard method for solving this type of equation is the gmot 1 gt
method of characteristics, but we shall solve it first by some + THARD)  2( A+ 1) p
guessing, as we did in a previous work [12,30-33].
92 m)\+1
2.1. Guessing a solution TR (14N B+ N
2
First we guess thall; may be of the form MOt — b2
b(1+A) 2
F3(p, Q) =7 (1) p’+72 () p+ £ (1) +0(Q, p, ). (10) gmA 1
+ exp[-Q (P + M) . (19)
We choosey; (t) in such a way that the first term on the

left side of Eq. (9) is eliminated. This first term of Eq. (10)  Before proceeding to fing(t) from the generating func-

will also produce a term linear ip after deriving with re- oy £, it is convenient to rewrite the solution found by the
spect top, which we try to cancel by choosing an appropriate Newtonian method in terms ofi and-..

v2 (t). Then there will be an extra function of time that will First we note that
be eliminated with an adequate choice df). What remains
is a simple equation fap(Q, p, t). (0) = _ 1 m0—>\+1 0)
Thus, if the following conditions are satisfied, n o 20 (=A+1)’
1 dyi and
o tar = ah
ds 72 (0) =720 = 0. (21)
_2971m/\ + — = 07 (12)
dt Itis also useful to define
dg
A
—grem” + —= =0, (13) g m !
dt t) == 22
then the H-J equation becomes
so that
99\ 99
o —migt =0, (14) mayt!
ot ap =g =20 2
1(0) = 1o b 1) (23)
which can be solved by a separation of variables, thus obtain- ) _ )
ing Using these expressions, we can write
mAt y(t)=h—2n(0)7 (1)
0= ewele (p i bg(A + 1)) ' 4o (“A+1)
+21(0) 71 (0) + 72 (t) ~5—=+~ (24)

Here(Q is the constant of separation, and the solutions to (A+1)

Egs. (11) to (13) lead to the results This result will simplify the calculations that follow.

1 At Now, from Egs. (8) and (10), we find that
"=y (10) OF
(=A+1) , y(t):*af;:*% (t)p
L gmot _ 1 gt
0= 2y @ O+ Qen[-Qprn)  (29)
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which after taking into account the initial conditions,
y(0)=h, p(0)=0, results in

h = Q exp[—Qmno]. (26)

Besides, H-J theory says that

OF3

P=__"2 27
50 (27)
Thus we have that
P=(p+mn)exp[-Q(p+n)], (28)
and fort = 0 this expression must be

P = ngexp[—Qno] - (29)
It seems very complicated to gett) from Eq. (25)

and (26), but we can proceed in the following way.
Since P and @ are constant in time, then from Eq. (28)
we conclude that

p+n = 6 = constant. (30)
But sincep(0) = 0, then
no =0, (31)
and so we have
p(t) = —n(t) + no. (32)
On the other hand, from Eq. (26) we have that
Q = hexp[Qno]- (33)
Then using Eq. (32) in (28), we find that
exp[—Q(p + 1)] = exp[—Qno], (34)
so that Eq. (25) can be written as
y(t) =h+2y(E)n(t) =27 () no —r2(t).  (39)
Also, it is not hard to show that
23 (0)0(8) =2 (0) = 200 + @)
so that Eq. (35) becomes
y(0) = h =20 () + 20 + 72 () 2D @7y

A+1) "

which after substitution ofy, v10,71 (¢), 72 (t), gives the
known result,

2
I mpg
v =h = T
m6\+1m—>\+1g (38)
R(-X2+1)

22 (A + 1)

51
2.2. The method of characteristics

Now we shall solve the H-J equation by the method of charac-
teristics, which is the standard method for solving this type of
equation [34,35]. Besides, this may be useful since most ex-
amples in texts involve Hamiltonians not depending on time
and use the generating functiés.

The H-J Eq. (9) is of, type

= — R(x,y,2).

0z
—+Q %

P (z,y,z) o

(z,y,2) (39)

The solution to this equation is obtained from the associ-

ated Lagrange system of equations,
dv_dy _ d

P Q R’

The corresponding identifications between Eq. (9) and
Eqg. (39) are

(40)

r — p P=—-m'g

y — t Q=1 . (41)

z F3 R = ;ﬂfx

with which the system, Eq. (40), becomes
dp  dt  dF;s
g 1 (42)
2mA
From the first equality we find immediately that

p(t) = 7/m)\gdt+01

mAJrlg
- ) 4

Ot 1)b +Ch (43)

It must be emphasized that hetg, andC> below, are
constants of motion. So, they must be regarded as parame-
ters, rather than true constants [36].

The next equality can be written, using the identification
in Eq. (41), as

1 m)\Jrlg
C2mA (_ (A+1)b

2
+Cl> dt:dF3 (p7Q7t)7 (44)

which can be integrated immediately, giving as a result
m/\+3g2
A+1)>(A+3)b3
Cim?g  Cim !
A+1)p2  2(=A+1)b

F3 (p7Q,t) :_2

+Cy.  (45)

T3

The integration constant”; can be obtained from
Eq. (43); that is,

mA g
Ci=p+ -
( )b

A+1 (46)
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Now, according to the method of characteristics the solu
tion is a function such that

[(C1,C2) =0 (47)
We can choose
= Q0, (48)
thus obtaining
>\+1g
=0 (p+ 3 ) @9)

By substituting Egs. (46) and (49) in Eq. (45), we obtain
g2m)\+3

2N+ 1)2 (A +3) b3

FS(paQﬂf):*

A+1
+

2
(r+ Gs)
mf/\Jrl g
1)
A+ 1)b (50)

m-g
2(A+1)02 (A+1)b
)\ 2
C2(=A+1) ( (A b>
A+l
+Q <p + (m J > ,
which is the generating function we were looking for that per-

mits us to solve the dynamical problem according to the H-J

method.
Since
0K
then
m g
P__(p+(A+1)b>' (52)

Since P is a constant of motion, the solution satisfying
the initial conditionp(0) = 0 is obviously

A+1 A+1

. my myT g
PO=-555 e (3)
On the other hand, we have that
0F; m~AT! m2g
y=—>5-= Pt 2
dp b(=A+1) b2 (=2 +1)
ng
S22 (A+1) @ (54)

Substituting now the expression for already found,
Eg. (53), we obtain, after some simplifying,

m2g N m—)\+1m())\+l

22 (A + 1)

g
b2 (=22 +1)
Q is specified through the initial condition(0) = h, obtain-
ing

y(t)=— -Q. (55

o mgg
@=—ht Aty (56)

G. HERNANDEZ AND G. DEL VALLE, I. CAMPQOS, AND J.L.JIMENEZ

With this we find the solution to the dynamical problem,
that is,

m‘>‘+1m8‘+lg

b2 (=2 +1) "’

m2g
22 (A + 1)

myg
22 (—A+1)

y(t)=h— +
which is in accord with the solution previously found,
Eq. (38).

2.3. Solution with a generating function K

Since we are exploring the solution to open systems with
canonical methods, we now solve the problem using the more
familiar generating functior¥; (¢, P,t) = S, the action it-
self.

The H-J equation in this case is

(

In order to solve it, we follow the Charpitt
method [34,35], according to which we have to solve the
associated system

1
2mA

08

i (57)

2+ L

dp B dq _dy
of  oF ~ a5, or ~ _or
oy Pas at " 9as dp
dt ds
= a7 = - ﬁ » ﬁ (58)
0q Pap " Toq
together with the equation
dS = pdy + qdt, (59)
where
p2
f=5—5+m Agy +q =0, (60)
2m
and
oS
Then we obtain,
dp dq
m)\ 2
T (275)\4_1 - gymA1>
di{, S )
i -1 P
m? ‘Qm*@

From the equality between the first and fourth terms in
Eq. (62) we have that

(63)

Rev. Mex. is. E55 (1) (2009) 48-56
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from which it is immediately found that 3. Accretion proportional to the surface of the
mAg drop
p=C1 — m (64)

It is easy to show that the Lagrangian,
And from Eq. (60) we obtain

2 1 3 2 3
L=—- — 7
q=—-mgy — sz (65) 5 (ro +at)” v — (ro + at)” gz, (73)
This, after substitution g from Eq. (64), becomes leads immediately to the equation
1 mA g \?
D _ 3 (dv 3av
=TT g <Cl b(A+1)> - 69 (ro +at)’ (dt ot at) +g> =009

We now have the results necessary to find the generating
function S. Substituting the results, Eq. (64) and (66), into whose solutions are the same as those of Eq. (falta)
Eq. (59) we obtain

dv 3av
A+l —+——=0. (75)
g
d Pt) = ———)d dt ro + at
\ 1 mi g 2 The corresponding Hamiltonian is
- - — - . 7
| g (G- 3e) | @ P ;
H=—"F""- t , 76
This is an exact differential equation whose solution is 2 (ro + at)‘3 +(ro+at) gz (76)
A+1
S(q,P,t)=Py — bm)\igy which makes it possible to find the solution of the problem
(A+1) by the H-J method. The change
Png PQm—)\+1 m)\+292
T (A+1) 2b(=A+1) _/ e A+ 1% (68) m* = (ro + at)’ (77)

If we identify Cy with P, this is precisely the result from

. . . . akes the problem analogous to the case of accretion propor-
which we can proceed to find the solution to the dynammaG1 P 9 brop

onal to time, so we shall not discuss further it here.

problem.
From the theory, we have that
_9s _,  mMly 69y 4 Accretion proportional to the surface times
p=5-= : (69) ;
dy b(A+1) the velocity
SinceP is a constant of motion, then from the initial con-
dition p(0) = 0 we find that The appropriate Lagrangian and corresponding Hamiltonian
A1 are
P= bmfig. (70) ) )
A+1) L= 3 (ho —y)°v* + =9 (ho — )" (78)
On the other hand we also know that
oS m? Pm—M1 and
Q=2 =y+ gt~ N 6Y
opP 22(A+1) b(=A+1) ) ) )
p 7
Also from the initial conditiory(0) = h we obtain H = 5” -7 (ho —y)" (79)
0 —
7 mig Itis straightforward to show that this Lagrangian leads to
Q - h’ 2 ’ (72) .
202 (=A+1) the equation
which, substituted in Eq. (71) gives the known result, J 602
Eq. (38). (ho —1)° <” S L g) =0, (80)
2 2 AL, A4l dt (ho—y)
y(t) = h— mog B m<g myTm g'
202 (=A+1) 202(A+1) b2 (=24 1) whose solutions are the same as those of equation
As we can see, th&-equivalent Lagrangian and the )
Hamiltonian derived from it are adequate to solve this prob- v 3pv =g, (81)
lem by canonical methods. dt o+ B (h—y(t)
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where which in terms of the original variable is
T
ho=h+ —
’ S / y’ BNCY)
It is convenient to define = hg — y. Then the Hamilto- \/ )7
nian becomes )
_pr 1 4 (82)
0,6 7% this integral is not immediate but can be found in standard
This leads immediately to the Hamilton-Jacobi equation tables [36] and is given as
1 (0S\* 1 ., a8 s
— (=) == —= =0. 2 (o 7 2
226 (87;) 792 +6‘t 0 (83) _ (5) ho — )7 ﬁ -1
t 7 (ho —y)
g To

Since the time does not appear explicitly, then we pro-
pose, as usual,

313 T
X 2Fl 772727_<(h0_y)7 (ﬂ> _1>]
S(z,&E,t) =W (z,&) — &, (84) 7o
wheref is the value of the Hamiltonian as constant of mo- To obtain a more physical results we can proceed as follows.
tion. Then Eq. (82) becomes With a Taylor expansion aroung=h, we obtain
1 2 3
20(?) —?937:8. (85) t:_\/i(h_y)é_,_(}l?/)z(B)
i i g V29 To

From this we obtain 5
(h—y)”

(h—y)* (BY i
W\/Zzs\/ﬁ (©6) MVET <TO> +O(h—y)*. (93)
z 7 g’

Finally, inverting this series we find

h—)? = — g_g% (’8>3
W= \/>/dzz e 75. 87) (h=9) WAL

79z (3 >2 5 7
o - _ ZY erow, 94
It is important to note that we can write 323 <r0 (t) (94)

/dz .3 /z7+— /dz [ +E, (88)  Which after squaring giveg(1) as

y(t):h—gt2+g:<£)>t4+0(t6). (95)

7€ This time it is obvious that we get the free fall case as

Then

wherez, = r,/3 and so Eq. (84) can be expressed as

Proceeding in the usual way, we obtain, from 5. Poisson method for the solution of this case
__ oS 90
Q= aE’ G0 I the last case, the canonical treatment was possible using

a Hamiltonian not depending explicitly on time. Then we
can try the Poisson method and see if it is easier to find the
Q= \/7/ (91) solution, Eq. (95).
\J( ) + 75 According to the Poisson method [37], the path is given
by the expansion
Since€ is the value of the Hamiltonian and0)=0, then

2
H], H] =0

t:\/T/de/(Z))?) y(t):y0+t[y,H]Jt:0+%[[y, =

+§[[[y7H]7H]aH]t:O+”" (96)
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Using the Hamiltonian, Eq. (79) we obtain

Oy OH 6y8H) P
= [y, H] )10 = | 22 == — =2 — | Jt=0 = ——— |1=0 = 0, 97
1= [y, H]|i=0 (8y oy op y =0 (h()iy)ﬁJt 0 97)
Op1 OH Oy aH) 6p? 3p?
= (LR G + ~ g le—0 =g, 98
P2 <8y op ap Oy Jt 0 (ho—y)13 (ho—y)13 g Jt 0 g (98)
w2 OH ¢y OH ) 39p? 6pg 3p?
_ (P20 @20, + _ —0=0, 99
- <5y T S N T T T .
_ 2 21p2 . \B . \8
@4:<<p38H_<p38H> S 1sop+((ho_g>8 6g<h06y>)<f:o 2B AT
dy op  Op Jy (ho —y) +13 (ho — y) <Q(h0—y) +(h§%y)7)
1 6 3p?
- —5 (3| 9(ho—y)" + ———
(ho—y)20< ( (ho —y)"
3 2
(21 =20 =) (900 -0+ ) ) o =607 (2). (100)
(ho —y) ro

Substituting these results in Eq. (96) gives
gt gt (B 6
y=~h 5 + 1 o +0(t)”,

which is the solution already known.
This is another of the few examplg¢39] in which the

I
method. The canonical method requires the consideration of
Lagrangians more general than the usual natural Lagrangians,
those of the fornl, = T'—V. Thus we have given another ex-
amples of the use of the so-callSdequivalent Lagrangians,

method of Poisson leads to an approximate solution in amvhich make it possible to find the solution by canonical meth-
easier way that the Newtonian method. Of course this deods of systems with friction and systems of variable mass.
pends on having the appropriate Lagrangian and correspondve hope that these examples will illustrate the treatment of

ing Hamiltonian.

6. Conclusions

some open systems using these methods. After all, the canon-
ical treatment of any systems is a prerequisite to its relativis-
tic statistical mechanics or quantum mechanical formulation.

We have solved, by canonical methods, the problem of the

motion of a falling drop whose mass grows by accretion acAcknowledgments

cording to a specific law of accretion. We have considered

three specific laws of accretion, and have solved the probd.L. Jiménez gratefully acknowledges the hospitality of Fac-
lem finding the same solutions obtained by the Newtoniarultad de Ciencias, where part of this work was prepared dur-

ing his sabbatical period.
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