ENSENANZA REVISTA MEXICANA DE FiSICA E 55(1) 112-117 JUNIO 2009

Decay of a quantum discrete state resonantly coupled to a
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The irreversible exponential decay from a discrete state to the continuum, described by time-dependent perturbation theory, is a difficult task

in quantum mechanics learning, because of the complexity of the mathematical tools involved. An easy model which consists in analyzing
the decay from a discrete state to a quasi-continuum set of states is developed. The mathematics required to understand the model are easy,
allowing for a deep analysis of the model. The physical conditions required to describe the transition produced by a sinusoidal perturbation
by an exponential decay are easily deduced.
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La comprengin del decaimiento exponencial irreversible desde un estado discreto a un continuo de estados, descrito medigmnte la teor
de perturbaciones dependiente del tiempo, es una tafed déntro del aprendizaje de la téarciantica, debido a la complejidad de las
matenaticas utilizadas. En este trabajo se desarrolla un modelo sencillo, que consiste en analizar el decaimiento desde un estado discreto
a un conjunto cuasi-continuo de estados. Las matieas requeridas para comprender el modelo son sencillas, lo que permit&lisis an

profundo del modelo. Las condiciondsitas que se deben verificar para poder describir una trangicoducida por una perturbaai

sinusoidal mediante un decaimiento exponencial, se deducen de forma sencilla.

Descriptores:Decaimiento exponencial; tédarde perturbaciones dependiente del tiempo; efectoiZetantico.

PACS: 01.30.Rr; 03.65.Xp

1. Introduction continuum set of discrete states, their energies being:

) o . . AE AFE
Nowadays, there is a pedagogical interest in analyzing thé”, = Ey — -t (n—1), n=12--N+1.
difficulties in understanding the concepts of quantum me- (1)

chanics [1, 2]. There are a lot of physical processes in which i ) L
a decay from a discrete quantum state to a continuum, in- 1his scheme of energy levels is shown in Fig. 1. We shall
duced by a sinusoidal perturbation, takes place, such as: ioffonsider thah £/ < Ey so that there is no overlapping be-
izations induced by an electromagnetic wave, photoelectritVéen the energies of the quasi-continuum and the energy of
effect, etc. [3,4]. The probability of these processes occurrind€ ground state. _

is usually governed, according to the time-dependent per- L€t us denote the quantum state corresponding te 0
turbation theory, by an irreversible exponential decay [5—7]2S |0) and the corresponding 8" = E, as|n). At the

In fact, the exponential decay law is quite universal in time/nitial time ¢ = 0 the system is assumed to be in the state
dependent quantum systems related to tunneling [8, 10-12[! (0)) = 10), and from this instant a sinusoidal perturbation
such as in the alpha decay [13, 14]. The understanding arffcillating at a frequency = Ey /7 (so that the initial state
learning of the conditions required to describe this exponen-

tial decay at the graduate level is usually a difficult task, since

the mathematical tools involved in the demonstrations areE:Ef+AE/ 2 \
complex. In fact, many good textbooks avoid this subject. :

An easy model which consists in analyzing the decay from a
discrete state to a quasi-continuum set of discrete states is de

) N+1 states

veloped. Analysis of the model provides a deep understand- &

ing of the conditions required to describe a process by using -

the exponential decay approximation. :
E=E-AE/2 /

2. Hypotheses and equations of the model ho=E,

Let us consider the following scheme of energy levels: a sin- E=0

gle state with energy’ = 0 andNV + 1 states in an interval of
energyA E around the valué’;, which constitute the quasi- FIGURE 1. Scheme of energy levels.
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is resonantly coupled to the quasi-continuum set of states)ncluding the initial condition:
is applied to the system. Let us consider the perturbation as
W(t) = 2W coswt, W being a hermitian operator whose 1 p
matrix elements are all equal: = W/ —ilw—wn)t bo(t')dt'. 9)
(n| W |m) =W. (2)
. . Let us introduce this equation into the first equa-
_ Therefore, the complete hamiltonianfis= Ho + W (t),  tion, Eq. (7):
H, being diagonal in the orthonormal bagis)}. The state

of the system at timé can be written as follows: dbo( 2 Nt ¢
O z wW—Wwn —i(w—wy )t
N+1 TR Z € t/ ! o (t)dt!
—i 1
(1)) = bo(8) [0) + Y e E L) ), (3) "~ 0
n=1 2 N+1

t(w— wn) /
whereby(t) = (0[(t)) and f,(t) = eEnt/"(n|y(t)) The / (=g (tyar'. (10)

temporal evolution of the coefficientg(t) and f,,(t) can be

obtained from Sclidinger equation This is an integro-differential equation fag(¢). Accord-

ing to this equation, the temporal evolution of thét) func-

 d|y(t)) 5T
th—" = {Ho + W(t)} l(t)), (4)  tion att depends on its whole history, from= 0 to the
_ _ _ actual timet. For arbitraryw values the sum ovet will be
and yields the following set of equations: significant only fort’ ~ ¢. Therefore, a good approximation
dbo (1) consists of substituting, (¢') by by(¢). By considering this
ik ;t = bo(t)W (eiwt + e—iwt) approximation, the last equation yields
N+1 . ‘ N+1 ¢
+ Y TR (W (e + e ) (B) dbg(t) _ —%bo(ﬂ / i) (t=) gy (11)
n=1 t 1
n=to
L dfn() _ ipLen iwt | —iwt
i a ¢ bo()W (e te ) Let us now consider the change of variable ¢’ = 7:
N+1 . . .
+ Z el(EnfEm)t/hW (ezwt + efzwt) ) (6) dbo( ) 2

t N
i(w—wn)T
m=1 dt - E_ / dr. (12)
-0

If the frequencyw = E /I is large enoughife. much
larger than the inverse of the system evolution time), the sec- e will solve the following sum before integrating:
ular approximation can be applied and thus we can neglect
all the terms containing high frequencies. The low frequen- N+1
cies appearing in the previous equations B¢ — w and D etlomenr, (13)
w — E, /h, and thus in the secular approximation the set of

equations is reduced as:
wherehw,=E,=E;—&E+£E (n — 1) andhw=FE:

N+1
dbo (t , ,
ik ;t( ) _ Z esznt/hfn(t)Wezwt
n=1 AE AE AFE
vi1 e A A T T
-W Z ei(w—wn,)tfn(t)7 (7) B ﬁ . @ ﬁ
n=1 - 2 N N n,
df . (t , .
o fdt( ) — ezEnt/hbo(t)We—zwt and
= We ety (1), (8) N
Z 6z(w wn)
wherew,, = E,,/h. The initial conditions for solving the set n=1
of equations aréy(0) = 1 and f,,(0) = 0. 4 4 N+l
Let us obtain an approximate solution to this system of = e/ BT[RBT INI N " (AT [NR)n,
equations. We first integrate the second equation, Eq. (8), n=1
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The last sum is immediate, and yields: wherel;; is the matrix element dfi” between the two states
N1 andwy; the Bohr frequency. This function (as a function of
Z ilw—wn)T _ LAET/25 iAET/NR the frequency) is bell-shaped, with its width equakito/t,
— and with its center ab = wy;. In the first moments the bell

is very wide, and therefore (translating to our case) the sys-
tem has access to the€ states with energieB,,. Therefore,
1 — eiAET/NR the transition probability for the system to leave the initial
o —iAET/2h _ iAET/2hiAET/Nh state|0) in the first moments (which is equal 10— Pyg(t))
= | oiABT/NT . (14) s proportional to the number of states to which the system
has access. Besides, in the first moments the temporal evolu-

Next, we will consider largéV values, so that th&’, val-  tion is very slow since the linear term does not appear in the
ues constitute something similar to a continuous energy speexpansion. This fact is compatible with the Zeno quantum
trum. In this case we can expand the exponenrtdf™/N"  effect [15-17].
in power series and cut the expansion just at the first term: Let us see what happens in the long-time approximation.
The equation giving us the temporal evolutiorbgft) is:

e~ (N+1)iAET/Nh _ q
X

1§:1 ( ) e—IAET/2h _ GiAET/2h
62 wW—Wn )T ~ t
—iAET/Nh 2 in (427
— iAET/ dbst(t) _ _% 0(t>2AN£§ sin (& )dT. (21)
2Nh ( AET) 5 o
= 11 .
AET 2h The integral appearing in this equation:
. . ) .
Finally, the equation fob, (t) becomes: / sin (AEr/2h) .
t )
dbo (t 2 9ONh [sin (85T T
2( ) _ —%bo(t) - () g ae) 0
t 0 T tends torr/2 for ¢t > 2h/AE. Therefore, in the long-time

] ) ) approximation we can substitute the integrald)2 and the
Let us analyze this equation for short and long periods OEquation forb (¢) becomes:

time (short-time and long-time approximations). In the short-

. . . . . 2
time approximation, the integral is equal to: dbo(t) W= Nh T
t dt iz 0T R g = ~3h(t)
in (ALT where
/Sln<2ﬁ>dT:Mt+---. a7)
T 2h r= 2y Y (22)
0 T h AE
We can obtain the behavior of tfg(t) function in the The solution to this differential equation is:

first moments by taking into account thgt{t) ~ 1, for small
t values, and therefore:

dbo (t) W2oNLEAE w2 . Therefore, the probability of.finding the system in the ini-
T N A (18) tial state|0) shows an exponential decay with time. The typ-

ical decay time is:

) 1 h 1 AE hFE (24)
N T= S = 5T v = oo’
bo(t) ~ 1 — ?%tz. (19) r 2wz N - 272
wheredE = AE/N is the distance in energy between two
The probability of finding the system in the stéiginthe  consecutive states of energy,.

bo(t) = e T2, and Poo(t) = e 1t (23)

and

first moments of the temporal evolution (for smaWalues) Finally, we can evaluate the coefficierfigt) fort — oo,
is given by: which will give us the distribution of the final states:
NW2 ,\? W L ,
Poo(t)=[bo(t)]* ~ (1—2}12752) 21—Nﬁt2- (20) fn(t) = %W/e*’(“’f“’")t bo(t)dt’
0
Let us see that there is some logic in this result. For a per- .
turbation given byiV () = 2W cos wt, the transition proba- 1 i)t —Tt/2 g
bility from an initial statei to a final statef is, according to = %W/e ne dt
the time-dependent perturbation theory [5]: 0
. —T't/2 ,—i(w—wn)t’ _
4 o sin? [(wy; — w)t/2] _ Lype e 1 (25)

Pis(tw)osi>0 = 13 Wil : ih —i(w—wy) —T/2

(wpi — w)?
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and fort — oo becomes: levels: the energy of the ground state is null and there are

W 1

fn(t - OO) = *?m

81 states equally spaced in energy and with energies between
(26) E; = 96h/dt and Eg; = 104K/, so thatAE = 8h/dt,
ot being a parameter with dimensions of time. Therefore

The probability of obtaining the valug,, when measur- Ey = 100h/dt and N = 80. Let us introduce the follow-
ing the energy is: ing perturbation:

Pr(Ep,t — 00) = | fu(t — 00)|?

=Ww? 1 5. (27)
h212/4 + (B, — Ey)

This probability distribution is a Lorentzian centered at
E; with width 2iT" = #/7. This fact is compatible with the
energy-time uncertainty principle.

To finish the treatment let us enumerate the validity con-
ditions for the exponential decay to the continuum to be valid.

For the secular approximation to be valid, the frequency
w = Ey/h must be much greater than the inverse of the typi-
cal evolution timey

E; = hw > Th. (28)

In order to expand the exponentiaZ7/N" for times of
the order ofr = 1/T" and to cut the expansion at the first
term, the following condition must be fulfilled:

N > AE/Th. (29)

Finally, for times of the order of = 1/T the integral
in Eq. (21) should be approximately equalst@2 and this

W (t) = 2W coswt, with
w = 100/4t, and W = 0.1k/6t. (32)
According to the previous exposition thevalue is:

2r 5 N 21 0.01h% 805t
h AE h 62 8h

r= = 0.6283/5t. (33)

We can see that all the conditions are fulfilled:

Ef>Th, since

E; =100h/0t, and T'h= 0.6283k/6t,
N > AE/Th, since

N =80, and AE/Th=12.7,

AE > Th, since

AE = %, and Th = 0.6283%/5t. (34)

Therefore, if the system begins @at= 0 in the ground

happens to occur if state, the probability of its remaining in this state in the long-
time approximation is given by:

AE > Th. (30)

This last condition can be understood as a requirement
for the Lorentzian distribution to fit in the intervalE.

As a summary, we have seen that under certain condi-
tions, if the initial state is resonantly coupled to a quasi-
continuum set of states, an exponential decay with a typical
timer = 1/T takes place. In the final situation, the distribu-
tion of states consists of a Lorentzian centeredf at= Aw,
with a width of the order ofil’. If the definition of S E is
taken into account, the conditions (28) and (29) for the expo-
nential decay to be valid can be written as

§E < Th< Ef = hw. (31)

The first inequality can be understood as a condition for
the set of final states to be a quasi-continuum, so that the dis-
tance in energy between two consecutive states must be muc
less than the width of the final distribution of states. The sec-
ond inequality is the condition for the secular approximation
to be valid. Finally, the condition given by Eq. (30), for the
final distribution of states to fit in the intervA&l F, must also
be fulfilled.

Py(t)

Poo(t) = e Tt = ¢=0:6283t/6t (35)
1.0 ;
0.8 [\i _ i
L numerical
—— analytical: exp(-0.6283t/5t)

0.6 - 8
0.4 | .
02 - .
0.0

0 8 10

/ot

Let us test the results obtained with a particular exam+icure 2. Temporal evolution of the probability of remaining in
ple. Consider a system with the following scheme of energythe ground state for long times.
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1.0 Finally, the distribution of the final states is given (by us-

ing the long-time approximation) by:

] Pe(Bn,t — 00) =2 /A + (E, — Ey)*
B 0.01
9.8696 - 10~2 + (E,,6t/h — 100)*’

Figure 4 shows a comparison between this distribution
and the one obtained by numerically solving the equations of
the model. We can see in Figs. 2-4 that the analytical for-
mulas found are quite a good approximation to the numerical
results. If any of the conditions given by Egs. (28)-(30) is not
0z . fEe numerical Y fulfilled, the exponential approach given by Eq. (23) may not
e apialytical: 1-0.8678¢ be valid.

To end this section, we can compare the result obtained
0.0 ‘ ; ‘ ‘ from the coupling to a quasi-continuum set of states to that
o0 0.2 04 06 0.8 10 of a continuum set of states. In this last case, if certain condi-
¥5t tions are fulfilled, an exponential decay is again obtained for

the probability of finding the system in the initial state, with

0.8 -

37)
0.6 -

P 0(1(t>

04 ¢

FIGURE 3. Temporal evolution of the probability of remaining in

the ground state for short times. 2

r- %/dﬂ‘<ﬁ,E=Ei+M|W|<pi>

0.10 - .‘ | x p(B,E = E; + hw), (38)
(1 =vee pumerical where|y; > is the initial state, and the final states are la-
— analyti(;al belled with the energy’ and a set of parametesqwhich are
0.08 ) necessary if the unperturbed hamiltonian does not constitute
e, a Complete Set of Commuting Observables itself); the time
& 006 L | dependent is supposed to B&t) = 21 cosvt and finallyp
AU is the density of states. If we compare Eq. (38) with Eq. (22),
= the factorV/AE = 1/4E in the definition ofl” plays the role
al 004 of the density of states. Let us define the following function:
N 2
k(E) =5 [as](p.EWie)[ p5.B). @9)
0.02 - ] .
and thel' = K(E; + hw).
0.00 For the exponential approach to be valid in the case of

06 o8 100 162 104 a coupling to a continuum, similar conditions to those of
E 8t/% Egs. (28)-(30) must be fulfilled. The condition given by
GG Eq. (28) must be fulfilled withe; = E; + hw, and the con-
dition given by Eq. (29) is obviously fulfilled in the case of
a coupling to a continuum. Finally, the functidf( E') must
On the other hand, in the short-time approximation, thehave a plateau with a width larger th& around the value
temporal evolution is given by: E = E;+hw, orin other words, i (E) has a plateau around
the valueF = E;+ hw of width A E, then the condition given
by Eq. (30) must be fulfilled.

FIGURE 4. Final distribution of states.

w2 t2
Poo(t) =1 —N—1>=1—-0.8—. (36)
h? ot2 .
_ _ _ 3. Conclusions
Figure 2 shows a comparison between the long-time ap-
proximation of the probabilityPy(¢) given by Eq. (35) and A simple model has been developed, for the decay of a quan-
the numerical result obtained by solving the equations of théum discrete state which is resonantly coupled to a quasi-
model, Egs. (5) and (6), with the fourth order Runge-Kuttacontinuum set of states, to obtain an analytical approximate
method. solution that is accurate and requires elementary mathemati-
Figure 3 shows a comparison between the short-time apzal knowledge. The cases of short-time approximation and
proximation of the probabilityPy, (¢) given by Eq. (36) and long-time approximation have been treated separately. In
the numerical result. the short-time approximation the probability of finding the
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system in the initial state evolves proportionally to the timemolecular, nuclear and particle physics. The conditions for
squared, a fact which is compatible with the Zeno quanturihe exponential decay approximation to be valid have been
effect. In the long-time approximation this probability has ananalyzed. The distribution of the final states is given by the
exponential decay if certain conditions are fulfilled. This ex-characteristic Lorentzian distribution function whose width is
ponential decay appears in many physical situations such aslated to the decay time by the energy-time uncertainty prin-
ionization induced by an electromagnetic wave or the photoeiple. Finally, a comparison with the case of a coupling to a
electric effect and is the origin of the exponential decay, chareontinuum set of final states, rather than a quasi-continuum,
acteristic of many important dynamical processes in atomichas been analyzed.
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