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Decay of a quantum discrete state resonantly coupled to a
quasi-continuum set of states
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The irreversible exponential decay from a discrete state to the continuum, described by time-dependent perturbation theory, is a difficult task
in quantum mechanics learning, because of the complexity of the mathematical tools involved. An easy model which consists in analyzing
the decay from a discrete state to a quasi-continuum set of states is developed. The mathematics required to understand the model are easy,
allowing for a deep analysis of the model. The physical conditions required to describe the transition produced by a sinusoidal perturbation
by an exponential decay are easily deduced.
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La comprensíon del decaimiento exponencial irreversible desde un estado discreto a un continuo de estados, descrito mediante la teorı́a
de perturbaciones dependiente del tiempo, es una tarea difı́cil dentro del aprendizaje de la teorı́a cúantica, debido a la complejidad de las
mateḿaticas utilizadas. En este trabajo se desarrolla un modelo sencillo, que consiste en analizar el decaimiento desde un estado discreto
a un conjunto cuasi-continuo de estados. Las matemáticas requeridas para comprender el modelo son sencillas, lo que permite un análisis
profundo del modelo. Las condiciones fı́sicas que se deben verificar para poder describir una transición producida por una perturbación
sinusoidal mediante un decaimiento exponencial, se deducen de forma sencilla.

Descriptores:Decaimiento exponencial; teorı́a de perturbaciones dependiente del tiempo; efecto Zenón cúantico.

PACS: 01.30.Rr; 03.65.Xp

1. Introduction

Nowadays, there is a pedagogical interest in analyzing the
difficulties in understanding the concepts of quantum me-
chanics [1, 2]. There are a lot of physical processes in which
a decay from a discrete quantum state to a continuum, in-
duced by a sinusoidal perturbation, takes place, such as: ion-
izations induced by an electromagnetic wave, photoelectric
effect, etc. [3,4]. The probability of these processes occurring
is usually governed, according to the time-dependent per-
turbation theory, by an irreversible exponential decay [5–7].
In fact, the exponential decay law is quite universal in time
dependent quantum systems related to tunneling [8, 10–12],
such as in the alpha decay [13, 14]. The understanding and
learning of the conditions required to describe this exponen-
tial decay at the graduate level is usually a difficult task, since
the mathematical tools involved in the demonstrations are
complex. In fact, many good textbooks avoid this subject.
An easy model which consists in analyzing the decay from a
discrete state to a quasi-continuum set of discrete states is de-
veloped. Analysis of the model provides a deep understand-
ing of the conditions required to describe a process by using
the exponential decay approximation.

2. Hypotheses and equations of the model

Let us consider the following scheme of energy levels: a sin-
gle state with energyE = 0 andN +1 states in an interval of
energy∆E around the valueEf , which constitute the quasi-

continuum set of discrete states, their energies being:

En = Ef − ∆E

2
+

∆E

N
(n− 1) , n = 1, 2, · · ·N + 1.

(1)

This scheme of energy levels is shown in Fig. 1. We shall
consider that∆E ¿ Ef so that there is no overlapping be-
tween the energies of the quasi-continuum and the energy of
the ground state.

Let us denote the quantum state corresponding toE = 0
as |0〉 and the corresponding toE = En as |n〉. At the
initial time t = 0 the system is assumed to be in the state
|ψ(0)〉 = |0〉, and from this instant a sinusoidal perturbation
oscillating at a frequencyω = Ef/~ (so that the initial state

FIGURE 1. Scheme of energy levels.
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is resonantly coupled to the quasi-continuum set of states),
is applied to the system. Let us consider the perturbation as
Ŵ (t) = 2Ŵ cosωt, Ŵ being a hermitian operator whose
matrix elements are all equal:

〈n| Ŵ |m〉 = W. (2)

Therefore, the complete hamiltonian iŝH = Ĥ0 + Ŵ (t),
Ĥ0 being diagonal in the orthonormal basis{|n〉}. The state
of the system at timet can be written as follows:

|ψ(t)〉 = b0(t) |0〉+
N+1∑
n=1

e−iEnt/~fn(t) |n〉 , (3)

whereb0(t) = 〈0|ψ(t)〉 andfn(t) = eiEnt/~〈n|ψ(t)〉 The
temporal evolution of the coefficientsb0(t) andfn(t) can be
obtained from Schr̈odinger equation

i~
d|ψ(t)〉

dt
=

[
Ĥ0 + Ŵ (t)

]
|ψ(t)〉, (4)

and yields the following set of equations:

i~
db0(t)

dt
= b0(t)W

(
eiωt + e−iωt

)

+
N+1∑
n=1

e−iEnt/~fn(t)W
(
eiωt + e−iωt

)
, (5)

i~
dfn(t)

dt
= eiEnt/~b0(t)W

(
eiωt + e−iωt

)

+
N+1∑
m=1

ei(En−Em)t/~W
(
eiωt + e−iωt

)
. (6)

If the frequencyω = Ef/~ is large enough (i.e. much
larger than the inverse of the system evolution time), the sec-
ular approximation can be applied and thus we can neglect
all the terms containing high frequencies. The low frequen-
cies appearing in the previous equations areEn/~ − ω and
ω − En/~, and thus in the secular approximation the set of
equations is reduced as:

i~
db0(t)

dt
=

N+1∑
n=1

e−iEnt/~fn(t)Weiωt

= W

N+1∑
n=1

ei(ω−ωn)tfn(t), (7)

i~
dfn(t)

dt
= eiEnt/~b0(t)We−iωt

= We−i(ω−ωn)t/b0(t), (8)

whereωn = En/~. The initial conditions for solving the set
of equations areb0(0) = 1 andfn(0) = 0.

Let us obtain an approximate solution to this system of
equations. We first integrate the second equation, Eq. (8),

including the initial condition:

fn(t) =
1
i~

W

t∫

0

e−i(ω−ωn)t′b0(t′)dt′. (9)

Let us introduce this equation into the first equa-
tion, Eq. (7):

db0(t)
dt

=− W 2

~2

N+1∑
n=1

ei(ω−ωn)t

t∫

0

e−i(ω−ωn)t′b0(t′)dt′

=− W 2

~2

N+1∑
n=1

t∫

0

ei(ω−ωn)(t−t′)b0(t′)dt′. (10)

This is an integro-differential equation forb0(t). Accord-
ing to this equation, the temporal evolution of theb0(t) func-
tion at t depends on its whole history, fromt = 0 to the
actual timet. For arbitraryω values the sum overn will be
significant only fort′ ' t. Therefore, a good approximation
consists of substitutingb0(t′) by b0(t). By considering this
approximation, the last equation yields

db0(t)
dt

= −W 2

~2
b0(t)

N+1∑
n=1

t∫

0

ei(ω−ωn)(t−t′)dt′. (11)

Let us now consider the change of variablet− t′ = τ :

db0(t)
dt

= −W 2

~2
b0(t)

N+1∑
n=1

t∫

0

ei(ω−ωn)τdτ. (12)

We will solve the following sum before integrating:

N+1∑
n=1

ei(ω−ωn)τ , (13)

where~ωn=En=Ef−∆E
2 +∆E

N (n− 1) and~ω=Ef :

~ (ω − ωn) = Ef − Ef +
∆E

2
+

∆E

N
− ∆E

N
n

=
∆E

2
+

∆E

N
− ∆E

N
n,

and

N+1∑
n=1

ei(ω−ωn)τ

= ei∆Eτ/2~ei∆Eτ/N~
N+1∑
n=1

e(−i∆Eτ/N~)n.
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The last sum is immediate, and yields:

N+1∑
n=1

ei(ω−ωn)τ = ei∆Eτ/2~ei∆Eτ/N~

× e−(N+1)i∆Eτ/N~ − 1
1− ei∆Eτ/N~

=
e−i∆Eτ/2~ − ei∆Eτ/2~ei∆Eτ/N~

1− ei∆Eτ/N~ . (14)

Next, we will consider largeN values, so that theEn val-
ues constitute something similar to a continuous energy spec-
trum. In this case we can expand the exponentialei∆Eτ/N~

in power series and cut the expansion just at the first term:

N+1∑
n=1

ei(ω−ωn)τ ' e−i∆Eτ/2~ − ei∆Eτ/2~

−i∆Eτ/N~

=
2N~
∆Eτ

sin
(

∆Eτ

2~

)
. (15)

Finally, the equation forb0(t) becomes:

db0(t)
dt

= −W 2

~2
b0(t)

2N~
∆E

t∫

0

sin
(

∆Eτ
2~

)

τ
dτ. (16)

Let us analyze this equation for short and long periods of
time (short-time and long-time approximations). In the short-
time approximation, the integral is equal to:

t∫

0

sin
(

∆Eτ
2~

)

τ
dτ =

∆E

2~
t + · · · . (17)

We can obtain the behavior of theb0(t) function in the
first moments by taking into account thatb0(t) ' 1, for small
t values, and therefore:

db0(t)
dt

' −W 2

~2

2N~
∆E

∆E

2~
t = −N

W 2

~2
t, (18)

and

b0(t) ' 1− N

2
W 2

~2
t2. (19)

The probability of finding the system in the state|0〉 in the
first moments of the temporal evolution (for smallt values)
is given by:

P00(t)= |b0(t)|2'
(

1−N

2
W 2

~2
t2

)2

'1−N
W 2

~2
t2. (20)

Let us see that there is some logic in this result. For a per-
turbation given byŴ (t) = 2Ŵ cos ωt, the transition proba-
bility from an initial statei to a final statef is, according to
the time-dependent perturbation theory [5]:

Pif (t;ω)ωfi>0 ' 4
~2
|Wfi|2 sin2 [(ωfi − ω)t/2]

(ωfi − ω)2
,

whereWfi is the matrix element of̂W between the two states
andωfi the Bohr frequency. This function (as a function of
the frequency) is bell-shaped, with its width equal to4π/t,
and with its center atω = ωfi. In the first moments the bell
is very wide, and therefore (translating to our case) the sys-
tem has access to theN states with energiesEn. Therefore,
the transition probability for the system to leave the initial
state|0〉 in the first moments (which is equal to1 − P00(t))
is proportional to the number of states to which the system
has access. Besides, in the first moments the temporal evolu-
tion is very slow since the linear term does not appear in the
expansion. This fact is compatible with the Zeno quantum
effect [15–17].

Let us see what happens in the long-time approximation.
The equation giving us the temporal evolution ofb0(t) is:

db0(t)
dt

= −W 2

~2
b0(t)

2N~
∆E

t∫

0

sin
(

∆Eτ
2~

)

τ
dτ. (21)

The integral appearing in this equation:

t∫

0

sin (∆Eτ/2~)
τ

dτ,

tends toπ/2 for t À 2~/∆E. Therefore, in the long-time
approximation we can substitute the integral byπ/2 and the
equation forb0(t) becomes:

db0(t)
dt

= −W 2

~2
b0(t)π

N~
∆E

= −Γ
2

b0(t),

where

Γ =
2π

~
W 2 N

∆E
. (22)

The solution to this differential equation is:

b0(t) = e−Γt/2, and P00(t) = e−Γt. (23)

Therefore, the probability of finding the system in the ini-
tial state|0〉 shows an exponential decay with time. The typ-
ical decay time is:

τ =
1
Γ

=
~
2π

1
W 2

∆E

N
=

~δE
2πW 2

, (24)

whereδE = ∆E/N is the distance in energy between two
consecutive states of energyEn.

Finally, we can evaluate the coefficientsfn(t) for t →∞,
which will give us the distribution of the final states:

fn(t) =
1
i~

W

t∫

0

e−i(ω−ωn)t′b0(t′)dt′

=
1
i~

W

t∫

0

e−i(ω−ωn)t′e−Γt/2dt′

=
1
i~

W
e−Γt/2e−i(ω−ωn)t′ − 1
−i (ω − ωn)− Γ/2

, (25)
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and fort →∞ becomes:

fn(t →∞) = − iW

~
1

Γ/2 + i (ω − ωn)
. (26)

The probability of obtaining the valueEn when measur-
ing the energy is:

PE(En, t →∞) = |fn(t →∞)|2

= W 2 1
~2Γ2/4 + (En − Ef )2

. (27)

This probability distribution is a Lorentzian centered at
Ef with width ~Γ = ~/τ . This fact is compatible with the
energy-time uncertainty principle.

To finish the treatment let us enumerate the validity con-
ditions for the exponential decay to the continuum to be valid.

For the secular approximation to be valid, the frequency
ω = Ef/~must be much greater than the inverse of the typi-
cal evolution time,τ

Ef = ~ω À Γ~. (28)

In order to expand the exponentialei∆Eτ/N~ for times of
the order ofτ = 1/Γ and to cut the expansion at the first
term, the following condition must be fulfilled:

N À ∆E/Γ~. (29)

Finally, for times of the order ofτ = 1/Γ the integral
in Eq. (21) should be approximately equal toπ/2 and this
happens to occur if

∆E À Γ~. (30)

This last condition can be understood as a requirement
for the Lorentzian distribution to fit in the interval∆E.

As a summary, we have seen that under certain condi-
tions, if the initial state is resonantly coupled to a quasi-
continuum set of states, an exponential decay with a typical
time τ = 1/Γ takes place. In the final situation, the distribu-
tion of states consists of a Lorentzian centered atEf = ~ω,
with a width of the order of~Γ. If the definition ofδE is
taken into account, the conditions (28) and (29) for the expo-
nential decay to be valid can be written as

δE ¿ Γ~¿ Ef = ~ω. (31)

The first inequality can be understood as a condition for
the set of final states to be a quasi-continuum, so that the dis-
tance in energy between two consecutive states must be much
less than the width of the final distribution of states. The sec-
ond inequality is the condition for the secular approximation
to be valid. Finally, the condition given by Eq. (30), for the
final distribution of states to fit in the interval∆E, must also
be fulfilled.

Let us test the results obtained with a particular exam-
ple. Consider a system with the following scheme of energy

levels: the energy of the ground state is null and there are
81 states equally spaced in energy and with energies between
E1 = 96~/δt andE81 = 104~/δt, so that∆E = 8~/δt,
δt being a parameter with dimensions of time. Therefore
Ef = 100~/δt andN = 80. Let us introduce the follow-
ing perturbation:

Ŵ (t) = 2W cosωt, with

ω = 100/δt, and W = 0.1~/δt. (32)

According to the previous exposition theΓ value is:

Γ =
2π

~
W 2 N

∆E
=

2π

~
0.01~2

δt2
80δt

8~
= 0.6283/δt. (33)

We can see that all the conditions are fulfilled:

Ef À Γ~, since

Ef = 100~/δt, and Γ~ = 0.6283~/δt,

N À ∆E/Γ~, since

N = 80, and ∆E/Γ~ = 12.7,

∆E À Γ~, since

∆E =
8~
δt

, and Γ~ = 0.6283~/δt. (34)

Therefore, if the system begins att = 0 in the ground
state, the probability of its remaining in this state in the long-
time approximation is given by:

P00(t) = e−Γt = e−0.6283t/δt. (35)

FIGURE 2. Temporal evolution of the probability of remaining in
the ground state for long times.
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FIGURE 3. Temporal evolution of the probability of remaining in
the ground state for short times.

FIGURE 4. Final distribution of states.

On the other hand, in the short-time approximation, the
temporal evolution is given by:

P00(t) = 1−N
W 2

~2
t2 = 1− 0.8

t2

δt2
. (36)

Figure 2 shows a comparison between the long-time ap-
proximation of the probabilityP00(t) given by Eq. (35) and
the numerical result obtained by solving the equations of the
model, Eqs. (5) and (6), with the fourth order Runge-Kutta
method.

Figure 3 shows a comparison between the short-time ap-
proximation of the probabilityP00(t) given by Eq. (36) and
the numerical result.

Finally, the distribution of the final states is given (by us-
ing the long-time approximation) by:

PE(En, t →∞) =2 /4 + (En − E0)
2

=
0.01

9.8696 · 10−2 + (Enδt/~− 100)2
. (37)

Figure 4 shows a comparison between this distribution
and the one obtained by numerically solving the equations of
the model. We can see in Figs. 2-4 that the analytical for-
mulas found are quite a good approximation to the numerical
results. If any of the conditions given by Eqs. (28)-(30) is not
fulfilled, the exponential approach given by Eq. (23) may not
be valid.

To end this section, we can compare the result obtained
from the coupling to a quasi-continuum set of states to that
of a continuum set of states. In this last case, if certain condi-
tions are fulfilled, an exponential decay is again obtained for
the probability of finding the system in the initial state, with

Γ =
2π

~

∫
dβ

∣∣∣
〈
β,E = Ei + ~ω|Ŵ |ϕi

〉∣∣∣
2

× ρ(β,E = Ei + ~ω), (38)

where |ϕi > is the initial state, and the final states are la-
belled with the energyE and a set of parametersβ (which are
necessary if the unperturbed hamiltonian does not constitute
a Complete Set of Commuting Observables itself); the time
dependent is supposed to bêW (t) = 2Ŵcosωt and finallyρ
is the density of states. If we compare Eq. (38) with Eq. (22),
the factorN/∆E = 1/δE in the definition ofΓ plays the role
of the density of states. Let us define the following function:

K(E) =
2π

~

∫
dβ

∣∣∣
〈
β, E|Ŵ |ϕi

〉∣∣∣
2

ρ(β,E), (39)

and thenΓ = K(Ei + ~ω).
For the exponential approach to be valid in the case of

a coupling to a continuum, similar conditions to those of
Eqs. (28)-(30) must be fulfilled. The condition given by
Eq. (28) must be fulfilled withEf = Ei + ~ω, and the con-
dition given by Eq. (29) is obviously fulfilled in the case of
a coupling to a continuum. Finally, the functionK(E) must
have a plateau with a width larger thanΓ~ around the value
E = Ei+~ω, or in other words, ifK(E) has a plateau around
the valueE = Ei+~ω of width∆E, then the condition given
by Eq. (30) must be fulfilled.

3. Conclusions

A simple model has been developed, for the decay of a quan-
tum discrete state which is resonantly coupled to a quasi-
continuum set of states, to obtain an analytical approximate
solution that is accurate and requires elementary mathemati-
cal knowledge. The cases of short-time approximation and
long-time approximation have been treated separately. In
the short-time approximation the probability of finding the
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system in the initial state evolves proportionally to the time
squared, a fact which is compatible with the Zeno quantum
effect. In the long-time approximation this probability has an
exponential decay if certain conditions are fulfilled. This ex-
ponential decay appears in many physical situations such as
ionization induced by an electromagnetic wave or the photo-
electric effect and is the origin of the exponential decay, char-
acteristic of many important dynamical processes in atomic,

molecular, nuclear and particle physics. The conditions for
the exponential decay approximation to be valid have been
analyzed. The distribution of the final states is given by the
characteristic Lorentzian distribution function whose width is
related to the decay time by the energy-time uncertainty prin-
ciple. Finally, a comparison with the case of a coupling to a
continuum set of final states, rather than a quasi-continuum,
has been analyzed.
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