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Avenida del Charro 450 Nte. Col. Partido Romero 32310 Ciudad Juárez Chih.
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Muchos estudiantes de los cursos introductorios de mecánica presentan serias dificultades para comprender el concepto de fuerza como vector
en el contexto de la tensión en cuerdas de masa despreciable. Una de las posibles causas es la falta de entendimiento funcional desarrollado
durante las clases fundamentadas en una enseñanza tradicional. En este articulo presentamos una colección de este tipo de problemas de
aprendizaje que tienen los alumnos pertenecientes a los cursos de fı́sica cĺasica y est́atica en la Universidad Estatal de Nuevo México, en la
Universidad Estatal de Arizona y en la Universidad Autónoma de Ciudad Juárez. Estas dificultades de aprendizaje se obtuvieron durante una
investigacíon conducida tanto en laboratorios como en el salón de clases. En esta segunda parte de la investigación se abordan problemas de
entendimiento relacionados con el efecto delángulo en la tensión y el argumento de “compensación”.

Descriptores: Tensíon; fuerzas en cuerdas; dificultades de aprendizaje; fuerza como una tensión.

Many students enrolled in the introductory mechanics courses have learning difficulties related to the concept of force in the context of
tension in massless strings. One of the potential causes could be a lack of functional understanding through a traditional instruction. In this
article, we show a collection of this kind of students’ difficulties at the New Mexico State University, at the Arizona State University, and at
the Independent university of Ciudad Juarez in Mexico. These difficulties were collected during an investigation conducted no only in lab
sessions but also in lecture sessions. In this second part of the investigation we show understanding difficulties related to the effect of the
angle on tension and the “compensation arguments”
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PACS: 01.40.d; 01.40.Fk; 01.49.Ha

1. Introduction

In the first part of this investigation, we argued that for al-
most all students enrolled in an introductory physics course,
the initial sequence of topics is kinematics, followed by dy-
namics. This first exposure to physics has Newton’s second
law –a vector equation– as its central theme. For this reason,
students’ perception of what physicsis, and what it means to
do physics, are strongly influenced by this topic.

Therefore, we claim again that in the ideal case, stu-
dents will learn from this topic that fundamental principles
of physics are powerful general ideas that have broad appli-
cability. Too often, however, students fail to see the connec-
tions between the ideas that are presented. Rather than view
physics as a subject grounded in a few far-reaching funda-
mental ideas, they instead gain an impression that the subject
is a collection of context-specific [1] equations that must be
memorized.

Most instructors of introductory physics courses recog-
nize that thinking about physical quantities as vectors is diffi-
cult for students Flores and Kanim [2]. Even when instructors
consistently model Newton’s second law problem solutions
by starting with free-body diagrams, many students avoid
these diagrammatic tools. There is a tendency, even among
fairly capable students, to jump to force components immedi-

ately, and to resort to memorizing what these components are
in specific cases rather than deriving them from the geome-
try of the situation. Therefore, students have understanding
difficulties with problems that require several steps along the
solution process. These problems are called “multiple-step”
problems.

In the process of an investigation conducted by Flores [3]
into student use of vectors, he observed several difficulties
with vectors. This observation motivated an investigation
into student understanding of tension. In this article, we de-
scribe our observations into students’ difficulties with ten-
sion. Therefore, the questions we hoped to answer with our
investigation are: (1) Do students recognize the vector nature
of tension force?; (2) Do students recognize that the tension
in a massless string does not depend on the angle when this
string is wrapped around a pulley?, 3) Do students recog-
nize that the greater the angle with respect to the vertical, the
smaller the tension for a three-string hanging system?, and 4)
Do student use compensations arguments to find the magni-
tudes of the tensions in massless strings?

2. Previous research

As shown in the results from thegymnast questionasked by
Flores and Kanim [2], it is often the case that students do
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not acquire a sufficient understanding of tension as a vector
concept. Most students (70%) concluded that the tension in
the left rope is one-half of the weight of the gymnast. Most
of them gave the reasoning that the tensions in the ropes are
equal to each other because the angles of the ropes are the
same. Implicit in this response is an assumption that the
scalar sum of the two tensions equals the weight. This re-
sponse neglects the vector nature of tension. In order to make
sense of forces, students need knowledge of the behavior of
specific forces and the rules or assumptions used in physics
to solve problems involving these kinds of forces.

On other questions they noticed that students were un-
able to identify essential features that determine tension. In
this sense, we decided to conduct an investigation into stu-
dent understanding of Newton’s second law in the context of
tension forces along a “massless” string.

To identify common student conceptual errors to recog-
nize the existence of passive forces such as the tension in a
string, Sjoberg and Lie [4] of the University of Oslo adminis-
tered a written questionnaire to over 1000 secondary school
students, future teachers, university students and physics
graduate students.

Figure 1 shows two pendulums, one stationary and one
swinging through its equilibrium position. Sjoberg and Lie
asked students to indicate the forces acting on both pendu-
lums. Results indicated that about 50% of the secondary-
school students with one year of physics omitted the tension
in the string. About 40% of the future teachers and about
10% of the graduate students omitted this force as well. A
great number of students included a force in the direction of
the motion of the swinging pendulum.

As part of an investigation into students understanding of
gravity, Gunstone and White [5] asked 463 students to com-
pare the weight of a bucket with the weight of a block when
they are hanging from a string stretched around a pulley as
shown in Fig 2. About one-half of the students concluded
correctly that the weights are equal. About one-fourth stated
that the block is heavier. The most common reason for this
response was that “the block is nearer to the floor.” There was
a version of other reasons given. For example, “In the string
used to link both the bucket and the block together over the
pulley, tension exists in both its ends. At the end towards the
bucket, the tension is less than at the end towards the block.
This then causes the block to pull itself down thereby raising
the bucket.”

FIGURE 1. Experiment set used by Sjoberg and Lie to probe stu-
dent difficulties with forces.

FIGURE 2. Experiment set used by Gunstone and White. The
bucket and the block are suspended from a bicycle wheel.

FIGURE 3. Physical system used by McDermott, Shaffer and
Somers. a) Original Atwood’s machine. b) Typical incorrect free-
body diagram drawn by students to represent the forces exerted on
blocks A and B.

FIGURE 4. Physical situation used by McDermott, Shaffer and
Somers. Students were asked to compare the tension in the two
strings in cases (a) and (b).

Arons [6] made the observation that “massless strings are
a source of significant conceptual trouble for many students.”
He also states that “students have no intelligible operational
definition ofmassless;they fail to see why the forces of ten-
sion should have equal magnitude at either end; they pro-
ceed to memorize problem-solving procedures without un-
derstanding what they are doing.”

This observation led to an investigation by McDermott,
Shaffer and Somers [7] into some specific student difficulties
with tension in the context of the Atwood’s machine. Fig-
ure 3 shows a physical situation used in this investigation.
The string and the pulley are massless. In interviews, most
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students predicted that the heaver mass would fall and the
lighter mass would rise. Although all recognized that the ten-
sion in the string acting on block A is greater than the mass of
this block, on the free-body diagrams many showed different
magnitudes for the tension exerted by the string on the two
blocks.

As a part of the same investigation, a written ques-
tion based on Fig. 4 was administered to students in three
calculus-based courses. Students were asked to compare the
magnitude of the tension at the middle of the strings in cases
(a) and (b). Only about half of the students predicted that
the two strings would have the same tension. Many students
responded that the tension in the string attached to the two
blocks would be twice that in the other string. Two common
difficulties found were:

1) The belief that tension is the sum of the forces exerted
at the two ends; and

2) The belief that an inanimate object, such as a wall, does
not exert a force on a string.

McDermott, Shaffer and Somers concluded that student
performance on simple qualitative questions that were asked
after lecture instruction suggested that traditional instruction
on the Atwood’s machine did not improve understanding of
dynamics. Practice in only one context such as the Atwood’s
machine is not enough to develop a functional understanding
of the concept of tension.

3. Research techniques

The main objective of this investigation is the exploration of
students’ understanding difficulties with tension force. In this
way, we can understand better the cognitive ideas student in-
voke when they try to solve tension problems. Once we know
these operational and conceptual difficulties, we can start to
design a new curriculum which impacts the cognitive devel-
opment of these students.

Some physics understanding researchers have conducted
this kind of investigation to explore, characterize and analyze
conceptual understanding issues. For instance, McDermott
and the Physics Education Group at the University of Wash-
ington has developed investigations where they explore stu-
dents’ cognitive problems and common sense beliefs related
to physical concepts.

As in the first part of this investigation, there are two pri-
mary data sources that we use to assess student understanding
and to learn about students’ ideas about physics topics and
about the prevalence of these ideas in a given student popu-
lation. These are individual student responses to questions in
one-on-one interviews and student responses to written ques-
tions. We describe each of these in turn.

Written questions

Our primary source of data for our investigation was student
responses to written questions. These questions were asked

on homework (both laboratory and lecture), as laboratory
pretests, and on classroom quizzes and examinations. Since
we are primarily interested in students’ conceptual under-
standing of physics, the questions we ask are primarily qual-
itative rather than quantitative. Student responses to these
questions are typically analyzed and categorized on the basis
of response and of the reasoning given for that response.

In our analysis of these written questions, we are looking
for patternsof student responses, either correct or incorrect.
These patterns may be patterns of incorrect ideas, a common
tendency to focus on irrelevant features, patterns of reason-
ing, or patterns of procedure. Some features of common stu-
dent responses that seem to lead to correct responses may
then form the basis for curriculum exercises that reinforce
productive lines of reasoning. Conversely, other patterns of
responses may indicate that there is a need for curriculum
that elicits a common misconception or error of procedure
and reasoning and then addresses this difficulty.

Physics education researchers have found that certain for-
mats of written tasks are useful at eliciting students’ ideas and
reasoning. For example, aranking task, presents students
with a number of physical situations, and they are asked to
rank the magnitude of a physical quantity in the given situ-
ation. A comparison taskis similar except that students are
asked to compare only two situations, possibly before and
after some physical change. Another task that is useful at
eliciting student reasoning is theconflicting contentions task,
in which students are presented with statements about a phys-
ical situation and asked whether they agree with any of them.
In general, students are asked to explain the reasoning under-
lying their responses.

Interviews

Interviews were conducted at New Mexico State University
and by colleagues at Arizona State University. These inter-
views were audio or videotaped, and the tapes and student
written responses were later analyzed. At NMSU, we in-
terviewed students from the introductory calculus-based me-
chanics courses intended for engineering majors. All of these
students were volunteers. The interviews last about 30 min-
utes. We designed the interviews to probe students’ concep-
tual reasoning. During the interview students were asked
questions about selected topics and were encouraged to ex-
plain the reasoning behind their responses.

4. Context for research

While the data presented here were collected primarily at
New Mexico State University (NMSU), we have collected
additional data from the Arizona State University (ASU), and
the Independent University of Juarez in Mexico (UACJ). In
this investigation, student responses from UACJ have been
translated from Spanish to English.

The courses used as information sources for this investi-
gation were:
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• NMSU: Physics 215 (Introductory calculus-based me-
chanics).

• NMSU: Physics 211 (Introductory algebra-based me-
chanics).

• NMSU: Physics 215 laboratory.

• NMSU: Physics 211 laboratory.

• Arizona State University: Physics 212 (Calculus-based
mechanics).

• Independent University of Juarez: General Physics I
(Calculus-based mechanics).

Physics 215 is primarily intended for engineering majors.
Instruction in introductory calculus-based physics courses at
New Mexico State University consists of three 50-minute lec-
tures. The sequence of topics in lecture follows the sequence
in most textbooks. There is no recitation section.

Physics 211, the algebra-based physics course, covers
more topics than the calculus-based course, but at a less rigor-
ous mathematical level. The majors of the students enrolled
in Physics 211 are approximately: 30% Engineering Tech-
nology, 30% Biology, 10% Agriculture, 5% Education, and
20% Other/Undeclared.

There is an associated 1-credit laboratory, Physics 211L
and Physics 215L, that is required for some majors. About
one-half of the students enrolled in the lecture portion of
the course also take the laboratory. The 3-hour laboratory is
graded separately from the lecture. All of the laboratory ses-
sions are taught by graduate students. In laboratory, students
work in small groups on materials intended to strengthen
connections between observed phenomena and mathemati-
cal formalism, to promote scientific reasoning skills, and to
foster conceptual understanding. Instead of a laboratory re-
port, students are assigned laboratory homework intended to
reinforce and extend concepts underlying the laboratory. Stu-
dents are encouraged topredict, compareor rankvariables in
physical situations. Most of the laboratory sessions for both
the calculus-based and the algebra-based course were based
onTutorials in Introductory Physics[8].

5. Traditional and modified instructions

At the University of Juarez, at the Arizona State University
and in some courses at NMSU the instruction is characterized
as traditional. By traditional instruction, we mean instruc-
tion that is similar in emphasis and approach to that found
in most introductory classrooms. That is, there is no particu-
lar emphasis placed on the topics under investigation in this
dissertation, nor is there any modification to the instructional
technique used. In addition, the use of numerical and text-
book problems on homework and exams. An example of a
textbook problem is shown in Fig. 5. In this problem, stu-
dents are asked to calculate the coefficient of static friction
between the ladder and the floor.

FIGURE 5. Example of problem used in traditional instruction.

FIGURE 6. Example of question asked in a modified instruction.

Instruction in Physics 121 at Arizona State University all
these courses have a 3-hour lecture and a 1-hour recitation
section with traditional laboratories. About 90% of the stu-
dents take laboratory sections. The laboratory is independent
of lecture. Assessments in lecture include conceptual prob-
lems.

The questions we have asked at the University of Juarez
were in a 3-hour calculus-based physics class. A 90-minute
laboratory session per week is required. Laboratory is inde-
pendent of lecture and mandatory. All laboratory sections are
taught by the corresponding instructors of the groups. There
is no recitation section. Most of the students are engineer-
ing majors. Questions on homeworks and examinations are
primarily quantitative.

Most of the coursework at NMSU that we describe as
modified was taught by Stephen Kanim. He modified the
lecture the lecture section of the course to increase the em-
phasis on conceptual understanding. Many homework as-
signments, exams and exercises are composed of conceptual
physical problems. The emphasis of the lectures was modi-
fied to focus on vector concepts: The course begins with an
introduction of vector addition in the context of force, and ve-
locity and acceleration are first introduced in two dimensions
to emphasize their vector nature. An example of a problem
used in modified instruction at NMSU is shown in Fig. 6.
Students are asked to rank, from greatest to least, the magni-
tudes of the forces acting on the block. An explanation of the
reasoning procedure is required. Some of the students draw
a free-body diagram of the block and show a vector sum to
compare the magnitudes of the forces.

In this article, we describe our identification of student
difficulties with vectors and tension, and illustrate how this
identification has guided some curriculum development. In

Rev. Mex. F́ıs. E55 (1) (2009) 118–131



122 S. FLORES-GARĆIA et al.

addition, this article provides details of our investigation of
student difficulties with the vector nature of tension. We have
separated these difficulties into categories: Ideas about com-
pensation; and the belief that the magnitude of the tension
depends on the angle of the string.

6. Students’ learning difficulties with tension
in massless strings

We have asked a number of questions on homework, pretests,
and examinations in order to investigate student understand-
ing of tension. Based on these questions we have classified
students’ difficulties with tension into five categories:

1) Students’ beliefs about the effect of the angle on ten-
sion.

2) “Compensation arguments” about tension.

We describe these difficulties below.

Students’ beliefs about the effect of the angle on tension

a. The question shown in Fig. 7 was asked as part of a labo-
ratory pretest. A correct answer is that the magnitude of the
tension at point 2 is equal to the magnitude of the tension
at point 3, and does not depend on the angle on the relative
positions of the points along the string.

About one-half of 94 students in a calculus-based lab-
oratory answered correctly. About one-fourth stated that the
magnitude of the tension at point 2 was greater than at point 3
and one fourth said that it was less than the magnitude of the
tension at point 3. About 20% of students used arguments
about the difference between the angles that the string makes
with the horizontal at points 2 and 3. Some examples of these
responses are:

“Tension at point 2 is less because has a greater
angle at which the string is pulled.”

“Tension at point 2 is less because the angle
changes the tension.”

“Tension at point 2 is less because the angle adds
more tension.”

b. The question shown in Fig. 8 was part of the same
laboratory pretest as the question shown in Fig. 7. A correct
answer is that since there is no net force on the mass, the hor-
izontal component of the tension in the two attached strings
must be the same, and since the angle that string makes with
the vertical is the same, the tensions at points 1 and 2 are
equal. Since points 2 and 3 are on the same string they have
the same tension, and therefore tensions at 1 and 3 are equal
as well.

FIGURE 7. Question to compare the magnitudes of the tension at
two points on different sides of a massless and frictionless pulley.

FIGURE 8. Pretest question to investigate student beliefs about ef-
fects of angle on tension.

FIGURE 9. Question about tension for three strings.

Although 40% of 94 students stated that the tensions were
equal, only 6 students answered correctly with correct rea-
soning. About 35% did not include reasoning with their an-
swer. About 30% said that the magnitude of the tension at
point 1 is greater than the magnitude of the tension at point 3,
and the same percentage of students concluded that tension
at point 1 is less than tension at point 3. About 35% gave
reasoning based on the angleαbeing greater than the angleθ.
Some examples are:

“Tension at point 1 is less than because greater
angle more tension.”

“Tension at point 1 is greater than becauseθ is
smaller thanα so greater tension.”

c. In a final exam at Arizona State University, 132 stu-
dents from a calculus-based physics course were asked the
question shown in Fig. 9. A correct answer is that the mag-
nitude of the tension in string A is less than the magnitude of
the tension in string B. Figure 10 shows a graphical method
for adding tension A, tension B, and the weight. For the net
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TABLE I. Results for tension and angle.

Juarez NMSU

Final Exam Final Laboratory Exam

Statics N=139 Physics 215 N=111

Less than (Correct) 71% 50%

Greater than 5% 9%

Equal to 15% 35%

FIGURE 10. Expected reasoning procedure for the tension prob-
lem.

FIGURE 11. Translation of question asked in Juarez to identify
beliefs about the effect of the angle on the tension.

force be zero, tension B must be greater than tension A be-
cause is opposite to a larger angle of the triangle.

Only 35% answered this question correctly. More than
half stated that the tension in string A isgreater thanthe ten-
sion in string B and about 10% believed that both tensions
are equal. About a third of the students who answered that
the tension in string A is greater than the tension in string B
argued that it is becauseα > β. Some of them stated that:

“The tension in string A is greater than in string
B. Sinceα > βmore of the weight is supported
by string A, thus causing more tension in string
A.”

“The tension of A is greater than B. A is sus-
pended further away at a larger angle.”

“Greater, because it has a greater angle. Ten-
sion is simply mg for an object, but now consid-
ering an angle, it must be taken into account, so
greater angle from 90◦, greater tension.”

Two common reasons were given for the answer that the
tensions in both strings are equal: 1) The system is in equi-
librium, and 2) the magnitudes of the tensions depend only
on the hanging mass only. For example, one student said
that “The tension in string A is equal to the tension in string
B because the weight is in equilibrium. The tension force
does not depend on how long or short the string should be to
produce more force or less force than the other string. Ten-
sions depend on mass.” Other student concluded that “Since
the weight is suspended, the net force is equal to zero. This
means the tension force is equal in magnitude and opposite.
In this case, the tensions are approximately equal.”

d. In order to investigate students’ beliefs about the ef-
fect of the angle of a massless string on the magnitude of
its tension, 111 students from New Mexico State University
and 139 students from the University of Juarez were asked to
compare the magnitude of the tension in the massless string
in cases A and B as shown in Fig. 11. The question was
asked at the University of Juarez as part of a calculus-based
course final examination. A multiple-choice version of this
question was asked on a laboratory final examination for the
calculus-based course at NMSU. A correct answer is that the
tension in case A is less than the tension in case B because
the hanging mass in case A is less than the hanging mass in
case B. The angle that the upper portion of the string makes
with the horizontal line does not affect the magnitude of the
tension.

As shown in table 1, about a half of the students from
New Mexico State and about three fourths of the students
from Juarez answered correctly. However, at the University
of Juarez about one-half of 139 gave reasoning about the an-
gles to compare the tensions. Fewer than 10% answered cor-
rectly without any reasoning.

Some of the students who concluded that the tension in
case A is greater answered that the effect of the angle was
more important than the effect of the mass on the tension:
They argued that if the angle increases the tension increases
as well. A translation of one of these responses is:

“Although the mass B has greater weight than
mass A, the angle of string B is less than A and
this means there is not a lot of tension, since the
greater the angle, the greater the tension.“

Other students seemed to ignore the weight of the hang-
ing mass completely. One example is shown below.

“The string in case B is closer to the horizontal
line and this exerts more force.”

The explanations above are examples that directly relate
the angle of the string with the tension. However, other stu-
dents seem to believe that the more vertical the string, the
greater the force acting. Some examples of this belief are
shown below:
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FIGURE 12. Question comparing tension when angle changes.

FIGURE 13. The vertical syringe question asked by Kautz, Heron,
Loverude, and McDermott.

“The tension in case A is greater because of the
height of the string.”

“Greater than because tension is being released
at the larger angle and height.”

“Greater than because the pulley in case B is at
an angle closer to 90◦.”

e. As part of a pretest for theForces in Equilibriumlab-
oratory, 48 students from a calculus-based physics course at
New Mexico State were asked the question shown in Fig. 12.
In this case the magnitudes of the tensions in both strings are
simply equal to the weight of the hanging mass. The angles
of the ramps do not affect the magnitudes of the tensions be-
cause both systems are at rest.

Only 30% of the students answered correctly. Almost
all the incorrect answers were that the tension in Fig. 1 is
greater. Slightly fewer than one-half (21 students) gave rea-
soning based on the angle of the ramp: Of these students,
five answered correctly, and fifteen answered that the tension
in Fig. 1 was greater. Most of the students who answered that
the tension in Fig. 1 was greater and reasoned based on the
angle of the ramp just said that the angle of the ramp caused
the tension to increase. Other students gave reasoning about
the effect of the weight of the block on the ramp: “The mag-
nitude of the tension is greater because the force of gravity
causes the block to move down the incline.”

Explanations based on the weights of both blocks were
also common for students answering that the tension is
greater in Fig. 1:

“Greater than because the string must now sup-
port part of the weight of the big block as well.”

“The tension in Fig. 1 is greater because in Fig.
2 the tension has to deal with the mass and the
gravity.

In Fig. 1, the tension is the mass m and gravity
and the incline of M along the string.”

This reasoning is similar to the reasoning described by
McDermott and Shaffer [6] in response to the question shown
in Fig. 4.

f. Commentary on students’ conceptual difficulties with
the beliefs about the effect of the angle on tension.

Conceptual difficulties about the effect of angle on the ten-
sion of a massless string were found in two contexts: Ques-
tions about the tension in a system of three massless strings in
two dimensions and questions about the tension in a massless
string wrapped around a frictionless pulley. In both contexts,
roughly one-half of students based their answers on the di-
rections of the strings.

Most students seem to recognize that the magnitude of
tension in strings depends on angle in static situations involv-
ing the strings. However, some of these students do not seem
to recognize that the magnitude of tension does not depend on
the orientation of the string when the string changes direction
around a pulley.

The most common difficulty on the three-string questions
was a belief that the string with the greater angle with the
vertical has the greater tension. The most common difficulty
in the pulley questions was that the tension in the string in-
creases when the angle that the string makes with the vertical
increases. Many of the students who gave this answer gave
reasoning based on the increment of the y-component of the
tension force. They seemed to believe that the greater the an-
gle, the greater the tension. A similar difficulty was found for
the ramp question in Sec.e (see Fig. 12) when the angle of
the ramp was modified.

Most students did not use free-body diagrams to answer
these questions. Most of the responses given seem to be ap-
plication or misapplication of various “rules of thumb” about
the effect of angle on tension rather than application of gen-
eral physics principles.

Only a few students from Arizona State, New Mexico
State and the University of Juarez used a graphical procedure
to respond to questions about tension force in three connected
strings. The use of a vector sum the technique was almost ab-
sent in our responses.

2. “Compensation arguments” about tension.

It has been observed that, when asked to compare three re-
lated quantities, students often incorrectly employ arguments
of the form “If quantity A increases and quantity B decreases,
then quantity C remains the same.” These arguments are
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known as ‘Compensation arguments.’ For example, O’Brien
Pride, Vokos and McDermott [9] analyzed comparison tasks
from 1000 students in Ref 11 regular and honors sections
of the calculus-based physics course. Students were asked
about the change in momentum of two objects of different
mass if the same force is applied to them over the same dis-
tance. Many students reasoned that the change in momentum
of the two objects must be the same. Some of these students
claimed that “the momenta were equal because the greater ve-
locity of the lighter puck compensated for the smaller mass.”
Similarly, students’ compensation arguments about the ideal
gas lawPV = nRT were found by Kautz, Heron, Loverude
and McDermott [10]. In interviews at the University of Wash-
ington, students were asked to compare the pressures and vol-
umes of the gas contained in the vertical syringe shown in
Fig. 13 in the initial and final states. Many students used
compensation arguments: “The pressure remains the same
because temperature decreases and volume increases.”

We have noticed that students often use compensation ar-
guments to reason about tension on some of the questions that
we have asked. We give some examples of various forms of
compensation arguments.

a. Tension compensation: Length and angle.

For the question in Fig. 13 (seeStudents’ difficulties with ten-
sion in massless strings Part I), about 10% of students stated
that the magnitudes of the tension in both strings A and B are
equal because string A is longer but with a smaller angle:

“Tension in string A is equal to the tension in
string B. If A and B had been equal in length,
but the angles remained, then there would have
been a greater tension in string B, sinceβ > α.
Therefore, because A is longer than B theten-
sion in A is greater than if it had been the same
length as B, and the tensions become equal.”

Of the students who were asked the question shown on
in Fig. 17 (seeStudents’ difficulties with tension in massless
strings Part I), fifteen percent answered that both magnitudes
are equal. About 10% indicated that the magnitudes are equal
because the right string is twice the length of the left, and
the inverse ratio for the angles compensates for the length.
Although the question statement does not contain the actual
ratio of the magnitudes of the anglesθandγ, one student an-
swered “Equal to because the length of the left string is the
half of the length of the right string and the angleγ is half
of the angleθtherefore the magnitude of the tension in both
strings is the same.”

b. Tension compensation: Mass and angle.

For the question shown in Fig. 11, most students who an-
swered that the magnitudes of both tensions are equal gave
reasoning similar to “different angles compensate for differ-
ent weights.” One such explanation is shown below.

“Tensions are equal because the weight is dis-
tributed in the same way as the different angles
of the strings in both cases.”

c. Tension compensation: Orientation and weight

For the question shown in Fig. 11, some students gave com-
pensation arguments related to the position of the strings with
respect to the horizontal line. They argued that the tensions
are equal because the string closer to the horizontal line ex-
erts less force on the string. Two examples are shown below.

“Tensions are equal in both cases because the
mass in case B is greater but the string is closer
to the horizontal, and this exerts less force.”

“Although the weight in case B is greater, the
position is different because in case A the string
is further and in case B closer. It means that the
tension is the same in both cases.”

The examples given in this section seem to have less to do
with student beliefs about tension as with spontaneous rea-
soning about three or more quantities. Included in their dis-
cussion of compensation arguments, Kautz, Heron, Loverude
and McDermott [10] have noted that students gave incorrect
responses related to the interdependence of three variables.
In making predictions, “many students focus on a single re-
lation between two quantities that is valid only if the others
are constant.” In the examples shown in this section, some
students assumed that the tension is constant in both strings,
because there is an inverse proportionally between two vari-
ables such as the angles and lengths of the strings.

7. Implications for instruction

We have designed conceptual labs, pretest, posttest and
homeworks as a didactic basis to develop a curriculum that
impacts in the functional students’ understanding of tension
force. The theoretical explanation of this curriculum design
is shown in Part I of this investigation. Therefore, we only
show a complete lab in the appendix. In this lab, we have
added the use of aforce tablein order students develop and
invoke ideas about the dependency of tension on the angle of
the strings on a plane. In the same way, we hope students
understand how to add forces by using geometrical methods.

8. Summary

In interviews and on responses to written questions, we have
observed that most students do not treat tension forces as vec-
tors when attempting to answer qualitative questions. They
rarely draw free-body diagrams, and even less often add
forces to reason about relative magnitudes. Instead, they rely
on learned or generated ad hoc rules about the effects of var-
ious physical features (angle with the horizontal or vertical
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line, or compensation arguments) on the tensions. We have
categorized these rules and given examples or each category
based on a subset of the questions that we have asked. In
addition, results show that many students usecompensation
argumentsnot only on the tension context, but also in other
contexts of physics. It seems that this cognitive approach is
developed by a students’ system of common sense beliefs.

These observations seem to show that students do not de-
velop a significant understanding of tension as a vector de-
spite instructional efforts. In addition, they do not develop a
functional understanding of tension despite a conceptual em-
phasis in instruction. One of the possible reasons of this lack
of conceptual understanding could be the poor ability to em-
igrate among different mathematical representations of the
knowledge object [11].

In a future investigation, we describe modifications to the
laboratory in order to address student difficulties with forces
primarily in the context of tension. Moreover, we will try
to generate conceptual understanding by using computational
simulations of physical situations.

Appendix

Addition of Forceslaboratory

Lab 5: Addition of Forces Name

1. Introduction

In this laboratory we look at forces in equilibrium. Newton’s
second law states that the net force acting on a body is equal
to its mass times its acceleration:Σ~F = m~a A complete un-
derstanding of Newton’s second law requires that you be able
to find the net force. Forces add as vectors, and in this lab we
will practice adding forces. We will make inferences about
the directions and magnitudes of individual forces in the spe-
cial case where the net force acting on an object is zero.

When an object is moving at a constant speed and in a
constant direction, the acceleration of that object is zero. In
this case, we can make an inference from Newton’s second
law that the net force acting on that object is zero. That is,
if we add all of the individual forces acting on that object
as vectors the resultant must be zero.Since an object at rest
can be considered to be moving at a constant speed (zero!)
Newton’s second law requires that if we add all of the forces
acting on an object that is at rest, the resultant will be zero.

1.1 Lab Objectives

After completing this lab and the associated homework, you
should be able to:

1. Add vectors together to determine the resultant.

2. Determine the magnitude and direction of the resultant.

3. Draw a vector sum based on the forces in a free-body
diagram.

4. Make inferences about the magnitudes and directions
of unknown forces in cases where the net force acting
is zero.

1.2 Outline of Laboratory

Approximate sequence of the lab and homework:

1. Practice adding vectors to find the resultant.

2. Practice adding the forces from a free-body diagram.

3. Make inferences about the magnitudes of forces based
on a vector sum.

4. Predict the relative magnitudes of tensions for three
forces acting on a ring.

5. Use a force probe to determine the third force for an
object at rest.

6. Use addition of forces to predict an unknown force.

2. Adding vectors

We begin this lab by considering vector addition without wor-
rying about what those vectors represent.

2.1

Recall that vectors have both a magnitude (size) and a direc-
tion. When we add or subtract vectors, it is important that we
do not change the vectors we are adding – that is, we do not
want to change the magnitude or direction of the vector we
are adding. When you add vectors together graphically, it is a
good idea to add them in a different location. To add the vec-
tors ~A, ~B, and ~C together, we start by redrawing vector~A in
a new location. We then redraw vector~B with its tail placed
at the position of the head of vector~A. In the same way, the
tail of vector ~C is placed at the head of vector~B. The vec-
tor obtained when you add two or more vectors together is
called theresultant.The resultant vector from the addition of
the three vectors above is the vector whose tail is at the posi-
tion of the tail of the first vector (in this case, vector~A) and
whose head is at the position of the last vector (in this case,
vector ~C). The resultant is labeled~R in the drawing below.
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2.1.1

Show the sum of vectors~D (a vector of magnitude 5) and~E
(a vector of magnitude 3) below.

2.1.2

Three students discussing this vector sum make the following
contentions:

Student 1: “Once we find the resultant vector we can
measure it to determine the magnitude of the resultant. That’s
why we have to draw the vectors to scale.”

Student 2: “We don’t have to do that. Since we are adding
a vector of magnitude 3 to a vector of magnitude 5, the vector
sum will have a magnitude 8.”

Student 3: “No, that won’t work because they are not
scalars. The resultant will be one side of a triangle, and we
need to use the Pythagorean theorem to find the magnitude of
the sum. I calculate a sum of magnitude 5.83.”

With which (if any) of these students do you agree? Ex-
plain.

2.1.3

Show the vector~F that satisfies the equation~D+ ~E+ ~F = 0.
What is the relationship between this vector and the resultant
in Sec. 2.1.1?

2.2

Use vectors~G, ~H, and~I at right to show that vector addition
is commutative(i.e., show that you get the same resultant no
matter what order you add the vectors in).

2.2.1

Show how it is possible for two vectors to add to zero.

2.2.2

Show how it is possible for three vectorsall of the same mag-
nitudeto add to zero. What is the angle between any two of
these vectors? (Recall that the angle between two vectors is
found by placing themtail-to-tail.)

Have your lab instructor check your answers to the ques-
tions above before proceeding.

3. Adding forces

In the previous lab you practiced drawing free-body dia-
grams. Here we add the forces that act on a body as repre-
sented by the free-body diagram to find the resultant, called
thenet force.Newton’s second law relates the net force act-
ing on a body to the acceleration of that body. In this lab we
investigate the special case of zero acceleration, and there-
fore zero net force. An object has zero acceleration if it is at
rest or if it is moving at a constant speed and is not changing
direction.

3.1

Consider a suitcase sliding at a constant speed down a ramp
that makes an angle of 45◦ with the horizontal. From the
drawing and description, we can draw a free-body diagram:

We know that the weight points towards the center of the
earth, the normal force is perpendicular to the ramp, and the
friction force is parallel to the ramp opposite to the direction
of motion.

We add the forces on the free-body diagram in the same
way that we added the vectors in the previous section, except
that in this case we don’t know the lengths of these vectors
(i.e., we don’t know the magnitudes of the forces). However,
we know that the vector sum must be zerosince the suitcase
is not accelerating. Based on this, we can construct a vector
sum:

The three vectors in the vector sum form a triangle, and
we can use this triangle to reason about the relative sizes of
the individual forces.

In this case, suppose the mass of the suitcase is 20 kg.

3.1.1

What is the magnitude of the weight?
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FIGURE 18.

3.1.2

What is the magnitude of the normal force? Explain how you
determined your answer.

3.1.3

What is the magnitude of the friction force? Explain how you
determined your answer.

8.0.1. 3.1.4

What is the coefficient of kinetic friction? Explain how you
determined your answer.

Suppose that the ramp from section 3.1 was at an angle
that wasless than45 ˚ , and that a different suitcase was slid-
ing at a constant speed.

3.2.1

Draw a free-body diagram for this situation, and from this
free-body diagram construct a vector sum.

3.2.2

Rank the magnitudes of the forces in your free-body diagram.
Explain how you used the vector sum to determine your an-
swer.

3.3.1

A mass is suspended from two strings as shown. Draw a
free-body diagram, and then use the free-body diagram to
construct a vector sum.

3.3.2

Rank the magnitudes of the forces in your free-body diagram.
Explain how you used the vector sum to determine your an-
swer.

3.3.3

If the mass M is 300 grams, use your vector sum to find the
approximatevalue of the tensions in strings A and B.

Have your lab instructor check your answers to the ques-
tions above before proceeding.

4. Adding force vectors

4.1

For the situation shown at right, draw a free-body diagram
for the ring. (You can ignore the weight of the ring.) What is
the net force on the ring? Explain how you can tell.

4.2

Show a vector sum of the forces on your free-body diagram.
Based on this vector sum, predict the relative lengths of the
three springs. Explain how you determined your prediction.
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Test your prediction using about 400 grams of mass on
the hook (450 grams total), and resolve any inconsistencies.
Measure the lengths of the 3 springs in this case, and record
them here.

4.3

Again draw a free-body diagram for the situation shown at
right. Again show a vector sum of the forces on your free-
body diagram. (When you draw this vector sum, be careful
that you do not change the direction of any of the vectors!)

4.4

Based on this vector sum, predict the relative lengths of the
three springs. Explain how you determined your prediction.

Would you expect the length of spring 1 in this case to
begreater than, less than,or equal tothe length of spring 1
in the situation shown in exercise 4.1 above? Explain your
reasoning.

Move the suspension hooks outward so that when about
450 grams total is suspended, the angle between the upper
strings is 60◦ as shown. Measure the lengths of the 3 springs
and record them here. Were your answers above correct?

4.5

Now draw a free-body diagram for the case where the angle
between the upper strings is 120◦. Predict the relative lengths
of the three springs. Use a drawing of the vector sum of the
forces on the ring to explain the basis for your prediction.
(Hint: What kind of triangle is formed by the vectors of the
vector sum you have drawn?)

Move the suspension hooks outward so that with 250
grams total suspended, the angle between the upper strings
is 120◦ as shown. Measure the lengths of the 3 springs and
record them here. Were your answers above correct?

4.6

For the situation shown at right, the angleα is greater than the
angleβ. Predict the relative lengths of the springs. Explain
the basis for your predictions.

4.7

Test your prediction, and resolve any inconsistencies. Then
discuss your answers above with your laboratory instructor
before continuing.
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5. Addition of scaled vectors

5.1

We will now use a force table to observe the forces acting on
a small ring. When the ring is not accelerating, it is said to
be in equilibrium. (Later this semester we will add second
condition to the motion of an object in equilibrium having to
do with rotation.)

Place mass hangers on two of the strings that are attached
to the ring. Hook the force probe to a third string. Adddiffer-
entmasses (between 200g and 500g) to the two mass hangers.

Hold the force probe horizontally and re-zero it (with no
mass attached). Then hold the force probe so that the ring
is no longer touching the pin and the ring is centered on the
force table.

Record the direction and magnitude of each horizontal
force acting on the ring. In the space to the right, draw a
free-body diagram of these forces on the ring.

5.2

On the next page we will add the forces (as vectors) recorded
above graphically and to scale. Choose a scale for the vectors
that you will use to represent the forces on the ring (for exam-
ple, 4 cm = 1N). Do not choose a scaling factor such that your
vectors are too small to work with! (Note: For simplicity, you
may approximate g∼= 10m/s [2].)
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By constructing a scale drawing using a ruler and protrac-
tor, find the vector sum (or resultant) of the 3 tension forces
on the ring by the tip-to-tail or polygon method. (That is,
draw the tip of each vector at the tail of the succeeding vec-
tor.) The resultant vector is drawn from the tail of the first
vector to the tip of the last vector.

What would you expect the magnitude of the resultant
vector to be in this case?

Is the resultant vector that you actually obtained graphi-
cally consistent with what you expected?

5.3

Your instructor will give you an unknown mass. Hang this
mass from one of the pulleys. Hang a 300 gram mass from a
second pulley that is placed at an angle of between 110 and
150◦ from the pulley that has the unknown mass.

Use the force probe to find the magnitude of the tension
in a third string attached to the ring, and the direction of this
third force acting on the ring.

Use a scaled vector sum to determine the unknown mass.
Once you have made a prediction based on your scaled

diagram, use the scale to measure your unknown mass.
Before you leave the lab, show your lab instructor your

scaled vector sum.
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