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Exact solution for the one-dimensional third-neighbour Ising model
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Following the transfer matrix approach, we compute the exact solution for the one-dimensional Ising model with interactions up to third
neighbours. We write the result in a compact form, and we show that it coincides with earlier numerical computations.

Keywords:Ising model; exact solutions; distant neighbors.

Utilizando el formalismo de la matriz de transferencia, se determina la solución exacta para el modelo de Ising unidimensional con interacción
a terceros vecinos. Es obtenida una expresión para el resultado en forma compacta y mostramos que coincide con resultados numéricos
anteriores.
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1. Introduction

The Ising model was proposed and solved in its simplest
form by the German physicist Ernst Ising in his PhD the-
sis in 1924 [1]. As mentioned by him in his paper, the study
of this model had been suggested to him by his advisor Wil-
helm Lenz, who had proposed it in 1920 [2,3]. It seems that
the name was given to the model by R. Peierls in 1936. Ac-
tually, considering these facts, there are authors who recog-
nize Lenz’s priority in this work [4]. Although Ising never
published any other scientific works, his model is a widely
used standard model of statistical physics and continues to
be frequently cited not only in physics, but also in chemistry,
biology, mathematics, sociology, etc.

The computation Ising carried out is the calculation of
the partition function for a linear chain of spins with first-
neighbour interactions, in an external constant magnetic
field [1]. Since then, the calculation of exact solutions for the
partition function has continued to be an important problem.
In fact, the higher dimensional case has been studied indepen-
dently by Kramers and Wannier [5] and by Montroll [6], who
developed the transfer matrix formulation, in which the prob-
lem reduces to finding the maximal eigenvalue of this matrix.
This formulation relies on the observation that in the ther-
modynamic limit, the addition of one finite number of nodes
to the system, keeping its geometry, does not affect its parti-
tion function. E. Montroll has developed a formulation for a
layered array in such a way that each layer is represented by
a node of an effective one-dimensional system. Each of the
nodes has a self energy which represents all the inner inter-
actions of the layer, and its interaction modes with the neigh-
bouring nodes correspond to the interactions between the lay-
ers. The additional assumption of periodicity, which does not

modify the partition function either, leads to an expression
given by the trace of the transfer matrix. Montroll [7] applied
this approach to the one-dimensional approach with second-
neighbour interactions in the absence of external fields.

If we stay at the one-dimensional case, the next prob-
lem will be to find the solution for third neighbours, whose
formulation has been tackled by Green [8] and Fisher [9].
This problem has been also considered regarding the order-
ing in the ground state by Katsura and Narita [11], Bundaru
et al. [12] and Morita [10]. In his analysis, Fisher established
that the framework of the transfer matrix is the one with
fewest algebraic difficulties. However, the eigenvalue for this
case, of third neighbours, has not been computed. This prob-
lem has been also tackled and numerically solved by Dob-
son [13]. It seems that no more significant progress regarding
exact solutions for higher order neighbours has been made
since then [14,15].

In this paper, following the formalism of Kramers-
Wannier-Montroll, the exact solution to the third-neighbour
Ising model is worked out. It is given in a compact form and
is compared with the numerical results of Dobson. In the sec-
ond section the general setting is sketched, in the third section
the results are presented and in the fourth section some con-
clusions are drawn.

2. One-dimensional Ising model with distant
neighbours

Thompson [16] has analized the phase transition problem for
the one-dimensional IM. He developed the transfer matrix
formalism, defining blocks with a length determined by the
rank of the interaction. Let us denote the spin variable asso-
ciated with each node of the lattice by{S}. If the interaction
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rank isk, andN = kM , then the lattice is restructured in M
blocks each of length k, with an effective spin{S̃}, as shown
in Fig. 1.

Let us consider a linear chain withN = nM nodes,
wheren is the interaction rank. On the nodei there is a spin
variableSi which can take the values±1. The configuration
of the system is characterized by the total spin variable

S̃ = {S1, S2, . . . , SN}, (1)

which has2N different values. We arrange this chain inM
blocks containingn elements each, as shown in Fig. 1. Thus,
the configuration of the block numberj can be caracterized
by the block spinSj = {S(j−1)n+1, S(j−1)n+2, ..., Sjn},
which has2n different values, and whose components can
be relabeled as in Fig. 1,

Sj = {S(j)
1 , S

(j)
2 , ..., S(j)

n }. (2)

With these notations, the total spin of the chain is given
by S̃ = {S1, . . . ,SM}.

Thus, if the interacting energy between two spins is given
by JjSiSi+j , then the total energy of the system in configu-
ration (1) is given by

E(S̃) = −
N∑

i=1

n∑

k=1

JkSiSi+k − µB

n∑

i=1

Si, (3)

where the values containing spinsSi, with i > N , must be
omitted. Moreover, the interaction strengths must decay un-
der a certain distance dependent law. Separating the terms
of this expression into self energy contributions,i.e. due to
the interactions among elements of the same block, and the
contributions of spins of neighbouring blocks, we get, in the
notations (2),

E(S̃) = −
M∑

j=1

[
µB

n∑

i=1

S
(j)
i +

n−1∑

k=1

Jk

n−k∑

i=1

S
(j)
i S

(j)
i+k

]

−
M−1∑

j=1

n∑

k=1

Jk

n∑

i=n−k+1

S
(j)
i S

(j+1)
i−n+k; (4)

then, if we define the self energy of the blockj as

M(Sj) = −µB

n∑

i=1

S
(j)
i −

n−1∑

k=1

Jk

n−k∑

i=1

S
(j)
i S

(j)
i+k, (5)

and the interaction energy between the blocksj andj + 1 as,

M(Sj ,Sj+1) = −
n∑

k=1

Jk

n∑

i=n−k+1

S
(j)
i S

(j+1)
i−n+k, (6)

then we have,

E(S̃) =
M∑

j=1

M(Sj)+
M−1∑

j=1

M(Sj ,Sj+1)

=
1
2
M(S1)+

M−1∑

j=1

V (Sj ,Sj+1)+
1
2
M(SM ), (7)

FIGURE 1. Block structure of a linear chain with nth order interac-
tions.

where

V (S,S′) =
1
2
M(S) +M(S,S′) +

1
2
M(S′). (8)

Thus the partition function will be given by

ZM =
∑

S̃

e−βE(S̃) =
∑

S1

· · ·
∑

SM

U(S1)D(S1,S2) · · ·

×D(SM−1,SM )U(SM ) (9)

where

U(S) = exp
[
−

(
β

2

)
M(S)

]

are the components of a column matrixU , corresponding to
the2n configurations of the block spinS, and

D(S,S′) = e−βV (S,S′), (10)

are the components of a2n×2n matrixD, the transfer matrix.
Thus the partition function can be written as

ZM = UT DM−1U. (11)

(See for example Huang) [17]. Montroll [6] has considered
a layered medium, such that the range of atoms in one layer
did not exceed the atoms in the next layer. Thus each layer
has been represented by a block, with a self energy due to
its internal interactions, and an effective interaction with the
next neighbour blocks. In this way, this medium could be
considered as effectively 1-dimensional. He computed the
partition function by a change of spin variables in such a way
that the matrixD would be diagonalized. Thus, in the ther-
modynamic limit, he obtained that the partition function is
proportional toλmax, with a factor given by the square mod-
ule of the corresponding eigenfunction.

Following Thompson (1971), we impose periodic bound-
ary conditions on the chainSi+N = Si, which do not mod-
ify the results in the thermodynamic limit. Thus we have
SM+1 = S1. In this case interaction terms between the last
block and the first one must be added to the energy, and (7)
becomes

E(S̃) =
M∑

j=1

[M(Sj) +M(Sj ,Sj+1)]

=
M∑

j=1

V (Sj ,Sj+1), (12)
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and the partition function is now given by

ZM = TrDM . (13)

If the eigenvalues of the transfer matrix are
{λ1, . . . , λ2n}, in general they are complex numbers, ac-
cording to Aguilaret al. [15,18], then due to the fact that the
partition function is real,

ZM =
2n∑

k=1

|λM
k | =

2n∑

k=1

|λk|M

= |λmax|M
2n∑

k=1

|λk|M
|λmax|M , (14)

where|λmax| is the maximal eigenvalue modulus. Then in
the thermodynamic limitN →∞, the spin partition function
is given by

L(T ) = lim
N→∞

1
N

log ZM

= lim
N→∞

1
N

log |λmax|M =
1
n

log |λmax|, (15)

n being the interaction range.
As pointed out by Montroll [7], this system has spin re-

versal symmetry, that is under the inversion of the values of
all the spin variables. That means that each configuration ap-
pears twice and if properly arranged, the transfer matrix will
have the block form,

D =
(

P Q
Q P

)
, (16)

whereP andQ are2n−1 × 2n−1 blocks. In this case, by a
similarity transformation with

S =
1√
2

(
I I
−I I

)
, (17)

we get

D → 1
2
SDS−1 =

(
P + Q 0

0 P −Q

)
. (18)

Therefore, the computation of the eigenvalues ofD is re-
duced to the computation of the eigenvalues of the half size
matricesP ± Q, which can simplify considerably the prob-
lem, in particular in the third-neighbour case, which will be
studied in this work. Moreover, the elements of the transfer
matrix (10) are exponentials, hence positive numbers. Thus
the entries of the matrixP +Q will have also positive values,
and its trace will be bigger than the trace ofP−Q. Therefore,
λmax will be an eigenvalue ofP + Q.

3. Third-neighbour interactions

Let us consider now the case of third-neighbour interactions,
n = 3, as shown in Fig. 2. In this case the transfer matrix is
of order eight, and the matrixP + Q is of order four.

If we define the adimensional variablesx=βJ1, y=βJ2

andz=βJ3, a rather cumbersome computation shows that,

P =

e3 x+3 y+3 z e2 x+2 y+z ex+y+z ez

ez e−x−y+3 z e−2 x+2 y−z ex−3 y−z

ex+y+z e−z e− x−y+3 z e−2 x+2 y−z

e2 x+2 y+z ex+y−z e−z e−x−y+3 z

, (19)

and

Q =

ex−y−3 z e−2 y−z e−x+y−z e2 x−z

e2 x−z ex−y−3 z e−2 y+z e−x+y+z

e−x+y−z e−2 x+z e−3 x+3 y−3 z e−2 y+z

e−2 y−z e−x−3 y+z e−2 x+z ex−y−3 z

. (20)

Thus, the eigenvalue equation ofP + Q is,

λ4 + aλ3 + bλ2 + cλ + d = 0, (21)

where the coefficients can be computed to be given by

a = −e−3x−y−3z(3e4x + e4y + 3e2x+6z + e6x+4y+6z),

b = −e−6y + 3e−2y − 3e2y + e6y + 3e2x−2y−6z + 3e−2x+2y−6z + 3e−2(x+y−3z) − 3e2x−2y−2z

− 3e−2(x+y−z) − 3e−2(x−y+z) − 3e2(x+y+z) + 3e2(x+y+3z),

c = −e−3(x+y+3z)(−1 + e4z)
3
(−e6x − 3e2x+4y + e6z + 3e4x+4y+6z),

d = e−12z(−1 + e4z)
6
.
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FIGURE 2. Third order interactions.

FIGURE 3. The continuous curve corresponds to our result with
third neighbors, the black dotted curve is Dobson’s and the white
dotted curve corresponds to the case with first-neighbor interac-
tions. (The positions of the maxima are indicated byx̃1 and x̃3).

The eigenvalues of this Eq. (21) can be written as

λ1,2 = −a

4
±
√

A

2
+

1
2

√
3δ −A± γ

4
√

A
, (22)

λ3,4 = −a

4
±
√

A

2
− 1

2

√
3δ −A± γ

4
√

A
, (23)

where

A =
α

1
3

32
1
3

+
2β

1
3

33α
1
3

+ δ,

α = η +
√
−4β3 + η2,

β = b2 − 3ac + 12d,

γ = −a3 + 4ab− 8c,

δ =
a2

4
− 2b

3
,

η = 2b3 − 9abc + 27c2 + 27a2d− 72bd.

A numerical computation shows us that the maximal
eigenvalue is given byλ1, as could be expected from the signs
in Ec. 22 and (23). It is interesting to note that the numerical
evaluation gives a real result for it, as well as forλ2, and the
other two eigenvalues get nonvanishing imaginary parts. It
would be very difficult to get this result from the given form
of these eigenvalues. However, having this exact form for the
eigenvalues, the numerical evaluation can be done reliably.

This result is in very good agreement with the numerical
results of Dobson (1969), who has computed the heath ca-
pacity for third and even higher neighbours, with spin inter-
actions decaying under the Kac-Thompson law,Jn = J1/nα,
as shown forα = 2, in Fig. 3. The heath capacity is obtained
from,

C(T )
k

=
1
3

[
β2

λmax

∂2λmax

∂β2
−

(
β

λmax

∂λmax

∂β

)2
]

. (24)

4. Conclusions

We have started from the general problem of the computa-
tion of the partition function for the Ising model with dis-
tant neighbour interactions of any order. This problem was
initially tackled and solved in general by Kramers and Wan-
nier [5] and by Montroll [6,7]. They have shown that the
solution to this problem amounts to computing the maximal
eigenvalue of the transfer matrix.

We have obtained the exact solution for the one-
dimensional Ising model with third-neighbour interactions.
The partition function, given by the maximal solution of (21),
is given in a compact form in Eq. 22, which requires yet to
be transformed into a much simpler form in order to be use-
ful for purely analytic computations. However, this result al-
lows computations of thermodynamic quantities, such as that
of heath capacity (24), by means of symbolic manipulation
programsi, from which a subsequent numerical study can be
done. We obtain also, in the case of third neighbours, that
two of the eigenvalues are real, including the maximal one
as should be the case, but the other two have nonvanishing
imaginary parts.

The transfer matrix approach can be applied to other one-
dimensional problems, in which distant nodes along the chain
are now near due to the geometical setting,e.g. such as
DNA [14], one-dimensional proteins or polymers [19,20]. In
particular cases of this type, exact solutions to fourth or fifth
order neighbour interactions can be given. Moreover, chains
with polyatomic nodes can be considered,i.e. in which there
are different types of interactions. Some of these topics will
appear in Mart́ınez and Raḿırez [21].
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