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In this work we investigate some computational aspects of the eigenvalue calculation with edge elements, those include: the importance of the
grid generator and node-edge numbering. As the examples show, the sparse structure of the mass and stiffness matrices is highly influenced
by the edge numbering of the different grid generators tested. Significant bandwidth reduction can be obtained by the proper combination
of the edge numbering scheme with the grid generator method. Moreover, an ordering algorithm such as the Reverse Cuthill-McKee can
improve the bandwidth reduction which is necessary to reduce storage requirements.
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En este trabajo investigamos algunos aspectos computacionaléidé de eigenvalores con elementos de borde, entre los que se incluye la
importancia del generador de mallas y la numenadie nodos-lados. Como muestran los ejemplos la estructura esparcida de las matrices de
masa y momento es altamente influenciada por la nun@eral los lados de los diferentes generadores de mallas probados. Unageducci

de ancho de banda notable puede obtenerse mediante la corbbiapcopiada del esquema de numeéadie los lados con el @odo
empleado por el generador de mallasad\viin, una renumeragh como el algoritmo Reverse Cuthill-McKee puede mejorar la rednabe

ancho de banda lo cual es necesario para reducir requerimientos de almacenamiento.

Descriptores:Generadores de mallas triangulares; elementos de borde; renuindR&M; eigenproblemas generalizados.

PACS: 02.30.Jr; 02.70.Dh; 41.20.Jb

1. Introduction vantages of edge elements include the facts that: they are
divergence free (spurious non-physical solutions are elimi-
In electromagnetism, eigenvalue problems that are often emated), interelement boundary conditions are automatically
countered include those of cavity resonance and wave prombtained through the natural boundary conditions, edge ele-
agation in both closed and open structures, such as metallivents impose the continuity of only the tangential compo-
waveguides, open and shielded microstrip transmission linegients of the electromagnetic field, and Dirichlet boundary
and optical waveguides or fibers. In these problems, one isondition can be easily imposed along the edge elements.
interested in determining the resonant frequencies or propa- ) . )
gation constants corresponding to eigenvalues and the associ- S0mMe factors that complicate the finite element solution

ated resonant or propagation modes corresponding to eigeH‘f the eigenvalue analysis are the sparsity of the matrices and
vectors. the fact that the method gives rise to generalized eigenprob-

Calculation of eigenfrequencies in electromagnetic cav-leergisrgg :T?]fgpg?seeres?rﬂzjrée\(l)\; Stﬁfztgzrgg;nrysgjei: are
ities is useful in various applications such as the design of . N . .
bp g I_Elghly influenced by the edge numbering provided by the

resonators. The importance of the computation of the eige - t H trix techni f
frequencies in a cavity resides in the fact that the electrodl'd generator. Here, sparse matrix techniques are preter-

magnetic field within such a cavity can be decomposed inté"‘blde smtce tt?]e csjtorage requuwegi mcrt:&ses @'gfv ), ka|1ere
linearly independent modes that oscillate in time at distinctN enotes the degrees ot freedom of the problem. Moreover,

frequencies. The modes are referred to as eigenmodes, t@%onrsgcet.cin rl})qe;trrgduced by minimizing the bandwidth of the
frequencies as eigenfrequencies. Ity X.

For the resonant frequencies, calculation in simple ge-  The work is organized as follows: in Sec. 2 we introduce
ometries, analytical techniques [15], scattering matrix formuthe finite element formulation for eigenvalue problems in
lation [20] and finite differences [12] have been successfullyelectromagnetism by using edge elements (two dimensional
used; however for complex geometries, the geometry can b@/hitney elements), Sec. 3 shows the influence of the mesh
approximated by a tessellation (provided by grid generatorsjyenerator in the structure of the mass and stiffness matrices,
which makes the finite element method the most appropriatg, Sec. 4 we present the use of the RCM ordering algorithm
technique. to reduce the bandwidth of the matrices, Sec. 5 presents the

The finite element method with edge elements has beeeigenvalue calculation, and finally Sec. 6 present the conclu-
used to solve these kinds of problems [21]; some of the adsions of this work.
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2. The edge elements for an eigenvalue calcu- for n = 1,2,3, whereA denotes integration over the trian-
lation gular element. By interchanging the integration and summa-
tions, Eq. (7) can be written in a matrix formulation
Let us consider the eigenvalue calculation of a resonant cav-
i i i [5'][e] = K*[M] e] ®)
ity [8, 21, 23] where the boundary is assumed to be metallic
and the interior is aif?; the eigenvalue problem for the reso-

. where the local matrices are given by
nant wavenumber is

v xvxE=kE, in Q (1) SfJZ/(VXWi)'(VXWg‘) 9)
A
ax E=0 on 909 (2) and
This eigenvalue problem is obtained by the following M}, = /Wi - Wid; (10)
assumptions: the electromagnetic figldx,t), H(z,t) in A

the cavity is described by Maxwell equations, the fieldsthus after a loop over all the triangles we obtain the global
are separated into their spatial and temporal componentsigen matrix equation
E(x,t) = E(x)e! andH (x,t) = iH (z)e™* and the equa-
tions are solved for one of the fields [7] (in our case B)r [Sl[e] = E*[M][e]. (11)
In order to get the weak formulation, let us multiply

Eq. (2) by a vector testing functidiy; and integrate ovef: 3. The influence of the mesh generator

/ Wi (VxvxE- k;QE) dz = 0; (3)  Inseveral applications the geometries are not simple, so it is
J necessary to discretize the computational domain. Triangles
are the most popular simple shapes employed in modelling
now integrating by parts we get two-dimensional geometries.
To investigate the influence of the mesh generator we con-
/(V x W;) - (v x E)dz sidered six different triangular grid generators: initmesh [17]
Q

(pdetool Matlab toolbox), Triangle [22], mesh2d [9], mesh-
9 R newer [19], Qmg [18] and Ansys [2].
=k /Qwi - Edz - o Wi- (> v x E)ds. (4) The list of software for mesh generation is very long [16],
so we focus our attention on six grid generators based on

For a perfect electric conducting (PEC) boundary, thethree main grid generation techniques: Octree, Delaunay and
contour integral vanishes a¥; is set to zero to satisfy the advancing Front.

Dirichlet boundary condition. Thus Eq. (4) can be written as  |nitmesh is a Matlab function that implements a Delau-
nay triangulation algorithm, Triangle is a mesh generator that
/(v xW;) - (v x E)dr = kQ/Wi -Edx. (5) uses Ruppert's Delaunay refinement, mesh2d is a 2d con-
Q a strained Delaunay unstructured mesh generator that provides
) o ) three different node numbering, meshnewer is based on an
For general geometries, the cavity is approximated byerative continuous smoothing method and Distmesh [13],
a triangular tessc_ella_tlon, and in each triangular element 'FthQ uses a quadtree-based algorithm that can triangulate any
transverse electric field can be expressed as a SUperpOS't'BBthedraI region including nonconvex regions with holes,
of edge elements . and finally Ansys uses an advancing front mesh generator.
E— R 6 We begin our discussion with some observations on the
= Z e; Wi, (6) . . .
— sparsity pattern of the stiffnessand mass\/ matrices. For
Jj=1 . .
vector elements the unknowns are associated with the edges
. . i ; of the elements (the number of edges or degrees of freedom
der shape function associated with nodes 1,2,3,/afgithe  can pe obtained by Euler’s formula with the number of nodes
length of edge j connecting nodgsandjs. . and elements provided by the nodal grid generator). An
In order to obtain the finite element formulation we SUb'edge on the boundary of the computational domain has two
stitute Egs. (6) into (5) to get neighboring edges (the other two that with it form a triangle),
3 while an interior edge has four neighboring edges (an interior
/Z(V x W;) - (7 x W,)ejdx edge is shared by two triangles); t_hus fche rows of the stiff-
ness and mass matrices related to interior edges have at most
five nonzero entries, while those related to boundary edges
) 3 have three. A bound for the number of nonzero entriess
=k /Z(Wj-wi)ejd:c @)
A

whereW; = [;(L; VL;, — L;,VL;j,), L; is the first or-

A =1

given bynz = 3xnbedges—+5*niedges, wherenbedges and
j=1
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TABLE |. Meshes information

created by nodes elements edges size
initmesh 273 496 768 0.1807
Triangle 270 502 771 0.2033
mesh2d 272 506 777 0.1861

meshnewer 308 505 812 0.3043
Qmg 210 370 579 0.2008
Ansys 257 460 716 0.1979
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FIGURE 6. Matrix Structure Ansys.

The sparse structure of the matric@andM depends on
the edge ordering; most of the grid generators do not provide
the edge numbering because they were developed for node-
based finite elements (among the grid generators tested only
Triangle provides the edge numbering), so we need to con-
vert node numbering into edge numbering. Here we follow
the two simple schemes given by Jin [8]; for the first scheme
denoted byS¢;, an indicator to each edge is defined and the
array of indicators is rearranged by a sorting algorithm (the
edge ordering provided by Triangle coincides with the one
obtained with this scheme). Most sorting algorithms are very
efficient and can perform the task witliog(n) operations

niedges are the number of boundary and interior edges re{heren is the number of triangles). For the second scheme
spectively (some mesh generators as initmesh and Qmg pré&<, no sorting algorithm is required; we use the element-to-

vide a list of the edges on the boundary).

node connectivity array to generate a node-to-element array.
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Then the element-to-edge array is initialized with zeros and 1 '
a counter is set to zero; to fill in it we loop over the elements i
and examine its edges: if the entry is nonzero this edge was 0.8- “|

already numbered and we go to the next edge, and if it is zera \
we give it the value of the counter. This algorithm requires g} AN

n? operations. These schemes generate different edge num

bering for a given triangulation. 04l |=M-Scheme

1 .

In our first experiment we used the different grid genera- @ Scheme 2 * .

tors to define a grid for the simple geometry of the unit circle
with approximately 500 elements. Table | displays the infor-
mation of the meshes.

By using the two schemes of edge numbering we calcu- \rilviceh Trialngle mesh2d meshnewer erng

late the stiffness matrix for the six meshes. Figures 1-6
show the sparse structure Sffor the two edge numbering FIGURE 7. Bandwidth.
schemes{ and M have basically the same structure).

We refer to bandwidth as the half bandwidth over the
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gulation methpds), however we note thtat; works better V,A:Aj&ﬁtggg#‘gggggg ”J‘.'A’-'M%Vﬁié’
(lower bandwidth) for the meshes generated by Ansys and é PR ' “ff“
W2 RS

meshnewer whileSc, works better for the mesh generated

by Qmg. In fact the bandwidth obtained by usifg; is initmesh,Triangle,mesh2d

meshnewer

only 11.48% of that obtained withc, for meshnewer, and Figure 8. Meshes obtained by Delaunay method and continuous

for Ansys the bandwidth obtained witbic; is 48.83% of  smoothing method.
that obtained withSc,, whereas for Qmg we have the op-

e

posite situation: the bandwidth obtained wih, is 9.58%

of that obtained withSc;. The grid generator meshnewer is

based on the iterative method of Persson, which tries to op-

timize the node locations by a force-based smoothing proce-

dure while the Ansys grid generator uses an advancing front

method. It seems that grid generators based on Delaunay

methods produce no significant changes in the bandwidth size

with either edge numbering scheme. Howeser produces

a lower bandwidth thaf'c, for meshnewer; here the iterative
method of Persson gives an optimal node numbering for the ng
Sc; which is based on a sorting algorithm. On the other hand

Sec, produces a lower bandwidth thaft; for Qmg which ~ FIGURE 9. Meshes obtained by Quadtree and Advancing Front

uses a quadtree method. In this c&%e makes a loop over Method.

the elements so it seems that Qmg gives an optimal element

ordering. Similar results were observed by testing twenty dif
ferent geometries, showing that the bandwidth is influence

JABLE 1. Grid generators information

by the method used for the grid generator [16].

Unstructured grid generators usually create numbers for
vertices and cells as they produce them. For a frontal grid
generator, the vertices are often numbered in a spiral fashion;
for octree methods, squares containing the geometric model mesh2d
are recursively divided until a desired solution is found. Thus
nodes and faces are formed whenever the internal octreeneshnewer O.S.
structure intersects the boundary, whereas Delaunay gener-
ators have random numbering.

Figures 8-9 shows the meshes. The meshes produced by
the grid generators based in Delaunay methods (initmesh,
Triangle, mesh2d) looks very similar; however the meshes Ansys C.s.
produced by meshnewer, Qmg and Ansys look different.

method E.N. B.E. Language
initmesh  C. S. Delaunay X N4 Matlab
Triangle O.S. Delaunay Vv * C
0.S. Delaunay X * C
iterative
continuous X X Matlab
smoothing
Qmg 0O.s. quadtree X Vv Matlab
C++
advancing front x X user
interface
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Bo0 T T T

finite element matrices are often performed using graph the-
B0 ] ory [10].
A widely used but rather simple ordering algorithm is
Ao | the reverse Cuthill-McKee ordering algorithm [4]. This al-
200F I- 1 gorithm first finds gpseudoperipheral vertexf the graph of
, the matrix. It then generatedevel structureby breadth first

initme sh Triangle mesh2d searchand orders the vertices by decreasing distance from
thepseudoperipheratertex.

Here we use RCM with two approaches: in the first one
GO0t 1 the ordering is applied to the graph of the mesh (the nodes

and elements) and then we assemble the matrices. In the sec-
ond one we can assemble the matrices and use the RCM to

handwidth

=

OO0

400 ¢

handwidth

200f I 1 reorder the rows and columns of the matrices (the eigenval-
D_-., = ues remain invariant); a Matlab implementation of this or-
meshnewer Lmg ANsys dering is provided by the functiosymrcm. It is desirable

that the grid generator can provided optimal meshes, so the
RCM should be considered as part of the grid generator. This
is not the case with these grid generators, so we assemble
the matrices and reorder them before solving the generalized
B0 T eigenproblem.

400

FIGURE 10. Bandwidth reduction by RCM of the meshes.

a00

handwidth

4.1. Reordering the meshes
2001

: | . o . As we mentioned we generate a mesh, apply the RCM algo-

initrresh Triangle mesh2d rithm and then we assemble the matrices. By the nature of
the edge ordering schemes, we expect to obtain better results
800 ' ' ' by usingSc; after the RCM ordering.
sool ] Figure 10 shows the bandwidth reduction produced by

the RCM algorithm. At each group the height of the columns

00T represents the bandwidth: the first one is obtained by using

handwidth

200k 1 Sc1, the second one is RCM followed ke, the third is
Ll e el Sez, and the fourth is RCM followed bfic,. Bandwidth re-
reshrewer amg Ansys duction is attained with all grid generators when a RCM fol-

lowed by Sc, is used except with meshnewer; it seems that
the node ordering of the mesh generated by meshnewer is
As we mentioned above, the finite element formulationOptimal and a RCM reordering is not needed. Note that even

with edge elements requires the edge numbering to asserflough @ RCM ordering was used, tie, does not provide
ble the matrices and the boundary edges to imposed bounf@ndwidth reduction.
ary conditions. Table Il summarizes some useful informa-
tion of the grid generators. Here E.N. and B.E. mean Edge
Numbering and Boundary Edges respectively; C.S. stands fan this case the RCM ordering is applied after the matrices
commercial software while O.S. stands for Opensource softare assembled. Figure 11 shows the bandwidth reduction by
ware. Among them, only Triangle provides the edge num-sing RCM to the meshes (rcm1) and to the assembled ma-
bering, initmesh and Qmg are the only grid generators thagrices (rmc2). In each group the height of the columns rep-
provide the boundary edges, while mesh2d can put marks ofesents the bandwidth; the first column is obtained by rcm1
the boundary nodes so that boundary edges can be identifiegith scheme 1, the second column is rcm2 with scheme 1,

the third column is rcm1 with scheme 2 and the fourth one is
4. Reordering rcm2 with scheme 2.

In all cases bandwidth reduction is obtained by rci$@;

Reordering of sparse matrices is essential for good perfoirdoes not work very well, since it only provides bandwidth
mance on parallel computers. A good reordering algorithnreduction with rcm1 for the Qmg grid generator. The rcm
can lead to much better load balance of the computer and thusdering is not necessarily the best choice, as it produces a
to adramatic increase in performance compared to a naive omatrix with a narrow bandwidth which fills in almost com-
dering [3]. In order to reduce the bandwidth of the stiffnesspletely during the Cholesky factorization. On the other Min-
and mass matrices, an ordering scheme can be used. Nodadum degree [1] produces a structure with large blocks of
ordering for the formation of suitable sparsity patters for thecontiguous zeros which do not fill in during factorization.

FIGURE 11. Bandwidth reduction by RCM of the matrices.

Reordering the matrices
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' -~ - . n 6. Conclusions
’ - ... LT In this work we have investigated some computational as-

pects of the eigenvalue calculation with edge elements, in-
-hs ... - .. .. - cluding the importance of the grid generator and node-edge
" » .. " . » .. ordering. We have observed how the sparse structure of the
- - % » mass and stiffness matrices is highly influenced by the edge
FIGURE 12. From left to right and up to down, the first ten TM humbering. Grid generators are mainly designed for node
modes of a coaxial line. based finite elements, so an edge numbering is required. Two
numbering schemes for the edges were investigated, and six
grid generators were tested summarizing their suitableness
for the edge element formulation.
After discretization by the edge finite element method we ar-  AS far as we know, this is the first time that different
rive at meshing algorithms haven been compared to show that sig-
Se = k2Mé: (12) nificant bandwidth reduction can be obtained by the proper

. %ombination of the edge numbering scheme with the grid
here we have assumed constant material parameters so the . :
matrices are symmetric and sparse. Our next task is to nume gnerator method. In factc, only gives good resuits V.V'th

' mg (quadtree based); for the other grid generatafsis

ically solve a generalized eigenproblem; to this end we can

take a look at [B], which provides a survey of some free avail2 better choice. The RCM reordering of the mesh followed

: by Sc; can improve the bandwidth reduction with all the grid
able software for sparse eigenvalue problems. There are tw .

) . . generators except with meshnewer.
main approaches to solve the generalized eigenproldiem

: : . The ordering of meshnewer is optimal wiftr;, so that
rect solvers and iterative solverk direct solvers a sequence - ) : L
: . ; ) .~ no RCM reordering is required, making this grid generator a
of transformations is applied to reduce the generalized eigen- . . :
suitable choice for edge element formulation.

problem to an standard eigenproblem; here it is desirable t0 : S .
avoid the fill in the Cholesky decomposition. On the other No bandwidth reduction is obtained by RC.M OT the mesh
ollowed by Sco. Moreover, RCM of the matrices improves

hand iterative solvers work in the original eigenproblem an he bandwidth reduction reducing the storage requirements
try to extract selected eigenvalues and eigenvectors from ap- The eigensolver was not affected by the bandwidth 0];
prog;:]zloswodr:rgiﬁ'ﬁgi!i;uﬁzgfsveﬁ;{o solve eneralizeH]e matrices because the command eigs in Matlab solves lin-
cigen robﬁems is by usin tEe Matla)l; functieius 9 This €& systems internally when the eigenproblem is generalized.
genprot y g the. gs . This suggests that in order to speed up the computations,
fgnc'uon implements an Implicitly Restarted Arnoldi algo- a further study with banded generalized eigensolver must
rithm [24]. ?e conducted [14] where the eigensolver must take advan-
of banded and non-banded sparse matrices. To this end, W%ge of the banded structure of the matrices [5]. For the di-

) . ; . rect solvers, it is mandatory to investigate other renumbering
consider the eigenvalue calculation of TM modes in a coax-

ial cable with inner radius- and outer radius-. Here schemes (for example minimum degree) and compare their

/r1 = 4, the mesh has 16014 elements and 215187 ed efi!l in of the Cholesky factorization; on the other hand, for the
2/ = % : 9€Rerative solvers the influences of the bandwidth reduction of
matrices.S and M have sizel5187 x 15187 and 75271

nonzero elements. Figure 12 shows the first ten TM modes the matrices on the performance of matrix-vector multiplica-

The corresponding cutoff wavenumbers are given bytIon should be investigated.

1.0255, 1.1132, 1.1132, 1.3317, 1.3318, 1.6089, 1.6089,
1.9023, 1.9023, 2.0832 in agreement with the calculated val-
ues in literature.
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