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Triangular grid generators for the eigenvalue calculation with edge elements
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In this work we investigate some computational aspects of the eigenvalue calculation with edge elements, those include: the importance of the
grid generator and node-edge numbering. As the examples show, the sparse structure of the mass and stiffness matrices is highly influenced
by the edge numbering of the different grid generators tested. Significant bandwidth reduction can be obtained by the proper combination
of the edge numbering scheme with the grid generator method. Moreover, an ordering algorithm such as the Reverse Cuthill-McKee can
improve the bandwidth reduction which is necessary to reduce storage requirements.
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En este trabajo investigamos algunos aspectos computacionales del cálculo de eigenvalores con elementos de borde, entre los que se incluye la
importancia del generador de mallas y la numeración de nodos-lados. Como muestran los ejemplos la estructura esparcida de las matrices de
masa y momento es altamente influenciada por la numeración de los lados de los diferentes generadores de mallas probados. Una reducción
de ancho de banda notable puede obtenerse mediante la combinación apropiada del esquema de numeración de los lados con el ḿetodo
empleado por el generador de mallas. Más áun, una renumeración como el algoritmo Reverse Cuthill-McKee puede mejorar la reducción de
ancho de banda lo cual es necesario para reducir requerimientos de almacenamiento.

Descriptores:Generadores de mallas triangulares; elementos de borde; renumeración RCM; eigenproblemas generalizados.

PACS: 02.30.Jr; 02.70.Dh; 41.20.Jb

1. Introduction

In electromagnetism, eigenvalue problems that are often en-
countered include those of cavity resonance and wave prop-
agation in both closed and open structures, such as metallic
waveguides, open and shielded microstrip transmission lines,
and optical waveguides or fibers. In these problems, one is
interested in determining the resonant frequencies or propa-
gation constants corresponding to eigenvalues and the associ-
ated resonant or propagation modes corresponding to eigen-
vectors.

Calculation of eigenfrequencies in electromagnetic cav-
ities is useful in various applications such as the design of
resonators. The importance of the computation of the eigen-
frequencies in a cavity resides in the fact that the electro-
magnetic field within such a cavity can be decomposed into
linearly independent modes that oscillate in time at distinct
frequencies. The modes are referred to as eigenmodes, the
frequencies as eigenfrequencies.

For the resonant frequencies, calculation in simple ge-
ometries, analytical techniques [15], scattering matrix formu-
lation [20] and finite differences [12] have been successfully
used; however for complex geometries, the geometry can be
approximated by a tessellation (provided by grid generators),
which makes the finite element method the most appropriate
technique.

The finite element method with edge elements has been
used to solve these kinds of problems [21]; some of the ad-

vantages of edge elements include the facts that: they are
divergence free (spurious non-physical solutions are elimi-
nated), interelement boundary conditions are automatically
obtained through the natural boundary conditions, edge ele-
ments impose the continuity of only the tangential compo-
nents of the electromagnetic field, and Dirichlet boundary
condition can be easily imposed along the edge elements.

Some factors that complicate the finite element solution
of the eigenvalue analysis are the sparsity of the matrices and
the fact that the method gives rise to generalized eigenprob-
lemsSv = λMv where only a few selected eigenvalues are
desired. The sparse structure of the matricesM and S is
highly influenced by the edge numbering provided by the
grid generator. Here, sparse matrix techniques are prefer-
able since the storage required increases withO(N), where
N denotes the degrees of freedom of the problem. Moreover,
storage can be reduced by minimizing the bandwidth of the
connectivity matrix.

The work is organized as follows: in Sec. 2 we introduce
the finite element formulation for eigenvalue problems in
electromagnetism by using edge elements (two dimensional
Whitney elements), Sec. 3 shows the influence of the mesh
generator in the structure of the mass and stiffness matrices,
in Sec. 4 we present the use of the RCM ordering algorithm
to reduce the bandwidth of the matrices, Sec. 5 presents the
eigenvalue calculation, and finally Sec. 6 present the conclu-
sions of this work.
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2. The edge elements for an eigenvalue calcu-
lation

Let us consider the eigenvalue calculation of a resonant cav-
ity [8, 21, 23] where the boundary is assumed to be metallic
and the interior is airΩ; the eigenvalue problem for the reso-
nant wavenumber is

5×5× E = k2E, in Ω (1)

n̂× E = 0 on ∂Ω (2)

This eigenvalue problem is obtained by the following
assumptions: the electromagnetic field̂E(x, t), Ĥ(x, t) in
the cavity is described by Maxwell equations, the fields
are separated into their spatial and temporal components
Ê(x, t) = E(x)eiωt andĤ(x, t) = iH(x)eiωt and the equa-
tions are solved for one of the fields [7] (in our case forE).

In order to get the weak formulation, let us multiply
Eq. (2) by a vector testing functionWi and integrate overΩ:

∫

Ω

Wi ·
(5×5× E − k2E

)
dx = 0; (3)

now integrating by parts we get
∫

Ω

(5×Wi) · (5× E)dx

= k2

∫

Ω

Wi · Edx−
∫

∂Ω

Wi · (n̂×5× E)ds. (4)

For a perfect electric conducting (PEC) boundary, the
contour integral vanishes asWi is set to zero to satisfy the
Dirichlet boundary condition. Thus Eq. (4) can be written as

∫

Ω

(5×Wi) · (5× E)dx = k2

∫

Ω

Wi · Edx. (5)

For general geometries, the cavity is approximated by
a triangular tessellation, and in each triangular element the
transverse electric field can be expressed as a superposition
of edge elements

E =
3∑

j=1

ejWj , (6)

whereWj = lj(Lj1∇Lj2 − Lj2∇Lj1), Li is the first or-
der shape function associated with nodes 1,2,3, andlj is the
length of edge j connecting nodesj1 andj2.

In order to obtain the finite element formulation we sub-
stitute Eqs. (6) into (5) to get

∫

∆

3∑

j=1

(5×Wi) · (5×Wj)ejdx

= k2

∫

∆

3∑

j=1

(Wj ·Wi)ejdx (7)

for n = 1, 2, 3, where∆ denotes integration over the trian-
gular element. By interchanging the integration and summa-
tions, Eq. (7) can be written in a matrix formulation

[Sl][e] = k2[M l][e] (8)

where the local matrices are given by

Sl
ij =

∫

∆

(5×Wi) · (5×Wj) (9)

and
M l

ij =
∫

∆

Wi ·Wjdx; (10)

thus after a loop over all the triangles we obtain the global
eigen matrix equation

[S][e] = k2[M ][e]. (11)

3. The influence of the mesh generator

In several applications the geometries are not simple, so it is
necessary to discretize the computational domain. Triangles
are the most popular simple shapes employed in modelling
two-dimensional geometries.

To investigate the influence of the mesh generator we con-
sidered six different triangular grid generators: initmesh [17]
(pdetool Matlab toolbox), Triangle [22], mesh2d [9], mesh-
newer [19], Qmg [18] and Ansys [2].

The list of software for mesh generation is very long [16],
so we focus our attention on six grid generators based on
three main grid generation techniques: Octree, Delaunay and
Advancing Front.

Initmesh is a Matlab function that implements a Delau-
nay triangulation algorithm, Triangle is a mesh generator that
uses Ruppert’s Delaunay refinement, mesh2d is a 2d con-
strained Delaunay unstructured mesh generator that provides
three different node numbering, meshnewer is based on an
iterative continuous smoothing method and Distmesh [13],
Qmg uses a quadtree-based algorithm that can triangulate any
polyhedral region including nonconvex regions with holes,
and finally Ansys uses an advancing front mesh generator.

We begin our discussion with some observations on the
sparsity pattern of the stiffnessS and massM matrices. For
vector elements the unknowns are associated with the edges
of the elements (the number of edges or degrees of freedom
can be obtained by Euler’s formula with the number of nodes
and elements provided by the nodal grid generator). An
edge on the boundary of the computational domain has two
neighboring edges (the other two that with it form a triangle),
while an interior edge has four neighboring edges (an interior
edge is shared by two triangles); thus the rows of the stiff-
ness and mass matrices related to interior edges have at most
five nonzero entries, while those related to boundary edges
have three. A bound for the number of nonzero entriesnz is
given bynz = 3∗nbedges+5∗niedges, wherenbedges and
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TABLE I. Meshes information

created by nodes elements edges size

initmesh 273 496 768 0.1807

Triangle 270 502 771 0.2033

mesh2d 272 506 777 0.1861

meshnewer 308 505 812 0.3043

Qmg 210 370 579 0.2008

Ansys 257 460 716 0.1979

FIGURE 1. Matrix Structure initmesh.

FIGURE 2. Matrix Structure Triangle.

FIGURE 3. Matrix Structure mesh2d.

niedges are the number of boundary and interior edges re-
spectively (some mesh generators as initmesh and Qmg pro-
vide a list of the edges on the boundary).

FIGURE 4. Matrix Structure meshnewer.

FIGURE 5. Matrix Structure Qmg.

FIGURE 6. Matrix Structure Ansys.

The sparse structure of the matricesS andM depends on
the edge ordering; most of the grid generators do not provide
the edge numbering because they were developed for node-
based finite elements (among the grid generators tested only
Triangle provides the edge numbering), so we need to con-
vert node numbering into edge numbering. Here we follow
the two simple schemes given by Jin [8]; for the first scheme
denoted bySc1, an indicator to each edge is defined and the
array of indicators is rearranged by a sorting algorithm (the
edge ordering provided by Triangle coincides with the one
obtained with this scheme). Most sorting algorithms are very
efficient and can perform the task withnlog(n) operations
(heren is the number of triangles). For the second scheme
Sc2 no sorting algorithm is required; we use the element-to-
node connectivity array to generate a node-to-element array.
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Then the element-to-edge array is initialized with zeros and
a counter is set to zero; to fill in it we loop over the elements
and examine its edges: if the entry is nonzero this edge was
already numbered and we go to the next edge, and if it is zero
we give it the value of the counter. This algorithm requires
n2 operations. These schemes generate different edge num-
bering for a given triangulation.

In our first experiment we used the different grid genera-
tors to define a grid for the simple geometry of the unit circle
with approximately 500 elements. Table I displays the infor-
mation of the meshes.

By using the two schemes of edge numbering we calcu-
late the stiffness matrixS for the six meshes. Figures 1-6
show the sparse structure ofS for the two edge numbering
schemes (S andM have basically the same structure).

We refer to bandwidth as the half bandwidth over the
number of degrees of freedom. Figure 7 shows bandwidth
for the six meshes with the two schemes. Here we notice no
significant changes in the bandwidth for the first three meshes
with both schemes (all of them obtained by Delaunay trian-
gulation methods); however we note thatSc1 works better
(lower bandwidth) for the meshes generated by Ansys and
meshnewer whileSc2 works better for the mesh generated
by Qmg. In fact the bandwidth obtained by usingSc1 is
only 11.48% of that obtained withSc2 for meshnewer, and
for Ansys the bandwidth obtained withSc1 is 48.83% of
that obtained withSc2, whereas for Qmg we have the op-
posite situation: the bandwidth obtained withSc2 is 9.58%
of that obtained withSc1. The grid generator meshnewer is
based on the iterative method of Persson, which tries to op-
timize the node locations by a force-based smoothing proce-
dure while the Ansys grid generator uses an advancing front
method. It seems that grid generators based on Delaunay
methods produce no significant changes in the bandwidth size
with either edge numbering scheme. HoweverSc1 produces
a lower bandwidth thanSc2 for meshnewer; here the iterative
method of Persson gives an optimal node numbering for the
Sc1 which is based on a sorting algorithm. On the other hand
Sc2 produces a lower bandwidth thanSc1 for Qmg which
uses a quadtree method. In this caseSc2 makes a loop over
the elements so it seems that Qmg gives an optimal element
ordering. Similar results were observed by testing twenty dif-
ferent geometries, showing that the bandwidth is influenced
by the method used for the grid generator [16].

Unstructured grid generators usually create numbers for
vertices and cells as they produce them. For a frontal grid
generator, the vertices are often numbered in a spiral fashion;
for octree methods, squares containing the geometric model
are recursively divided until a desired solution is found. Thus
nodes and faces are formed whenever the internal octree
structure intersects the boundary, whereas Delaunay gener-
ators have random numbering.

Figures 8-9 shows the meshes. The meshes produced by
the grid generators based in Delaunay methods (initmesh,
Triangle, mesh2d) looks very similar; however the meshes
produced by meshnewer, Qmg and Ansys look different.

FIGURE 7. Bandwidth.

FIGURE 8. Meshes obtained by Delaunay method and continuous
smoothing method.

FIGURE 9. Meshes obtained by Quadtree and Advancing Front
method.

TABLE II. Grid generators information

method E.N. B.E. Language

initmesh C. S. Delaunay × √
Matlab

Triangle O. S. Delaunay
√

* C

mesh2d O. S. Delaunay × * C

iterative

meshnewer O. S. continuous × × Matlab

smoothing

Qmg O. S. quadtree × √
Matlab

C++

Ansys C. S. advancing front × × user

interface
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FIGURE 10. Bandwidth reduction by RCM of the meshes.

FIGURE 11. Bandwidth reduction by RCM of the matrices.

As we mentioned above, the finite element formulation
with edge elements requires the edge numbering to assem-
ble the matrices and the boundary edges to imposed bound-
ary conditions. Table II summarizes some useful informa-
tion of the grid generators. Here E.N. and B.E. mean Edge
Numbering and Boundary Edges respectively; C.S. stands for
commercial software while O.S. stands for Opensource soft-
ware. Among them, only Triangle provides the edge num-
bering, initmesh and Qmg are the only grid generators that
provide the boundary edges, while mesh2d can put marks on
the boundary nodes so that boundary edges can be identified.

4. Reordering

Reordering of sparse matrices is essential for good perfor-
mance on parallel computers. A good reordering algorithm
can lead to much better load balance of the computer and thus
to a dramatic increase in performance compared to a naive or-
dering [3]. In order to reduce the bandwidth of the stiffness
and mass matrices, an ordering scheme can be used. Nodal
ordering for the formation of suitable sparsity patters for the

finite element matrices are often performed using graph the-
ory [10].

A widely used but rather simple ordering algorithm is
the reverse Cuthill-McKee ordering algorithm [4]. This al-
gorithm first finds apseudoperipheral vertexof the graph of
the matrix. It then generates alevel structureby breadth first
searchand orders the vertices by decreasing distance from
thepseudoperipheralvertex.

Here we use RCM with two approaches: in the first one
the ordering is applied to the graph of the mesh (the nodes
and elements) and then we assemble the matrices. In the sec-
ond one we can assemble the matrices and use the RCM to
reorder the rows and columns of the matrices (the eigenval-
ues remain invariant); a Matlab implementation of this or-
dering is provided by the functionsymrcm. It is desirable
that the grid generator can provided optimal meshes, so the
RCM should be considered as part of the grid generator. This
is not the case with these grid generators, so we assemble
the matrices and reorder them before solving the generalized
eigenproblem.

4.1. Reordering the meshes

As we mentioned we generate a mesh, apply the RCM algo-
rithm and then we assemble the matrices. By the nature of
the edge ordering schemes, we expect to obtain better results
by usingSc1 after the RCM ordering.

Figure 10 shows the bandwidth reduction produced by
the RCM algorithm. At each group the height of the columns
represents the bandwidth: the first one is obtained by using
Sc1, the second one is RCM followed bySc1, the third is
Sc2, and the fourth is RCM followed bySc2. Bandwidth re-
duction is attained with all grid generators when a RCM fol-
lowed bySc1 is used except with meshnewer; it seems that
the node ordering of the mesh generated by meshnewer is
optimal and a RCM reordering is not needed. Note that even
though a RCM ordering was used, theSc2 does not provide
bandwidth reduction.

4.2. Reordering the matrices

In this case the RCM ordering is applied after the matrices
are assembled. Figure 11 shows the bandwidth reduction by
using RCM to the meshes (rcm1) and to the assembled ma-
trices (rmc2). In each group the height of the columns rep-
resents the bandwidth; the first column is obtained by rcm1
with scheme 1, the second column is rcm2 with scheme 1,
the third column is rcm1 with scheme 2 and the fourth one is
rcm2 with scheme 2.

In all cases bandwidth reduction is obtained by rcm2;Sc2

does not work very well, since it only provides bandwidth
reduction with rcm1 for the Qmg grid generator. The rcm
ordering is not necessarily the best choice, as it produces a
matrix with a narrow bandwidth which fills in almost com-
pletely during the Cholesky factorization. On the other Min-
imum degree [1] produces a structure with large blocks of
contiguous zeros which do not fill in during factorization.
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FIGURE 12. From left to right and up to down, the first ten TM
modes of a coaxial line.

5. Numerical Calculations

After discretization by the edge finite element method we ar-
rive at

S~e = k2M~e; (12)

here we have assumed constant material parameters so the
matrices are symmetric and sparse. Our next task is to numer-
ically solve a generalized eigenproblem; to this end we can
take a look at [6], which provides a survey of some free avail-
able software for sparse eigenvalue problems. There are two
main approaches to solve the generalized eigenproblemdi-
rect solvers and iterative solvers. In direct solvers a sequence
of transformations is applied to reduce the generalized eigen-
problem to an standard eigenproblem; here it is desirable to
avoid the fill in the Cholesky decomposition. On the other
hand iterative solvers work in the original eigenproblem and
try to extract selected eigenvalues and eigenvectors from ap-
propriate low dimensional subspaces ofRn.

Perhaps one of the simplest ways to solve generalized
eigenproblems is by using the Matlab functioneigs . This
function implements an Implicitly Restarted Arnoldi algo-
rithm [24].

We investigate the performance of this solver in the cases
of banded and non-banded sparse matrices. To this end, we
consider the eigenvalue calculation of TM modes in a coax-
ial cable with inner radiusr1 and outer radiusr2. Here
r2/r1 = 4, the mesh has 10014 elements and 15187 edges;
matricesS and M have size15187 × 15187 and 75271
nonzero elements. Figure 12 shows the first ten TM modes.

The corresponding cutoff wavenumbers are given by
1.0255, 1.1132, 1.1132, 1.3317, 1.3318, 1.6089, 1.6089,
1.9023, 1.9023, 2.0832 in agreement with the calculated val-
ues in literature.

6. Conclusions

In this work we have investigated some computational as-
pects of the eigenvalue calculation with edge elements, in-
cluding the importance of the grid generator and node-edge
ordering. We have observed how the sparse structure of the
mass and stiffness matrices is highly influenced by the edge
numbering. Grid generators are mainly designed for node
based finite elements, so an edge numbering is required. Two
numbering schemes for the edges were investigated, and six
grid generators were tested summarizing their suitableness
for the edge element formulation.

As far as we know, this is the first time that different
meshing algorithms haven been compared to show that sig-
nificant bandwidth reduction can be obtained by the proper
combination of the edge numbering scheme with the grid
generator method. In factSc2 only gives good results with
Qmg (quadtree based); for the other grid generatorsSc1 is
a better choice. The RCM reordering of the mesh followed
by Sc1 can improve the bandwidth reduction with all the grid
generators except with meshnewer.

The ordering of meshnewer is optimal withSc1, so that
no RCM reordering is required, making this grid generator a
suitable choice for edge element formulation.

No bandwidth reduction is obtained by RCM of the mesh
followed bySc2. Moreover, RCM of the matrices improves
the bandwidth reduction reducing the storage requirements.

The eigensolver was not affected by the bandwidth of
the matrices because the command eigs in Matlab solves lin-
ear systems internally when the eigenproblem is generalized.
This suggests that in order to speed up the computations,
a further study with banded generalized eigensolver must
be conducted [14] where the eigensolver must take advan-
tage of the banded structure of the matrices [5]. For the di-
rect solvers, it is mandatory to investigate other renumbering
schemes (for example minimum degree) and compare their
fill in of the Cholesky factorization; on the other hand, for the
iterative solvers the influences of the bandwidth reduction of
the matrices on the performance of matrix-vector multiplica-
tion should be investigated.
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