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In this work we correct a calculation made by Albert Einstein that appears in his book titledThe Meaning of Relativity(Princeton, 1953), and
by means of which he tries to obtain the number of degrees of freedom of a system composed ofn particles with fixed relative distances and
which are immersed in a three-dimensional space. As a result of our analysis, we develop expressions which yield the number of degrees of
freedom of an analogous system, not only in three, but in any arbitrary numberD of dimensions.
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En este trabajo se corrige el cálculo hecho por Einstein que aparece en su libro titulado “The meaning of Relativity” (Princeton, 1953), por
medio del cuaĺel trata de obtener el número de grados de libertad para un sistema constituido por n partı́culas, cuyas distancias se mantienen
fijas y que se encuentran en un espacio tridimensional. Como resultado del presente análisis, se desarrollan expresiones que permiten hallar
el número correcto de grados de libertad de sistemas como el descrito, además de las correspondientes generalizaciones para un espacio de
dimensíon arbitraria D.

Descriptores:Grados de libertad; cuerpo rı́gido; gas ideal; calores especı́ficos.

PACS: 45.05.+x; 45.40.-f; 45.50.-j

The number of independent coordinate variables needed to
simultaneously determine the position of every particle in a
dynamical system is called the number of degrees of freedom
of that system. So a system ofn free particles in a three-
dimensional space has3n degrees of freedom, because three
coordinates are needed to specify the location of the center of
mass of each particle. However, if the particles are no longer
all free, but there are restrictions imposed on the system, the
number of degrees of freedom will be less than3n; 3n coor-
dinates are still needed to locate the centers of mass, but less
than3n values are assignable at will to the coordinate vari-
ables [1]. Specifically, we are interested in the system made
up ofn particles in three-dimensional space, which hold fixed
distances between them. For the sake of clarity, this system
will be referred to from now on asS3, and the number of its
degrees of freedom will be referred to asN3.

Usually,N3 is calculated by givingS3 the treatment of a
rigid body. Mechanics recognizes two types of rigid bodies:
those made up of a continuous distribution of mass; and those
formed byn mass points joined by rigid links [2]. Thus,S3

is equivalent to a rigid body of the second type.

It is not difficult to calculate the number of degrees of
freedom of a rigid body of continuous mass. For most cases,
the number of degrees of freedom is six, as three coordinates
are needed to locate the body’s center of mass and three more
to describe its orientation [1, 2]. But if the mass is all dis-
tributed along a single line, then it will be impossible for the
body to rotate about that line, and therefore, such a body has
only five degrees of freedom [2, 3]. A similar reasoning is
used to calculateN3, after assuming thatS3 may be viewed

as a sole body instead of a collection of particles. Hence,N3

is five whenn = 2, since the mass points lie all along the
same line, and is six whenn > 2 [4]. The case in which
n > 2 particles all lie on the same line will not be considered
in this work.

These same results should be attainable through individ-
ual consideration of the particles which make upS3. Count-
ing the number of degrees of freedom ofS3 is fairly easy
whenn is equal to two: six coordinates are needed to locate
the centers of mass of the particles, but there is one restric-
tion (one rigid link), so the number of degrees of freedom of
S3 is five. It is not hard either to calculate the number of de-
grees of freedom ofS3 whenn = 3. Thus, nine coordinates
are needed to specify the positions of the particles’ centers
of mass; but since there are three restrictions, the number of
degrees of freedom is six. That is, if the triad does not lie all
along the same line; if that is so, there are four restrictions
and the number of degrees of freedom of the system is again
five.

The operation of calculatingN3 by consideration of the
individual particles would be much easier if an expression
were developed that would yield the number of degrees of
freedom ofS3 for any given value ofn. Albert Einstein fig-
ures among those who tried to develop just suchan expres-
sion. Einstein dealt with this problem in one of his books [5],
using it as an example of the importance that geometrical
concepts have a correspondence with real objects. He rea-
soned more or less along the following lines:

If one particle (let this particle be called particle 1) is arbi-
trarily chosen from among then that composeS3, n−1 equa-
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tions are needed to express the fact that this particle holds
fixed distances with the rest

(xj − x1)
2 + (yj − y1)

2 + (zj − z1)
2 = d (1)

whered is a constant andj =1,2,3,. . . ,n
But when a second particle is taken into consideration, to

express that the distances between this and the other particles
remain constant, onlyn − 2 equations are needed, because
the equation that shows that the distance between particles 1
and 2 is constant is already included in (1). If a third par-
ticle is considered, there would ben − 3 equations more;
for a fourth particle, there would ben − 4 equations more,
and so on. In total, there aren(n− 1)/2 different equations.
These equations represent the system’s restrictions; they are
the constraint equations of the system.

Einstein must have thought that he would obtain the num-
ber of degrees of freedom ofS3 merely by substracting the
number of constraint equations from3n :

N3 = 3n− n (n− 1)
2

(2)

If (2) is solved forn > 4, it will be seen that the values
of N3 differ from those obtained whenS3 was viewed as a
single body. Why does this happen? Maybe because it is not
appropiate to consider the collection of particles with rigid
links as one body. Or more likely, because the count of the
degrees of freedom ofS3 by consideration of the individual
particles was not done correctly. Which ever the reason may
be, we will soon find out.

As it turns out, there is something definitely wrong
with (2), and it is that

3n− n (n− 1)
2

≈ −n2

2
< 0, (3)

for n À 1, which is absurd.
Einstein did notice this flaw, because in his book, instead

of (2) he has:

N3 =
n (n− 1)

2
− 3n (4)

We cannot think of any physical or mathematical justifi-
cation for this change of signs, and although it removes the
problem of getting a negative value ofN3 whenn À 1, it
brings up a new problem.

In the limit whenn tends to infinity, the systemS3 is
equivalent to a rigid body of continuous mass. So it would
be expected that if the limit ofN3 is taken whenn tends to
infinity, this limit should be equal to six. But this does not
hold true forN3 as defined in (4); the limit whenn tends to
infinity diverges.

Einstein introduced, as a footnote, the following correc-
tion:

N3 =
n(n− 1)

2
− 3n + 6 (5)

Nonetheless, the limit whenn tends to infinity of the
modifiedN3 is still undefined, so (5) cannot be the correct
expression forN3 either.

When we took up the task of developing an accurate ex-
pression forN3, we did not take up the problem from where
Einstein left off, but instead, we directed our attention back
to (2), which is the expression that Einstein must have come
up with originally, in spite of the fact that it doesn’t appear in
his book. We did so because, as incorrect as it may be, there
is a consistent line of thinking behind expression (2), which
there is not behind expressions (4) or (5).

Expression (3) gave us a hint of where the flaw in (2)
may be. Not in the signs, but rather, in the lack of a term.
A term that shouldn’t be a constant, but dependent onn. A
term that added up to the other two would not only makeN3

positive forn À 1, but would actually make it equal to six.
So there must be an additional source of degrees of freedom
which Einstein failed to consider. If we could identify where
this source of degrees of freedom was, we would have our
problem solved.

A group ofn particles may rotate in space without dissat-
isfying the condition that the distances between the particles
remain constant. However, it is meaningless to talk about ro-
tations without first establishing an adequate reference frame.
To do so we arbitrarily selected three particles fromS3; the
points where the centers of mass of these particles are located
generate a planeP in three-dimensional space. And the vec-
tor v, which is orthogonal toP , designates an arbitrary di-
rection in space. We must point out that we are definingv
as a fixed vector, and that it is perpendicular toP in its orig-
inal position, but asS3 rotates, this perpendicularity relation
will be lost. Therefore, it is convenient to make a copy ofP ,
which we will call P ′, and hold this copy fixed in the origi-
nal position ofP . Thusv will all ways be orthogonal toP ′.
By considering the planeP ′ and its normal vector, we are
defining a three-dimensional coordinate system.

Now, if we choose two particles, different from the ones
used to generate the plane, the line that joins their centers of
mass is a possible rotation axis forS3. And since the number
of ways in which pairs may be chosen from a set ofn − 3
particles is

C2
n−3=

(n− 3)!
2!(n− 5)!

=
(n− 3)(n− 4)

2
, (6)

for n ≥ 3, there will be an equal number of such axes. Each
of these axes forms, with the direction of the vectorv, an an-
gle ϕi which is a function of time and determines a possible
rotation of the system. In general, the differentϕi will not
hold relations of linear independence.

We believe that the number ofϕi allowed toS3 for a
given value ofn is the term missing in Einstein’s calcula-
tion, and we propose that the number of degrees of freedom
for the systemS3 be given by:

N3= 3n−n(n− 1)
2

+
(n− 3)(n− 4)

2
= 6, (7)

whenn ≥ 3.
However, (2) seems to be the correct expression for

n = 2. It also works forn = 3 andn = 4, which is not
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surprising, since for this value ofn the last term in expres-
sion (7) is equal to zero, so (7) and (2) are equivalent.

Once we had developed these expressions, we were curi-
ous as to whether, by following the same line of reasoning,
we could calculate the number of degrees of freedom ofS4,
that is, of the system made up ofn particles with fixed rel-
ative distances, but which is, unlikeS3, immerse in a four-
dimensional space.

In this four-dimensional case, four coordinates are needed
to locate the center of mass of each particle, which makes4n
coordinates for the set ofn particles. And the number of con-
straint equations is the same as forS3.

In principle, the number of degrees of freedom should be
the same as for a tetra-dimensional rigid body. And in four di-
mensions there are ten degrees of freedom for the rigid body:
four coordinates are needed to locate its center of mass and

FIGURE 1. At instantt = 0 (a) the system is in its initial position.
The line that connects the centers of mass of two arbitrary particles
forms an angleϕ(t = 0) with the direction of the vectorv orthog-
onal to the reference planeP . At a future instantt = t′ (b) the
system has rotated with respect to its original position. The plane
P has moved, but a copyP ′ remains in the original position ofP ,
so nowv is perpendicular toP ′ and the line that joins the centers
of mass of the particles we had considered forms an angleϕ(t′)
with the direction ofv.

there are six possible rotation angles. Now, in the case of
then particles with fixed distances, we need4n coordinates
to locate the particles’ centers of mass, while the number of
distances is stilln(n− 1)/2. And the number of possible ro-
tation angles is obtained by observing that a “hyperplane” can
be defined with four points and that the number of different
ways in which pairs may be chosen from a group ofn − 4
particles is given by:

C2
n−4=

(n− 4)!
2!(n− 6)!

=
(n− 4)(n− 5)

2
, (8)

for n ≥ 4.
Then, the number of degrees of freedom ofS4 is

N4= 4n−n(n− 1)
2

+
(n− 4)(n− 5)

2
= 10, (9)

whenn ≥ 4, and

N4 = 4n− n(n− 1)
2

, (10)

when2 ≤ n ≤ 5, since the number of possibleϕi is equal to
zero for these values ofn.

That N4 is equal to ten for any value ofn less than
or equal to four is consistent with the fact that ten is
also the number of degrees of freedom of a rigid body in
four-dimensional space (four coordinates are needed to lo-
cate the center of mass, and six more to describe the ori-
entation of the body). Indeed, our procedure works for the
four-dimensional as it does for the three-dimensional case.
Moreover, we believe that it works for the general case. We
propose that for a system ofn particles with fixed relative
distances, immersed in a space ofD dimensions, the number
of degrees of freedom is given by:

ND = Dn− n(n− 1)
2

+
(n−D)(n−D − 1)

2

=
D(D + 1)

2
, (11)

whenn ≥ D, and by:

ND = Dn− n(n− 1)
2

, (12)

when2 ≤ n ≤ D + 1.
These results coincide entirely with those which would

have been obtained by viewingSD as a single body.
Counting the number of degrees of freedom ofSD by

considering the individual particles is something which had
never been done before. Just the three-dimensional case
proved to be complicated enough, even for Albert Einstein,
who was never able to write the correct expressions for the
number of degrees of freedom ofS3 in Ref. 5, in spite of
several revisions he made of this book.

There seemed to be contradictions between the values of
N3 obtained viewingS3 as a sole body and those reached
by considering the individual particles. This was only be-
cause the count of the degrees of freedom ofS3 from the
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latter standpoint was never done properly. In this paper, we
prove that both methods are equivalent, not only in three, but
in any numberD of dimensions.

This may be of interest for those who study the Ki-
netic Theory of Gases. In the Kinetic Theory of Gases and
more specifically, in the Ideal Gas Model, the internal en-
ergy and the heat capacities at constant volume and con-
stant pressure of an ideal gas are calculated as functions of
the degrees of freedom of the gas, which are counted per
molecule. And for molecules consisting of more than one
atom, the number of degrees of freedom is calculated treat-
ing the molecules as rigid bodies. Thus, a diatomic molecule
has five degrees of freedom and a polyatomic molecule has
six. According to the Equipartition of Energy Theorem, each
of these degrees of freedom is associated with an energy
of quantity 1/2kT . Hence, the internal energyU of a di-
atomic molecule isU = 5/2kT and that of a polyatomic
molecule isU = 3kT . Multiplying these results by Avo-
gadro’s number,NA = 6 × 1023, gives the internal energy
of an ideal gas, which isU = 5/2NAkT = 5/2RT and
U = 3NAkT = 3RT for diatomic and polyatomic gases,
respectively [6,7].

The heat capacity at constant volumeCv is related to
the internal energy by the expressionCv = (∂U/∂T ); thus
Cv = 5/2R for diatomic gases andCv = 3R for polyatomic
ones. The heat capacity at constant pressureCp is given by
Cp = Cv + R.

The values of the heat capacities predicted using the Ideal
Gas Model agree very well with the values obtained experi-
mentally in the case of diatomic gases, but fall rather short
for polyatomic gases [6], [7]. This is due to the fact that be-
sides the energies associated with the translational and rota-
tional degrees of freedom, there is also vibrational energy.
This vibrational energy is quanticized, which means that it
does not spread over a continuous spectrum of values, but is
distributed in discrete states [7,8].

In the case of most diatomic molecules, the difference
between the state of lowest energy (the ground state) and
the state that follows is such that the leap from the ground
state to the next may only be achieved at temperatures of
approximately 3500 K. Thus, at room temperatures, the vi-
brational energy will remain in the ground state and its con-
tributions to the total internal energy of the molecule will
be negligible. Something very different occurs with poly-
atomic gases, where the molecules have several independent
vibration modes. For some of these modes, the spacing be-
tween energy states is considerably smaller than for diatomic
molecules. Hence, the vibrational energy will make an im-

portant contribution to the total internal energy of a poly-
atomic molecule at room temperature, or even less. Once
the vibrational energy is considered, the predicted heat ca-
pacities have a very good correspondence with experimental
values [8,9].

In any case, the additional consideration of this quanti-
cized vibrational energy does not modify the fact that the ro-
tational and translational energies of a gas molecule are cal-
culated by treating this molecule as a rigid body. Treating
molecules as rigid bodies is correct, but it had never been
formally justified. This work gives a formal justification to
this procedure.

Furthermore, we believe that this paper clarifies the so-
called “degree of freedom paradox”. This paradox consists
in the fact that, if we make a microscopical analysis of a sys-
tem which if treated as a rigid body has a finite number of
degree of freedom, it turns out that it has an infinite number
of degrees of freedom and therefore, infinite heat capacities,
which is absurd [10]. This contradiction was attributed to a
flaw in classical mechanics. Our work suggests that rather, it
is a result of not knowing how to count the number of degrees
of freedom particle by particle.

This work may also imply that statements like the follow-
ing are not correct. According to Herbert Goldstein, “a rigid
body withN particles can at most have3N degrees of free-
dom” as can be read in hisClassical Mechanicstextbook [3],
in the chapter dealing with the kinematics of rigid body mo-
tion. However, our analysis shows that the maximum number
of degrees of freedom for any rigid body in three-dimensional
space is six.

In conclusion, we obtained expressions that yield the
number of degrees of freedom of a rigid body constituted by
n particles in a three-dimensional space and we extended our
results to an arbitrary numberD of spatial dimentions. The
results for the three-dimensional case disagree with those ob-
tained by Albert Einstein and which appear in [5]. We believe
that with our analysis of the three-dimentional case we can
justify, formally, the fac that a rigid non-linear polyatomic
molecule all ways has six degrees of freedom, a situation that
has not been sufficiently explained in the literature, in spite of
its widespread use in the calculation of the internal energies
and heat capacities of ideal polyatomic gases.

Acknowledgements
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