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We construct an explicit solution of the Cauchy initial value problem for the one-dimensional Schrödinger equation with a time-dependent
Hamiltonian operator for the forced harmonic oscillator. The corresponding Green function (propagator) is derived with the help of the
generalized Fourier transform and a relation with representations of the Heisenberg–Weyl groupN (3) in a certain special case first, and
then is extended to the general case. A three parameter extension of the classical Fourier integral is discussed as a by-product. Motion of
a particle with a spin in uniform perpendicular magnetic and electric fields is considered as an application; a transition amplitude between
Landau levels is evaluated in terms of Charlier polynomials. In addition, we also solve an initial value problem to a similar diffusion-type
equation.

Keywords: The Cauchy initial value problem; the Schrödinger equation; forced harmonic oscillator; Landau levels; the hypergeometric
functions; the Hermite polynomials; the Charlier polynomials; Green functions; Fourier transform and its generalizations; the Heisenberg–
Weyl groupN(3).

En el presente trabajo construimos una solucion explı́cita unidimensional a la ecuación de Schr̈odinger con condiciones iniciales de Cauchy
y con un operador Hamiltoniano dependiente del tiempo para el oscilador armónico forzado. La correspondiente función de Green (propa-
gador) se deriva con aplicaciones de la transformada de Fourier generalizada y con una relación a las representaciones del grupoN(3) de
Heisenberg–Weyl, para un caso especial primero y después se extiende al caso general. Estudiamos por medio de un producto una extención
de tres paŕametros a la integral clásica de Fourier. Consideramos, como una aplicacion, el movimiento de una partı́cula giratoria en un
campo eĺectrico y en un campo magnético perpendicularmente uniforme; evaluamos en términos de polinomios de Charlier una transición
de amplitud entre los niveles de Landau. Además resolvemos una ecuación similar a la de difusión con valores iniciales.

Descriptores:Problema de valor inicial de Cauchy; ecuación de Schr̈odinger; osilador arḿonico forzado; niveles de Landau; funciones
hipergeometricas; polinomios de Hermite; polinomios de Charlier; funciones de Green; transformada de Fourier y sus generalizaciones; el
grupo Heisenberg–Weyl.
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1. Introduction

The time-dependent Schrödinger equation for the one-
dimensional harmonic oscillator has the form

i}
∂ψ

∂t
= Hψ, (1)

where the Hamiltonian is

H =
}ω
2

(
− ∂2

∂x2
+ x2

)
=
}ω
2

(
aa† + a†a

)
. (2)

Herea† anda are the creation and annihilation operators, re-
spectively, given by

a† =
1√
2

(
x− ∂

∂x

)
, a =

1√
2

(
x +

∂

∂x

)
; (3)

see [21] for another definition. They satisfy the familiar com-
mutation relation

[
a, a†

]
= aa† − a†a = 1. (4)

A natural modification of the Hamiltonian operator (2) is
as follows:

H → H (t) =
}ω
2

(
aa† + a†a

)

+ }
(
δ (t) a + δ∗ (t) a†

)
, (5)

whereδ (t) is a complex valued function of timet and the
symbol∗ denotes complex conjugation. This operator is Her-
mitian, namely,H† (t) = H (t) . It corresponds to the case
of the forced harmonic oscillator which is of interest in many
advanced problems. Examples include polyatomic molecules
in varying external fields, crystals through which an electron
is passing and exciting the oscillator modes, and other in-
teractions of the modes with external fields. It has particular
applications in quantum electrodynamics because the electro-
magnetic field can be represented as a set of forced harmonic
oscillators [9,20,23,34,35,45]. Extensively used propagator
techniques were originally introduced by Richard Feynman
in Refs. 16 to 19.

On this note we construct an exact solution of the time-
dependent Schrödinger equation

i}
∂ψ

∂t
= H (t)ψ (6)

with the Hamiltonian of the form (5), subject to the initial
condition

ψ (x, t)|t=0 = ψ0 (x) , (7)

whereψ0(x) is an arbitrary square integrable complex-valued
function fromL2 (−∞,∞) . We shall start with a particular
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choice of the time-dependent functionδ (t) given by (22) be-
low, which is later extended to the general case. The explicit
form of Eq. (6) is given by (25) and (77) below, and an ex-
tension to similar diffusion-type equations is also discussed.

This paper is organized as follows. In Sec. 2 we re-
mind the reader about the textbook solution of the station-
ary Schr̈odinger equation for the one-dimensional simple har-
monic oscillator. In Sec. 3 we consider the eigenfunction
expansion for the time-dependent Schrödinger equation (6)
and find its particular solutions in terms of the Charlier poly-
nomials for a certain forced harmonic oscillator. The series
solution to the corresponding initial value problem is ob-
tained in Sec. 4. It is further transformed into an integral
form in Sec. 7 after discussing two relevant technical tools,
namely, the representations of the Heisenberg–Weyl group
N(3) and the generalized Fourier transform in Sec. 5 and 6,
respectively. An important special case of the Cauchy ini-
tial value problem for the simple harmonic oscillator is out-
lined in Sec. 8 and a three-parameter generalization of the
Fourier transform is introduced in Sec. 9 as a by-product.
In Secs. 10 and 11 we solve the initial value problem for
the general forced harmonic oscillator in terms of the corre-
sponding Green function (or Feynman’s propagator) and the
eigenfunction expansion, respectively, by a different method
that uses all technical tools developed before in the special
case. An extension to the case of time-dependent frequency
is given in Sec. 12. Then in Sec. 13, we outline important
special and limiting cases of the Feynman propagators. Fi-
nally in Sec. 14, the motion of a charged particle with a spin
in uniform magnetic and electric fields that are perpendicular
to each other is considered as an application; we evaluate a
transition amplitude between Landau levels under the influ-
ence of the perpendicular electric field in terms of Charlier
polynomials and find the corresponding propagator in three
dimensions. Solutions to similar diffution-type equations are
discussed in Sec. 15.

The Cauchy initial value problem for a forced harmonic
oscillator was originally considered by Feynman in his path
integrals approach to the nonrelativistic quantum mechanics
[16,17,20]. Since then this problem and its special and limit-
ing cases were discussed by many authors [7,23,25,29,34,50]
the simple harmonic oscillator; [3, 10, 24, 37, 43] the particle
in a constant external field; see also references therein. It is
worth noting that an exact solution to then-dimensional time-
dependent Schrödinger equation for a certain modified oscil-
lator is found in Ref. 30. These simple exactly solvable mod-
els may be of interest in a general treatment of the non-linear
time-dependent Schrödinger equation (see Refs. 26, 27, 36,
44, 46, 53, and references therein). They also provide explicit
solutions which can be useful for testing numerical methods
of solving the time-dependent Schrödinger equation.

2. The simple harmonic oscillator in one di-
mension

The time-dependent Hamiltonian operator (5) has the follow-
ing structure:

H (t) = H0 + H1 (t) , (8)

where
H0 =

}ω
2

(
aa† + a†a

)
(9)

is the Hamiltonian of the harmonic oscillator and

H1 (t) = }
(
δ (t) a + δ∗ (t) a†

)
(10)

is the time-dependent “perturbation”, which corresponds to
an external time-dependent force that does not depend on
the coordinatex (dipole interaction) and a similar velocity-
dependent term (see Refs. 20, 23, and 34 for more details).

The solution to the stationary Schrödinger equation for
the one-dimensional harmonic oscillator

H0Ψ = EΨ, H0 =
}ω
2

(
− ∂2

∂x2
+ x2

)
(11)

is a standard textbook problem in quantum mechanics (see
Refs. 13, 21, 28, 34, 35, 39, 45, and 52 for example). The
orthonormal wave functions are given by

Ψ = Ψn (x) =
1√

2nn!
√

π
e−x2/2Hn (x) (12)

with
∞∫

−∞
Ψ∗n (x)Ψm (x) dx = δnm =

{
1, n = m,

0, n 6= m,
(13)

whereHn (x) are the Hermite polynomials, a family of the
(very) classical orthogonal polynomials (see Refs. 1, 2, 4,
12, 14, 38, 39, 41, and 49). The corresponding oscillator dis-
crete energy levels are

E = En = }ω
(

n +
1
2

)
(n = 0, 1, 2, ... ) . (14)

The actions of the creation and annihilation operators (3)
on the oscillator wave functions (12) are given by

a Ψn =
√

n Ψn−1, a† Ψn =
√

n + 1 Ψn+1. (15)

These “ladder” equations follow from the differentiation for-
mulas

d

dx
Hn (x) = 2nHn−1 (x) = 2xHn (x)−Hn+1 (x) , (16)

which are valid for the Hermite polynomials.

3. Eigenfunction expansion for the time-
dependent Schr̈odinger equation

In the spirit of Dirac’s time-dependent perturbation theory in
quantum mechanics (see Refs. 13, 21, 28, 35, and 45), we are
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looking for a solution to the initial value problem in (6)–(7)
as an infinite series

ψ = ψ (x, t) =
∞∑

n=0

cn (t) Ψn (x) , (17)

whereΨn (x) are the oscillator wave functions (12) which
depend only on the space coordinatex and cn (t) are the
yet unknown time-dependent coefficients. Substituting this
form of solution into the Schrödinger equation (6) with the
help of the orthogonality property (13) and the “ladder” rela-
tions (15), we obtain the following linear infinite system:

i
dcn(t)

dt
= ω

(
n +

1
2

)
cn (t) + δ (t)

√
n + 1 cn+1 (t)

+ δ∗ (t)
√

n cn−1 (t) (n = 0, 1, 2, ... ) (18)

of the first-order ordinary differential equations with
c−1 (t) ≡ 0. The initial conditions are

cn(0) =

∞∫

−∞
Ψ∗n(x)ψ0(x) dx (19)

due to the initial data (7) and the orthogonality property (13).
Now we specify the exact form of the functionδ (t) in or-

der to find a particular solution to the system (18) in terms of
the so-called Charlier polynomials that belong to the classical
orthogonal polynomials of a discrete variable (see Refs. 11,
12, 14, 38, and 39). One can easily verify that the following
Ansatz

cn (t) = (−1)n µn/2

√
n!

× e−i(ω(n+1/2)−(n+µ))t
(
e−iλtpn (λ)

)
(20)

gives the three-term recurrence relation

λpn(λ)=− µpn+1(λ)+(n + µ)pn(λ)−npn−1(λ) (21)

for the Charlier polynomialspn (λ) = cµ
n (λ) (see Refs. 38

and 39 for example), when we choose

δ (t) =
√

µ ei(ω−1)t, δ∗ (t) =
√

µ e−i(ω−1)t (22)

with the real parameterµ such that0 < µ < 1. Thus with
pn (λ) = cµ

n (λ) , Eq. (20) yields a particular solution of the
system (18) for any value of the spectral parameterλ.

By the superposition principle the solution to this linear
system of ordinary differential equations, which satisfies the
initial condition (19), can be constructed as a linear combina-
tion

cn (t) =
∞∑

m=0

cnm (t) cm (0) , (23)

wherecnm (t) is a “Green” function, or a particular solution
that satisfies the simplest initial conditions

cnm (0) = δnm. (24)

In the next section we will obtain the functioncnm (t) in
terms of the Charlier polynomials; see Eq. (33) below. In
Sec. 5 we establish a relation with the representations of the
Heisenberg–Weyl groupN(3); see Eq. (46). A generaliza-
tion to an arbitrary functionδ (t) will be given later.

4. Solution of the Cauchy problem

We can now construct the exact solution to the origi-
nal Cauchy problem in (6)–(7) for the time-dependent
Schr̈odinger equation with the Hamiltonian of the
form (8)–(10) and (22). More explicitly, we will solve the
following partial differential equation:

i
∂ψ

∂t
=

ω

2

(
−∂2ψ

∂x2
+ x2ψ

)

+
√

2µ

(
(cos (ω−1) t) xψ+i (sin (ω−1) t)

∂ψ

∂x

)
(25)

subject to the initial condition

ψ (x, t)|t=0 = ψ0 (x) (−∞ < x < ∞) . (26)

By (17), (19), and (23) our solution has the form

ψ (x, t) =
∞∑

n=0

Ψn (x)
∞∑

m=0

cnm (t)

×
∞∫

−∞
Ψm (y)ψ0 (y) dy, (27)

where

cnm (t) =
(
−µ1/2

)n−m
√

m!
n!

e−i(ω(n+1/2)−(n+µ))t

× µm

m!

∞∑

k=0

e−iktcµ
n (k) cµ

m (k) e−µ µk

k!

= (−1)n−m
e−µ µ(n+m)/2

√
n!m!

e−i(ω(n+1/2)−(n+µ))t

×
∞∑

k=0

cµ
n (k) cµ

m (k)

(
µe−it

)k

k!
, (28)

in view of the superposition principle and the orthogonality
property
∞∑

k=0

cµ
n (k) cµ

m (k) e−µ µk

k!
=

m!
µm

δnm (0 < µ < 1) (29)

of the Charlier polynomials (see Ref. 38 for example).
The right-hand side of (28) can be transformed into a sin-

gle sum with the help of the following generating relation for
the Charlier polynomials:

∞∑

k=0

(µ1µ2s)
k

k!
cµ1
n (k) cµ2

m (k) = eµ1µ2s(1− µ1s)m

× (1−µ2s)n
2F0

(
−n, −m;

s

(1−µ1s) (1−µ2s)

)
. (30)
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(See Refs. 31 to 33, and 22 for more information and Ref. 6
for the definition of the generalized hypergeometric series.)
Choosingµ1 = µ2 = µ ands = e−it/µ we obtain

cnm(t) =
(−i)n+m

√
2n+mn!m!

e−i((ω−1)n+(n+m)/2)te−2µ sin2(t/2)

× e−i(µ sin t+(ω/2−µ)t)
(
2
√

2µ sin (t/2)
)n+m

×2 F0

(
−n, −m; − 1

4µ sin2 (t/2)

)
. (31)

The hypergeometric series representation for the Charlier
polynomials is

cµ
n (x) = 2F0

(
−n, −x; − 1

µ

)
(32)

(see [38] for example). Thus

cnm (t) = e−i(µ sin t+(ω/2−µ)t) e−i((ω−1)n+(n+m)/2)t

× (−i)n+m

√
2n+mn!m!

e−β2/4 βn+m cβ2/2
n (m) (33)

with β = β (t) = 2
√

2µ sin (t/2) and, as a result, by sub-
stitution of this expression into the series (27), we obtain
the eigenfunction expansion solution to the original Cauchy
problem (25)–(26). We shall be able to find an integral form
of this solution in Sec. 7 after discussing representations of
the Heisenberg–Weyl groupN(3) and a generalization of the
Fourier transform in the next two sections. This complete
solution to the particular initial value problem (25)–(26) will
suggest a correct form of the Green function (propagator) for
the general forced harmonic oscillator in Secs. 10 and 11.

5. Relation with the Heisenberg–Weyl group
N(3)

Let N(3) be the three-dimensional group of the upper trian-
gular real matrices of the form




1 α γ
0 1 β
0 0 1


 = (α, β, γ) . (34)

The map

T (α, β, γ)Ψ (x) = ei(γ+βx) Ψ(x + α) (35)

defines a unitary representation of the Heisenberg–Weyl
group N (3) in the space of square integrable functions
Ψ ∈ L2 (−∞,∞) (see Ref. 51, 38, and 47 for more details).

The set{Ψn (x)}∞n=0 of the wave functions of the har-
monic oscillator (12) forms a complete orthonormal sys-
tem inL2 (−∞,∞) . The matrix elements of the representa-
tion (35) with respect to this basis are related to the Charlier
polynomials as follows:

T (α, β, γ)Ψn (x) =
∞∑

m=0

Tmn (α, β, γ) Ψm (x) , (36)

where

Tmn(α, β, γ) =

∞∫

−∞
Ψ∗m(x)ei(γ+βx)Ψn(x + α)dx

=
im−n

√
m!n!

ei(γ−αβ/2)e−ν/2

×
( iα + β√

2

)m( iα− β√
2

)n

cν
m(n) (37)

with ν =
(
α2 + β2

)
/2 [38]. A similar integral

∞∫

−∞
Hm(x + y)Hn(x + z)e−x2

dx

=
√

π 2nm! zn−m Ln−m
m (−2yz) (38)

is evaluated in Ref. 15 in terms of the Laguerre polynomials
Lα

m (ξ) , whose relation with the Charlier polynomials is

cµ
n (x) = (−µ)−n

n!Lx−n
n (µ) , (39)

see Ref. 38. Its special casey = z in the form of

∞∫

−∞
Hm (x)Hn (x) e−(x−y)2dx

=
√

π 2nm! yn−m Ln−m
m

(−2y2
)

(40)

is of particular interest in this paper.
The unitary relation

∞∑
n=0

T ∗mn (α, β, γ) Tm′n (α, β, γ) = δmm′ (41)

holds due to the orthogonality property of the Charlier poly-
nomials (29).

The relevant special case of these matrix elements is

Tmn (0, β, 0) = tmn (β) =
im+n

√
2m+nm!n!

× e−β2/4 βm+n cβ2/2
m (n) , (42)

which explicitly acts on the oscillator wave functions as fol-
lows:

eiβxΨn (x) =
∞∑

m=0

tmn (β) Ψm (x) . (43)

Relations (30), (32) and (42) imply

∞∑

k=0

tmk (β1) tnk (β2) sk

=
im+n

√
2m+nm!n!

e−(β2
1+β2

2+2β1β2s)/4

× (β1 + β2s)
m (β2 + β1s)

n
cλ
m (n) (44)
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with

λ =
(
β2

1 + β2
2 + β1β2

(
s + s−1

))
/2,

which is an extension of the addition formula
∞∑

k=0

tmk (β1) tnk (β2) = tmn (β1 + β2) (45)

for the matrix elements.
In order to obtain functionscnm (t) in terms of the matrix

elementstmn (β) of the representations of the Heisenberg–
Weyl group, we compare (33) and (42). The result is

cnm (t) = (−1)n+m
e−i(µ sin t+(ω/2−µ)t)

× e−i((ω−1)n+(n+m)/2)t tmn (β) , (46)

whereβ = 2
√

2µ sin (t/2) . Our solution (27) takes the form

ψ (x, t) =
∞∑

n=0

Ψn (x)
∞∑

m=0

cnm (t)

∞∫

−∞
Ψm (y) ψ0 (y) dy

= e−i(µ sin t+(ω/2−µ)t)
∞∑

n=0

(−1)n
e−it(ω−1/2)n

×Ψn (x)
∞∑

m=0

tmn (β)

∞∫

−∞
(−1)m

e−imt/2

×Ψm (y) ψ0 (y) dy. (47)

In the next section, we will discuss a generalization of
the Fourier transformation, which will allow us to transform
this multiple series into a single integral form in Sec. 7; see
Eqs. (55) and (60)–(62) below.

6. The generalized Fourier transform

The Mehler generating function, or the Poisson kernel for
Hermite polynomials, is given by

Kr (x, y) =
∞∑

n=0

rn Ψn (x) Ψn (y) =
1√

π (1− r2)

× exp

(
4xyr − (

x2 + y2
) (

1 + r2
)

2 (1− r2)

)
, (48)

where Ψn(z) are the oscillator wave functions defined
by (12) and|r| ≤ 1, r 6= ±1 (see Refs. 14, 41, 49, and 52 for
example). Using the orthogonality property (13) one gets

rnΨn (x) =

∞∫

−∞
Kr (x, y)Ψn (y) dy, |r| < 1. (49)

Thus the wave functionsΨn are also eigenfunctions of an
integral operator corresponding to the eigenvaluesrn.

We denote

Kτ (x, y) = Keiτ (x, y) =
ei(π/2−τ)/2

√
2π sin τ

× exp

(
i
2xy − (

x2 + y2
)
cos τ

2 sin τ

)
(50)

with 0 < τ < π and use the fact that the oscillator wave
functions are the eigenfunctions of the generalized Fourier
transform

einτΨn (x) =

∞∫

−∞
Kτ (x, y)Ψn (y) dy (51)

corresponding to the eigenvalueseinτ . (See Refs. 5, 42, and
48 for more details on the generalized Fourier transform, its
inversion formula and their extensions. It is worth noting that
the classical Fourier transform corresponds to the particular
valueτ = π/2 [52]. Its three-parameter extension will be
discussed in Sec. 9.)

7. An integral form of solution

Now let us transform the series (47) into a single integral
form. With the help of the inversion formula for the gen-
eralized Fourier transform (see (51) withτ → −τ ) and the
symmetry property

Hn (−x) = (−1)n
Hn (x)

we get

(−1)me−imt/2Ψm(y) =

∞∫

−∞
K−t/2(−y, z)Ψm(z)dz. (52)

Then by (43) and Fubuni’s theorem,

∞∑
m=0

tmn(β)

∞∫

−∞
(−1)m

e−imt/2Ψm (y)ψ0 (y) dy=
∞∑

m=0

tmn(β)

∞∫

−∞




∞∫

−∞
K−t/2(−y, z)Ψm(z)dz


ψ0(y)dy

=
∫ ∞∫

−∞
K−t/2 (−y, z)

( ∞∑
m=0

tmn (β)Ψm(z)

)
ψ0(y)dydz =

∫ ∞∫

−∞
K−t/2 (−y, z)

(
eiβzΨn(z)

)
ψ0 (y) dydz. (53)
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Now the series (47) takes the form

ψ (x, t) = e−i(µ sin t+(ω/2−µ)t)
∞∑

n=0

(−1)n
e−it(ω−1/2)n Ψn (x)

∫ ∞∫

−∞
K−t/2 (−y, z)

(
eiβzΨn (z)

)
ψ0 (y) dydz

= e−i(µ sin t+(ω/2−µ)t)

∫ ∞∫

−∞
K−t/2(−y, z)eiβz

( ∞∑
n=0

e−it(ω−1/2)n Ψn (−x)Ψn (z)

)
ψ0 (y) dydz

= e−i(µ sin t+(ω/2−µ)t)

∞∫

−∞




∞∫

−∞
K−t/2 (−y, z) eiβzKt(1/2−ω) (−x, z) dz


 ψ0 (y) dy (54)

in view of the generating relations (48) and (50). Thus

ψ (x, t) = e−i(µ sin t+(ω/2−µ)t)

∞∫

−∞
Gt (x, y) ψ0 (y) dy, (55)

where we define the kernel as

Gt (x, y) :=

∞∫

−∞
Kt(1/2−ω) (−x, z) eiβzK−t/2 (−y, z) dz. (56)

This can be evaluated with the help of the familiar elementary integrals
∞∫

−∞
e−x2

dx =
√

π,

∞∫

−∞
ei(az2+2bz), dz =

√
πi

a
e−ib2/a (57)

(see Refs. 9, 15, and 40 also). Denotingτ1 = t (ω − 1/2) andτ2 = t/2, from (50) we get

K−τ1 (−x, z) eiβzK−τ2 (−y, z) =
ei(ωt−π)/2

2π
√

sin τ1 sin τ2

ei(x2 cot τ1+y2 cot τ2)/2 ei(β+x/ sin τ1+y/ sin τ2)z ei(cot τ1+cot τ2)z
2/2 (58)

and
∞∫

−∞
K−τ1 (−x, z) eiβzK−τ2 (−y, z) dz =

ei(ωt−π)/2

2π
√

sin τ1 sin τ2

ei(x2 cot τ1+y2 cot τ2)/2

×
∞∫

−∞
ei((β+x/ sin τ1+y/ sin τ2)z+(cot τ1+cot τ2)z

2/2)dz. (59)

As a result

Gt (x, y) =
ei(ωt−π/2)/2

√
2π sin ωt

ei(x2 cot τ1+y2 cot τ2)/2 exp

(
sin τ1 sin τ2 (β + x/ sin τ1 + y/ sin τ2)

2

2i sin ωt

)
(60)

with τ1 = t (ω − 1/2) , τ2 = t/2 andβ = β(t) = 2
√

2µ sin(t/2). Thus the explicit form of this kernel is given by

Gt (x, y) =
ei(ωt−π/2)/2

√
2π sin ωt

exp

((
x2 + y2

)
sin ωt− (

x2 − y2
)
sin (ω − 1) t

2i (cosωt− cos (ω − 1) t)

)
exp

(
ik2

t (x, y)
sin ωt (cos ωt− cos (ω − 1) t)

)
, (61)

where

kt (x, y) = (x + y) sin (ωt/2) cos ((ω − 1) t/2)

− (x− y) cos (ωt/2) sin ((ω − 1) t/2)−
√

2µ sin (t/2) (cos ωt− cos (ω − 1) t) . (62)

The last expression can be transformed into a somewhat more convenient form

Gt (x, y) = K∗ωt (x, y) exp
(

sin ((ω − 1/2) t) sin (t/2) β2

2i sinωt

)
exp

(
(x sin (t/2) + y sin ((ω − 1/2) t)) β

i sin ωt

)
(63)
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with β = 2
√

2µ sin (t/2) in terms of the kernel of the
generalized Fourier transform (50). Our formulas (55) and
(60)–(63) provide an integral form to the solution of the
Cauchy initial value problem (25)–(26) in terms of a Green
function.

By choosingψ0(x) = δ (x− x0) , where δ(x) is the
Dirac delta function, we formally obtain

ψ (x, t)=G(x, x0, t)=e−i(µ sin t+(ω/2−µ)t)Gt(x, x0), (64)

which is the fundamental solution to the time-dependent
Schr̈odinger equation (25). One can show that

lim
t→0+

ψ (x, t) = ψ0 (x) (65)

by methods of Refs. 5, 42, and 52. The details are left to the
reader.

The time evolution operator for the time-dependent
Schr̈odinger equation (6) can formally be written as

U (t, t0) = T


exp


− i

}

t∫

t0

H (t′) dt′





 , (66)

where T is the time ordering operator which orders operators
with larger times to the left [9], [21]. Namely, this unitary
operator takes a state at timet0 to a state at timet, so that

ψ (x, t) = U (t, t0) ψ (x, t0) (67)

and
U (t, t0) = U (t, t′)U (t′, t0) , (68)

U−1 (t, t0) = U† (t, t0) = U (t0, t) . (69)

We have constructed this time evolution operator explic-
itly as the following integral operator

U (t, t0)ψ (x, t0) = e−i(µ sin(t−t0)+(ω/2−µ)(t−t0))

×
∞∫

−∞
Gt−t0 (x, y) ψ (y, t0) dy (70)

with the kernel given by (60)–(63), for the particular form of
the time-dependent Hamiltonian in (8)–(10) and (22). The
Green function (propagator) for the general forced harmonic
oscillator is constructed in Sec. 10; see Eqs. (79)–(84).

8. The Cauchy problem for the simple har-
monic oscillator

In an important special caseµ = 0, the initial value problem

i
∂ψ

∂t
=

ω

2

(
−∂2ψ

∂x2
+ x2ψ

)
,

ψ (x, t)|t=0 = ψ0 (x) (−∞ < x < ∞) (71)

has the following explicit solution:

ψ (x, t) =
∞∑

n=0

e−iω(n+1/2)tΨn (x)

×
∞∫

−∞
Ψn (y)ψ0 (y) dy =

1√
2πi sin (ωt)

×
∞∫

−∞
exp

(
i

(
x2 + y2

)
cos (ωt)− 2xy

2 sin (ωt)

)
ψ0(y)dy. (72)

The last relation is valid when0 < t < π/ω. Analytic con-
tinuation in a larger domain is discussed in Ref. 29 and 50.

Equation (72) gives the time evolution operator (66) for
the simple harmonic oscillator in terms of the generalized
Fourier transform. This result and its extension to a general
forced harmonic oscillator without the velocity-dependent
term in the Hamiltonian are well-known (see Refs. 7, 17,
20, 23, 25, 29, 34, 50, and references therein; further gener-
alizations are given in Secs. 10–12; more special cases will
be discussed in Sec. 13).

9. Three parameter generalization of the
Fourier transform

The properties of the time evolution operator in (67)–(70)
suggest the following extension of the classical Fourier in-
tegral:

f (x) =

∞∫

−∞
Lt (x, y) g (y) dy, (73)

where the kernel given by

Lt (x, y) = Kωt (x, y)

× exp
(

i
sin ((ω − 1/2) t) sin3 (t/2)

2 sinωt
ε2

)

× exp
(
i
(x sin(t/2)+y sin((ω − 1/2)t)) sin(t/2)

sin ωt
ε
)

(74)

depends on the three free parameterst, ω andε. If ε = 0
andωt = τ we arrive at the kernel of the generalized Fourier
transform (50). The formal inversion formula is given by

g (y) =

∞∫

−∞
L∗t (x, y) f (x) dx. (75)

The details are left to the reader. Note that, in terms of a
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distribution,
∞∫

−∞
L∗t (x, y)Lt (x, z) dx

= ei cot(ωt)(y2−z2)/2 eiε(z−y) sin((ω−1/2)t) sin(t/2)/ sin ωt

× 1
2π sin ωt

∞∫

−∞
eix(z−y)/ sin ωt dx = δ(y − z), (76)

which gives the corresponding orthogonality property of the
L-kernel. These results admit further generalizations with the
help of the time evolution operators found in Secs. 10 and 12.

10. The general forced harmonic oscillator

Our solution to the initial value problem (25)–(26) obtained
in the previous sections admits a generalization. The Cauchy
problem for the general forced harmonic oscillator

i
∂ψ

∂t
=

ω

2

(
−∂2ψ

∂x2
+x2ψ

)
−f (t) xψ+ig (t)

∂ψ

∂x
, (77)

wheref (t) andg (t) are two arbitrary real valued functions
of time only (such that the integrals in (82)–(84) below con-
verge anda (0) = 0), with the initial data

ψ (x, t)|t=0 = ψ0 (x) (−∞ < x < ∞) , (78)

has the following explicit solution:

ψ (x, t) =

∞∫

−∞
G (x, y, t)ψ0 (y) dy. (79)

Here the Green function (or Feynman’s propagator [17], [20],
[34]) is given by

G (x, y, t) = G0 (x, y, t) ei(a(t)x+b(t)y+c(t)) (80)

with

G0 (x, y, t)=
1√

2πi sin ωt

× exp

(
i

(
x2+y2

)
cos ωt−2xy

2 sin ωt

)
(81)

and

a (t) =
1

sinωt

t∫

0

(f (s) sin ωs + g (s) cos ωs) ds, (82)

b (t) =

t∫

0

ωa (s)− g (s)
sin ωs

ds, (83)

c (t) =

t∫

0

(
g (s) a (s)− ω

2
a2 (s)

)
ds (84)

provideda (0) = b (0) = c (0) = 0. The caseg (t) ≡ 0 is
discussed in Refs. 17, 20, and 34, but the answers forb (t)
andc (t) are given in different forms; we shall elaborate on
this later.

Indeed, the previously found solution (63)–(64) in the
special case of the forced oscillator (25) suggests to look for
a general Green function in the form (80), namely,

ψ = u eiS , (85)

whereu = G0 (x, y, t) is the fundamental solution of the
Scḧodinger equation for the simple harmonic oscillator (71)
andS = a (t)x + b (t) y + c (t) . Its substitution into (77)
gives

(
da

dt
x +

db

dt
y +

dc

dt

)
u =

(
ag + xf − ω

2
a2

)
u

+ i (aω − g)
∂u

∂x
, (86)

where by (81)

∂u

∂x
= i

x cos ωt− y

sin ωt
u. (87)

As a result

da

dt
x +

db

dt
y +

dc

dt
= ag + xf − ω

2
a2

− (aω − g)
x cosωt− y

sin ωt
, (88)

and equating the coefficients ofx, y and1, we obtain the fol-
lowing system of ordinary differential equations

d

dt
(sinωt a (t)) = f (t) sin ωt + g (t) cos ωt, (89)

d

dt
b (t) =

ωa (t)− g (t)
sin ωt

, (90)

d

dt
c (t) = g (t) a (t)− ω

2
a2 (t) , (91)

whose solutions are (82)–(84), respectively, if the integrals
converge. This method is equivalent to solving the quantum
mechanical Hamilton–Jacobi equation for the general forced
harmonic oscillator [34].

Equation (83) can be rewritten as

b (t) = −
t∫

0

(sin ωs a (s)) d cot ωs−
t∫

0

g (s)
sin ωs

ds

and, integrating by parts,

b (t)=− cosωt a (t)

+

t∫

0

(f (s) cos ωs−g (s) sin ωs) ds (92)
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by (89). With the help of (82) and the addition formulas for
trigonometric functions we finally arrive at

b (t) = − 1
sin ωt

t∫

0

(f (s) sin ω (s− t)

+g (s) cos ω (s− t)) ds, (93)

which is equivalent to the form obtain in Refs. 17, 20, and 34,
wheng (t) ≡ 0.

In a similar fashion,

c (t) =

t∫

0

g (s) a (s) ds +
1
2

t∫

0

(sinωs a (s))2 d cot ωs

and as a result

c (t) =
1
2

sinωt cosωt a2(t) +

t∫

0

sinωs a (s)

×(−f(s) cos ωs + g(s) sin ωs)ds. (94)

This can be transformed into the form given in Refs. 17
and 20 wheng (t) ≡ 0. The details are left to the reader.

Evaluation of elementary integrals results in (63) again in
the special case (25). The simple casef (t) = 2 cos ωt and
g (t) ≡ 0 gives

a (t) =
sin ωt

ω
, b (t) = t,

c (t) =
1

8ω2
sin 2ωt− 1

4ω
t. (95)

The corresponding propagator in (80) does satisfy the
Schr̈odinger equation (77), which can be verified by a direct
differentiation with the help of a computer algebra system.
The details are left to the reader. A case of the forced modi-
fied oscillator is discussed in Ref. 30.

11. Eigenfunction expansion for the general forced harmonic oscillator

Separation of thex andy variables in Feynman’s propagator (80) –(84) with the help of the Mehler generating function (48)
written as

G0 (x, y, t) =
∞∑

k=0

e−iω(k+1/2)t Ψk (x)Ψk (y) (96)

gives

G (x, y, t) = G0 (x, y, t) ei(ax+by+c) = ei(c−ωt/2)
∞∑

k=0

e−iωkt
(
eiaxΨk (x)

) (
eibyΨk (y)

)

= ei(c−ωt/2)
∞∑

k=0

e−iωkt

( ∞∑
n=0

tnk (a) Ψn (x)

)( ∞∑
m=0

tmk (b) Ψm (y)

)

= ei(c−ωt/2)
∞∑

n=0

∞∑
m=0

Ψn (x) Ψm (y)

( ∞∑

k=0

e−iωkt tnk (a) tmk (b)

)
(97)

by (43). The last series can be summed by using the addition formula (44) in the form

∞∑

k=0

e−iωkt tnk (a) tmk (b) =
im+n

√
2m+nm!n!

ei(ab sin ωt)/2 e−χ2/4 (a + bz)n (b + az)m
cχ2/2
m (n) , (98)

with z = e−iωt andχ2 = a2 + b2 + 2ab cos ωt. As a result we arrive at the following eigenfunction expansion of the forced
harmonic oscillator propagator:

G (x, y, t) = ei(c−(ωt−ab sin ωt)/2) e−χ2/4
∞∑

n=0

∞∑
m=0

Ψn (x)Ψm (y)
in+m

√
2n+mn!m!

(a + bz)n (b + az)m
cχ2/2
m (n) (99)

in terms of the Charlier polynomials. The special caseg (t) ≡ 0 is discussed in Ref. 20 but the connection with the Charlier
polynomials is not emphasized.

The solution (79) takes the form

ψ (x, t) =
∞∑

n=0

Ψn (x)
∞∑

m=0

cnm (t)

∞∫

−∞
Ψm (y)ψ0 (y) dy, (100)
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where

cnm (t) = ei(c−(ωt−ab sin ωt)/2) e−χ2/4 in+m

√
2n+mn!m!

(a + bz)n (b + az)m
cχ2/2
m (n) (101)

with z = e−iωt andχ2 = a2 + b2 + 2ab cosωt. Functionsa = a (t) , b = b (t) andc = c (t) here are given by the integrals
(82)–(84), respectively, andlimt→0+ cnm (t) = δnm.

If ψ0 (x) = ψ (x, t)|t=0 = Ψm (x) , Eq. (100) becomes

ψ (x, t) =
∞∑

n=0

cnm (t)Ψn (x) . (102)

Thus functioncnm (t) gives explicitly the quantum mechanical amplitude that the oscillator initially in statem is found at time
t in staten [20]. An application to the motion of a charged particle with a spin in uniform perpendicular magnetic and electric
fields is considered in Sec. 14.

As a by-product we found the fundamental solutioncnm (t) of the system (18) in terms of the Charlier polynomials for
an arbitrary complex valued functionδ (t) = (−f (t) + ig (t)) /

√
2. The explicit solution of the corresponding initial value

problem in given by (23).

12. Time-dependent frequency

An extension of the Scḧodinger equation to the case of
the forced harmonic oscillator with the time-dependent fre-
quency is as follows:

i
∂ψ

∂t
=

ω(t)
2

(
−∂2ψ

∂x2
+x2ψ

)
−f(t)xψ+ig(t)

∂ψ

∂x
, (103)

whereω (t) > 0, f (t) and g (t) are arbitrary real valued
functions of time only. It can be easily solved by the sub-
stitution

τ = τ (t) =

t∫

0

ω (s) ds,
dτ

dt
= ω (t) , (104)

which transforms this equation into a familiar form

i
∂ψ

∂τ
=

1
2

(
−∂2ψ

∂x2
+x2ψ

)
−f1 (τ)xψ+ig1(τ)

∂ψ

∂x
, (105)

see the original Eq. (77) with respect to the new time variable
τ, whereω = 1 and

f1 (τ) =
f (t)
ω (t)

, g1 (τ) =
f (t)
ω (t)

. (106)

Therefore by (80)–(81) the propagator has the form

G (x, y, τ) = G0 (x, y, τ) ei(a(τ)x+b(τ)y+c(τ)) (107)

with

G0 (x, y, τ) =
1√

2πi sin τ

× exp

(
i

(
x2 + y2

)
cos τ − 2xy

2 sin τ

)
(108)

and the system (89)–(91) becomes

d

dτ
(sin τ a (τ)) = f1 (τ) sin τ + g1 (τ) cos τ, (109)

d

dτ
b (τ) =

a (τ)− g1 (τ)
sin τ

, (110)

d

dτ
c (τ) = g1 (τ) a (τ)− 1

2
a2 (τ) . (111)

Thus

a (τ)=
1

sin τ

t∫

0

(f (s) sin τ (s)+g (s) cos τ (s)) ds, (112)

b (τ)=

t∫

0

ω (s) a (τ (s))−g (s)
sin τ (s)

ds, (113)

c (τ)=

t∫

0

(
g(s)a (τ (s))−1

2
ω (s) a2 (τ (s))

)
ds, (114)

which is an extension of equations (82)–(83) to the case of
the forced harmonic oscillator with the time-dependent fre-
quency. The solution to the Cauchy initial-value problem is
given by

ψ (x, t) =

∞∫

−∞
G (x, y, τ) ψ0 (y) dy (115)

with

τ =

t∫

0

ω (s) ds.

The details are left to the reader.

Rev. Mex. F́ıs. 55 (2) (2009) 196–215



206 R.M. LOPEZ AND S.K. SUSLOV

13. Some special cases

The time-dependent Schrödinger equation for the forced har-
monic oscillator is usually written in the form

i}
∂Ψ
∂t

= HΨ (116)

with the following Hamiltonian

H=
p2

2m
+

mω2

2
x2−F (t) x−G (t) p, p=

}
i

∂

∂x
, (117)

where} is the Planck constant,m is the mass of the particle,
ω is the classical oscillation frequency,F (t) is a uniform in
space external force depending on time, functionG(t) rep-
resents a similar velocity-dependent term, andp is the linear
momentum operator. The initial value problem is

i}
∂Ψ
∂t

= − }
2

2m

∂2Ψ
∂x2

+
mω2

2
x2Ψ

−F (t)xΨ+i}G (t)
∂Ψ
∂x

(118)

with

Ψ(x, t)|t=t0
= Ψ (x, t0) . (119)

Among important special cases are: the free particle, when
ω = F = G = 0; a particle in a constant external field,
whereω = G = 0 andF = constant; the simple harmonic
oscillator withF = G = 0. In this section for the benefits
of the reader we provide explicit forms for the corresponding
propagators by taking certain limits in the general solution.

The usual change of the space variable

Ψ (x, t) = ψ (ξ, t) , ξ =
√

mω

}
x (120)

reduces Eq. (118) to the form (77) with respect toξ with

f (t) =
F (t)√
}ωm

, g (t) =
√

mω

}
G (t) . (121)

The time evolution operator is

Ψ(x, t) =

∞∫

−∞
G (x, y, t, t0) Ψ (y, t0) dy (122)

with the propagator of the form

G (x, y, t, t0) = G0 (x, y, t, t0)

× ei(a(t,t0)x+b(t,t0)y+c(t,t0)). (123)

Here

G0 (x, y, t, t0) =
√

mω

2πi} sin ω (t− t0)

× exp

(
imω

2} sin ω(t− t0)
[
(x2 + y2)

× cosω(t− t0)− 2xy
]
)

, (124)

a (t, t0) =
mω

} sin ω (t− t0)

t∫

t0

(
F (s)

sin ω(s− t0)
mω

+ G(s) cos ω(s− t0)

)
ds, (125)

b (t, t0) = −a (t0, t) (126)

and

c (t, t0)=

t∫

t0

(
G (s) a (s, t0)− }

2m
a2 (s, t0)

)
ds. (127)

The simple harmonic oscillator propagator, when
F = G = 0, is given by Eq. (124); see Refs. 7, 17, 20, 23,
25, 29, 34, 50, and references therein for more details. In the
limit ω → 0 we obtain

G0(x, y, t, t0)=
√

m

2πi}(t−t0)
exp

(
im(x− y)2

2}(t− t0)

)
(128)

as the free particle propagator [20].

FIGURE 1. Magnetic and electric fields inR3.
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For a particle in a constant external fieldω = G = 0 and
F = constant. The corresponding propagator is given by

G (x, y, t, t0) =
√

m

2πi} (t− t0)
exp

(
im (x− y)2

2} (t− t0)

)

× exp
(

iF (x + y)
2}

(t− t0)− iF 2

24}m
(t− t0)

3

)
. (129)

This case was studied in detail in Refs. 3, 10, 20, 24, 37,
and 43. We have corrected a typo in Ref. 20.

14. Motion in uniform perpendicular mag-
netic and electric fields

14.1. Solution of a particular initial value problem

A particle with a spins has also an intrinsic magnetic mo-
mentumµ with the operator

µ̂ = µŝ/s, (130)

where ŝ is the spin operator andµ is a constant character-
izing the particle, which is usually called the magnitude of
the magnetic momentum. For the motion of a charged parti-
cle in uniform magneticH and electricE fields, which are
perpendicular to each other (Fig. 1), the corresponding three-
dimensional time-dependent Schrödinger equation

i}
∂Ψ
∂t

= ĤΨ (131)

has the Hamiltonian of the form [28]

Ĥ =
1

2m

(
p̂x +

eH

c
y

)2

+
1

2m
p̂2

y +
1

2m
p̂2

z −
µ

s
ŝzH − yF, (132)

wherep̂ = −i}∇ is the linear momentum operator, functions
H andF/e are the magnitudes of the uniform magnetic and
electric fields inz andy directions, respectively. The corre-
sponding vector potentialA = −yH ex is defined up to a
gauge transformation. Here we follow the original choice of
Ref. 28 (see a remark at the end of this section).

Since (132) does not contain the other components of the
spin, the operator̂sz commutes with the Hamiltonian̂H and
thez-component of the spin is conserved. Thus the operator
ŝz can be replaced by its eigenvaluesz = σ in the Hamilto-
nian

Ĥ =
1

2m

(
p̂x +

eH

c
y

)2

+
1

2m
p̂2

y

+
1

2m
p̂2

z −
µσ

s
H − yF (133)

with σ = −s,−s + 1, ... , s − 1, s. Then the spin depen-
dence of the wave function becomes unimportant and the

wave function in the Schrödinger equation (131) can be taken
as an ordinary coordinate functionΨ = Ψ (r, t, σ) .

The Hamiltonian (133) does not contain the coordinates
x andz explicitly. Therefore the operatorŝpx and p̂z also
commute with the Hamiltonian and thex andz components
of the linear momentum are conserved. The corresponding
eigenvaluespx andpz take all values from−∞ to∞; see [28]
for more details. In this paper we consider the simplest case
when the magnetic fieldH is a constant and the electric force
F is a function of timet (see Fig. 1); a more general case
will be discussed elsewhere. Then the substitution

Ψ(r, t) = ei(xpx+zpz−S(t,t0))/} ψ (y, t) , (134)

where

S(t, t0)=
(

p2
z

2m
−µσ

s
H

)
(t− t0)+

cpx

eH

t∫

t0

F (τ) dτ, (135)

results in the one-dimensional time-dependent Schrödinger
equation of the harmonic oscillator driven by an external
force in they-direction

i}
∂ψ

∂t
= − }

2

2m

∂2ψ

∂y2

+
mω2

H

2
(y − y0)

2
ψ − F (t) (y − y0)ψ (136)

with

ωH =
|e|H
mc

, y0 = −cpx

eH
. (137)

The Cauchy initial-value problem subject to special data

Ψ(r, t)|t=t0
= ei(xpx+zpz)/} ψ (y, t0)

= ei(xpx+zpz)/} ϕ (y − y0) (138)

has the following solution:

Ψ(r, t) = Ψ (r, t, px, pz) = ei(xpx+zpz−S(t,t0))/}

×
∞∫

−∞
G (y − y0, η, t, t0) ϕ (η) dη, (139)

where the propagator takes the form

G (y, η, t, t0) = G1 (y, η, t− t0)

× ei(a(t,t0)y+b(t,t0)η+c(t,t0)) (140)
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with

G1 (y, η, t) =
√

mωH

2πi} sin ωHt

× exp
(

imωH

2} sin ωHt

((
y2 + η2

)
cos ωHt− 2yη

))
, (141)

a (t, t0) =
1

} sin ωH (t− t0)

×
t∫

t0

F (τ) sin ωH (τ − t0) dτ, (142)

b (t, t0) = −a (t0, t) (143)

and

c (t, t0) = − }
2m

t∫

t0

a2 (τ, t0) dτ. (144)

See Eqs. (122)–(127) withG ≡ 0. Functionc (t, t0) can be
written in several different forms.

14.2. Landau levels

In an absence of the external forceF ≡ 0, Eq. (136) is for-
mally identical to the time-dependent Schrödinger equation
for a simple harmonic oscillator with the frequencyωH . The
standard substitution

ψ (y, t) = e−iε(t−t0)/} χ (y) (145)

gives the corresponding stationary Schrödinger equation as
follows [28]:

χ′′ +
2m

}2

(
ε− 1

2
mω2

H (y − y0)
2

)
χ = 0, (146)

which has the square integrable solutions only when

ε = }ωH

(
n +

1
2

)
, n = 0, 1, 2, ... . (147)

The eigenfunctions are

χn (y) =
1√

2nn!aH
√

π

× exp

(
− (y − y0)

2

2a2
H

)
Hn

(
y − y0

aH

)
,

aH =
√

}
mωH

, (148)

whereHn (η) are the Hermite polynomials.

Thus the total energy levels of a particle in a uniform
magnetic field have the form

En = En (pz, σ) = }ωH

(
n +

1
2

)
+

p2
z

2m
− µσ

s
H

(n = 0, 1, 2, ... ) . (149)

The first term here gives the discrete energy values corre-
sponding to motion in a plane perpendicular to the field. They
are called Landau levels. The expression (149) does not con-
tain the quantitypx, which takes all real values. Therefore
the total energy levels are continuously degenerate. For an
electron,µ/s = − |e| }/mc, and formula (149) becomes

En = En (pz, σ) = }ωH

(
n +

1
2

+ σ

)
+

p2
z

2m
. (150)

In this case, there is an additional degeneracy: the levels with
n, σ = 1/2 andn + 1, σ = −1/2 coincide:

En (pz, 1/2) = En+1 (pz,−1/2) .

The three-dimensional wave functions corresponding to the
energy levels (149) are given by

Ψn (r, t, σ) = Ψn (r, t, px, pz, σ)

= e−iEn(pz,σ)(t−t0)/} ei(xpx+zpz)/} χn (y) . (151)

They are the eigenfunctions of the following set of commut-
ing operatorŝpx, p̂z, ŝz, andĤ with F ≡ 0 :

ĤΨn = EnΨn, ŝzΨn = σΨn,

p̂xΨn = pxΨn, p̂zΨn = pzΨn. (152)

The orthogonality relation inR3 is
∫

R3

Ψ∗n (r, t, px, pz, σ) Ψm (r, t, p′x, p′z, σ
′) dxdydz

= (2π})2 δnm δσσ′ δ (px − p′x) δ (pz − p′z) , (153)

where

δ (α) =
1
2π

∞∫

−∞
eiαξdξ (154)

is the Dirac delta function.

14.3. Transition amplitudes

In the presence of external force, the quantum mechanical
amplitude of a transition between Landau’s levels under the
influence of the perpendicular electric field can be explicitly
found as a special case of our formulas (100)–(102). Indeed,
solution (139) takes the form

Ψ(r, t, σ) = e−iS(t,t0)/}
∞∑

n=0

Ψn (r, t0, σ)

×
∞∑

m=0

cnm (t, t0)

∞∫

−∞
χm (η)ψ (η, t0) dη (155)
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in view of the bilinear generating relation (99). If
ψ (y, t0)=χm (y) , this equation becomes

Ψ(r, t, σ) = e−iS(t,t0)/}

×
∞∑

n=0

cnm (t, t0) Ψn (r, t0, σ) , (156)

where coefficientscnm (t, t0) are given by (101) in terms of
Charlier polynomials as follows:

cnm (t, t0) = ei(c−(ωH(t−t0)−ab sin ωH(t−t0))/2) e−γ2/4

× in+m

√
2n+mn!m!

(a + bδ)n (b + aδ)m
cγ2/2
m (n) (157)

with δ=e−iωH(t−t0) andγ2=a2 + b2 + 2ab cos ωH (t− t0) .
Functionsa = a (t, t0) , b = b (t, t0) andc = c (t, t0) are
evaluated by the integrals (142)–(144), respectively. The last
two formulas (156)–(157) and (135) give us the quantum me-
chanical amplitude that the particle initially in Landau state
m is found at timet in staten. For the particle initially in the
ground statem = 0, the probability of occupying staten at
time t is given by the Poisson distribution

|cn0 (t, t0)|2 = e−µ µn

n!
,

µ =
1
2

(
a2 + b2 + 2ab cosωH (t− t0)

)
< 1. (158)

The details are left to the reader.

14.4. Propagator in three dimensions

Our particular solutions (139) subject to special initial data
(138) have been constructed above as eigenfunctions of the
operatorŝpx and p̂z, whose continuous eigenvaluespx and
pz vary from−∞ to∞. By the superposition principle, one
can look for a general solution inR3 as a double Fourier in-
tegral of the particular solution

Ψ(r, t) =
∫ ∞∫

−∞
a (px, pz)Ψ (r, t, px, pz) dpxdpz

=
∫ ∞∫

−∞
dpxdpz a (px, pz)ei(xpx+zpz)/}e−iS(t,t0)/}

×
∞∫

−∞
G (y − y0, η, t, t0) ϕ (η) dη, (159)

where functionsa (px, pz) do not depend on timet and
S (t, t0) is given by (135). Now we replace the special initial
data (138) inR3 by the general one

Ψ(r, t)|t=t0
= φ (x, y, z) , (160)

which is independent ofpx (andy0). Letting t → t0 in (159)
and using the fundamental property of the Green function,

lim
t→t+0

∞∫

−∞
G (y − y0, η, t, t0) ϕ (η) dη=ϕ (y − y0) , (161)

one gets

φ (x, y, z) =
∫ ∞∫

−∞
a (px, pz)ϕ (y − y0)

× ei(xpx+zpz)/}dpxdpz, (162)

wherey0 is a function ofpx in view of (137). Thus

a (px, pz)ϕ (y − y0) =
1

(2π})2

×
∫ ∞∫

−∞
φ (ξ, y, ζ) e−i(ξpx+ζpz)/} dξdζ (163)

by the inverse of the Fourier transform. Its substitution into
(159) gives

Ψ(r, t) =
1

(2π})2

∫ ∞∫

−∞
dpxdpz ei(xpx+zpz−S(t,t0))/}

×
∞∫

−∞
dη G (y − y0, η − y0, t, t0)

×
∫ ∞∫

−∞
φ (ξ, η, ζ) e−i(ξpx+ζpz)/}dξdζ (164)

as a solution of our initial value problem. A familiar integral
form of this solution is as follows:

Ψ(r, t) =
∫

R3

G (r, ρ, t, t0) φ (ξ, η, ζ) dξdηdζ, (165)

where the Green function (propagator) is given as a double Fourier integral

G (r, ρ, t, t0) =
1

(2π})2

∫ ∞∫

−∞
ei((x−ξ)px+(z−ζ)pz)/}e−iS(t,t0)/}G (y − y0, η − y0, t, t0) dpxdpz (166)

with the help of the Fubini theorem.
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This integral can be evaluated in terms of elementary functions as follows. Integration overpz gives the free particle
propagator of a motion in the direction of magnetic field

G0 (z − ζ, t− t0) =
1

2π}

∞∫

−∞
exp

(
i

}

(
(z − ζ) pz− p2

z

2m
(t− t0)

))
dpz=

√
m

2πi} (t− t0)
exp

(
im (z − ζ)2

2} (t− t0)

)
(167)

by the integral (57). Thus

G (r,ρ, t, t0) = exp
(

iµσH

}s
(t− t0)

)
G0 (z − ζ, t− t0)

1
2π}

∞∫

−∞
exp

(
i

}
(x− ξ) px

)
exp


− icpx

}eH

t∫

t0

F (τ) dτ




×G (y − y0, η − y0, t, t0) dpx = exp
(

iµσH

}s
(t− t0)

)
G0 (z − ζ, t− t0)G1 (y, η, t− t0)

× ei(a(t,t0)y+b(t,t0)η+c(t,t0))
1

2π}

∞∫

−∞
exp


 ipx

}


x− ξ − c

eH

t∫

t0

F (τ) dτ







× exp
(

i (a (t, t0) + b (t, t0)) cpx

eH

)
exp

(−i

}

(
p2

x

mωH
+
|e|
e

(y+η) px

)
tan (ωH (t−t0) /2)

)
dpx. (168)

In view of (57), the last integral is given by

1
2π}

∞∫

−∞
exp


 ipx

}


x− ξ − c

eH

t∫

t0

F (τ) dτ





 exp

(
i (a (t, t0) + b (t, t0)) cpx

eH

)

× exp
(−i

}

(
p2

x

mωH
+

e

|e| (y + η) px

)
tan (ωH (t− t0) /2)

)
dpx =

√
mωH cot (ωH (t− t0) /2)

4πi}

× exp
(

imωH cot (ωH (t− t0) /2)
4}

β2

)
, (169)

where
β = x− ξ − e

|e| (y + η) tan (ωH (t− t0) /2) + d (t, t0) (170)

with

d (t, t0) =
c

eH sin ωH (t− t0)

t∫

t0

F (τ) (sin ωH (τ − t0)− sin ωH (τ − t)− sin ωH (t− t0)) dτ. (171)

Here we have used (143)–(142). As a result, we arrive at the following factorization of our propagator:

G (r, ρ, t, t0) = G0 (z − ζ, t− t0) G1 (y, η, t− t0) ei(a(t,t0)y+b(t,t0)η+c(t,t0))G2 (x, ξ, y, η, t, t0) , (172)

whereG0 (z − ζ, t− t0) is the free particle propagator in (167),G1 (y, η, t− t0) is the simple harmonic oscillator propagator
in (141), and

G2 (x, ξ, y, η, t, t0) = exp
(

iµσH

}s
(t− t0)

) √
mωH cot (ωH (t− t0) /2)

4πi}
exp

(
imωH cot (ωH (t− t0) /2)

4}
β2

)
(173)

with β = β (x, ξ, y, η, t, t0) given by (170)–(171).
Our propagator can be simplified to a somewhat more convenient form as follows:

G (r, ρ, t, t0) = G0 (z − ζ, t− t0) GH (x, ξ, y, η, t− t0) GF (x, ξ, y, η, t, t0) . (174)

HereG0 (z, t) is the free particle propagator in the direction of magnetic field. The function

GH (x, ξ, y, η, t) = exp
(

iµσHt

}s

)
mωH

4πi} sin (ωHt/2)

× exp
(

imωH

4}

((
(x− ξ)2 + (y − η)2

)
cot (ωHt/2)− 2

e

|e| (x− ξ) (y + η)
))

(175)
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is the propagator corresponding to a motion in a plane perpendicular to the magnetic field in the absence of an electric field
(compare our expression with one in Ref. 20, whereF = µ = 0, and see a remark below in order to establish an identity of
two results). The third factor

GF (x, ξ, y, η, t, t0) = eiWF (t,t0)/} (176)

with

WF (t, t0) = } (a (t, t0) y + b (t, t0) η + c (t, t0)) +
1
4
mωH d (t, t0)

×
(

(d (t, t0) + 2 (x− ξ)) cot (ωH (t− t0) /2)− 2
e

|e| (y + η)
)

(177)

is a contribution from the electric field. WhenF = 0,
WF = 0 andGF = 1.

The solution to the Cauchy initial value-problem inR3

subject to the general initial data

Ψ(r, t)|t=t0
= Ψ (r, t0) = φ (x, y, z) (178)

has the form

Ψ(r, t) =
∫

R3

G (r, ρ, t, t0) Ψ (ρ, t0) dξdηdζ, (179)

which gives explicitly the time evolution operator for a mo-
tion of a charged particle in uniform perpendicular mag-
netic and electric fields with a given projection of the spin
sz = σ in the direction of the magnetic field. By choosing
Ψ(r, t0) = δ (r − r0) , whereδ (r) is the Dirac delta func-
tion in three dimensions, we formally obtain

Ψ(r, t) = G (r, r0, t, t0) (180)

as the wave function at timet of the particle initially located
at a pointr = r0. Then Eq. (179) gives a general solution by
the superposition principle.
Remark. The vector potential of the uniform magnetic field
in thez-direction is defined up to a gauge transformation [28]

A = −yH ex → A′ = A +∇f

= −1
2
yH ex +

1
2
xH ey =

1
2
H × r (181)

with f (x, y) = xyH/2. The corresponding transformation
of the wave function is given by

Ψ → Ψ′ = Ψexp
(

ief (x, y)
}c

)

= Ψexp
(

imωH

4}

(
2

e

|e|xy

))
(182)

and in view of (179)

GH → exp
(

ief (x, y)
}c

)
GH exp

(
− ief (ξ, η)

}c

)

=
mωH

4πi} sin(ωHt/2)
exp

(
imωH

4}

([
(x− ξ)2 + (y − η)2

]

× cot(ωHt/2)− 2
e

|e| (xη − ξy)
))

, (183)

which is, essentially, Eq. (3-64) on page 64 of [20], where
we have corrected a typo. The details are left to the reader.

15. Diffusion-type equation

15.1. Special case

A formal substitution oft → −it andψ → u into Eq. (25)
with ω = 2κ and

√
2µ = ε yields the following time-

dependent diffusion-type equation:

∂u

∂t
= κ

(
∂2u

∂x2
− x2u

)

−ε

(
(cosh (2κ−1) t)xu+(sinh (2κ−1) t)

∂u

∂x

)
, (184)

where the initial condition is

u (x, t)|t=0 = u0 (x) (−∞ < x < ∞) . (185)

As in the case of the time-dependent Schrödinger equation, in order to solve this initial value problem, we use the eigenfunction
expansion method. Hence the solution is given by

u (x, t)=
∞∑

n=0

Ψn(x)
∞∑

m=0

cnm (t)

∞∫

−∞
Ψm (y)u0 (y) dy, (186)
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where

cnm(t) = (−1)n−m εn+m

√
2n+mn!m!

e−(ε2/2)(1−e−t)e−((2κ−1)n+κ−ε2/2)t
(
1− e−t

)m+n
2F0

×
(
−n, −m;

2e−t

ε2 (1− e−t)2

)
(187)

by analytic continuationt → −it with ω = 2κ andµ = ε2/2 < 1 in (28) and (31). One can easily verify that

lim
t→0+

cnm (t) = δnm

and that if0 < ε <
√

2 andκ ≥ 1/2, κ > ε2/2,

lim
t→∞

cnm (t) = 0 (m,n = 0, 1, 2, ... ) .

Thus the limiting distribution is

lim
t→∞

u (x, t) ≡ 0 (−∞ < x < ∞) , (188)

which is independent of the initial data (185). Relation (47) becomes

u (x, t)=e−(ε2/2) sinh t−(κ−ε2/2)t
∞∑

n=0

(−1)n
e−t(2κ−1/2)n Ψn (x)

∞∑
m=0

tmn (β)

∞∫

−∞
(−1)m

e−mt/2 Ψm (y)u0 (y) dy (189)

with β = β (t) = −2iε sinh (t/2) . With the help of (49), (43) and the Fubuni theorem we transform

∞∑
m=0

tmn(β)

∞∫

−∞
e−mt/2 Ψm (−y)u0 (y) dy =

∫ ∞∫

−∞
Ke−t/2 (−y, z)

( ∞∑
m=0

tmn (β)Ψm (z)

)
u0 (y) dydz

=
∫ ∞∫

−∞
Ke−t/2 (−y, z) (eγzΨn (z)) u0 (y) dydz, (190)

whereγ = iβ = 2ε sinh (t/2) . The series (189) becomes

u (x, t) = e−(ε2/2) sinh t−(κ−ε2/2)t
∞∑

n=0

e−t(2κ−1/2)n Ψn (−x)
∫ ∞∫

−∞
Ke−t/2 (−y, z) (eγzΨn (z)) u0 (y) dydz

= e−(ε2/2) sinh t−(κ−ε2/2)t

∫ ∞∫

−∞
Ke−t/2 (−y, z) eγz

( ∞∑
n=0

e−t(2κ−1/2)nΨn (−x)Ψn (z)

)
u0 (y) dydz

= e−(ε2/2) sinh t−(κ−ε2/2)t

∞∫

−∞

(∫ ∞

−∞
Ke−t/2 (−y, z) eγzKe−t(2κ−1/2) (−x, z) dz

)
u0 (y) dy (191)

in view of the generating relation (48). Therefore, the integral form of the solution (186)–(187) is

u (x, t) = e−(ε2/2) sinh t−(κ−ε2/2)t

∞∫

−∞
Ht (x, y)u0 (y) dy, (192)

where by the definition

Ht (x, y) :=

∞∫

−∞
Ke−t(2κ−1/2) (−x, z) eγzKe−t/2 (−y, z) dz. (193)
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Denotingr1 = e−t(2κ−1/2) andr2 = e−t/2 we obtain by (48) that

∞∫

−∞
Kr1 (−x, z) eγzKr2 (−y, z) dz =

1
π
√

(1− r2
1) (1− r2

2)
exp

(
−

(
1 + r2

1

) (
1− r2

2

)
x2 +

(
1− r2

1

) (
1 + r2

2

)
y2

2 (1− r2
1) (1− r2

2)

)

×
∞∫

−∞
exp

((
1− r2

1

) (
1− r2

2

)
γ − 2r1

(
1− r2

2

)
x− 2r2

(
1− r2

1

)
y

(1− r2
1) (1− r2

2)
z

)
exp

(
− 1− r2

1r
2
2

(1− r2
1) (1− r2

2)
z2

)
dz (194)

and the integral can be evaluated with the help of an elementary formula

∞∫

−∞
e−az2+2bzdz =

√
π

a
eb2/a, a > 0. (195)

As a result, an analog of the heat kernel in (192)–(193) is given by

Ht (x, y) =
1√

π (1− r2
1r

2
2)

exp

(
−

(
1− r2

1r
2
2

) (
x2 + y2

)
+

(
r2
1 − r2

2

) (
x2 − y2

)

2 (1− r2
1) (1− r2

2)

)

× exp

([(
1− r2

1

) (
1− r2

2

)
γ − (r1 + r2) (1− r1r2) (x + y)− (r1 − r2) (1 + r1r2) (x− y)

]2
4 (1− r2

1) (1− r2
2) (1− r2

1r
2
2)

)
(196)

with r1 = e−t(2κ−1/2), r2 = e−t/2 andγ = 2ε sinh (t/2) , t > 0. The last expression can be simplified to a somewhat more
convenient form

Ht (x, y) = exp
(
−

(
r1 + r2

1 + r1r2
(x + y) +

r1 − r2

1− r1r2
(x− y)

)
γ

2

)
exp

((
1− r2

1

) (
1− r2

2

)

1− r2
1r

2
2

γ2

4

)
Kr1r2 (x, y) (197)

in terms of the Mehler kernel (48). One can show that

lim
t→0+

u (x, t) = u0 (x) (198)

by methods of Ref. 52. The details are left to the reader.

A formal substitution ofu0 (x) = δ (x− x0) into (192)
gives

u (x, t) = H (x, x0, t)

= e−(ε2/2) sinh t−(κ−ε2/2)tHt (x, x0) (199)

as the fundamental solution of the diffusion Eq. (184).

In the limit ε → 0 we obtain

u (x, t) = e−κt

∞∫

−∞
Ke−2κt (x, y) u0 (y) dy (200)

as the exact solution of the corresponding initial value prob-
lem in terms of the Mehler kernel (48). This kernel gives also
a familiar expression in statistical mechanics for the density
matrix for a system consisting of a simple harmonic oscilla-
tor [20].

15.2. Generalization

A formal substitution oft → −it andψ → u into (77) with
ω = 2κ andf → f, g → −ig yields a diffusion-type equa-

tion

∂u

∂t
= κ

(
∂2u

∂x2
− x2u

)
+ f (t) xu− g (t)

∂u

∂x
, (201)

wheref (t) andg (t) are real-valued functions of time, sub-
ject to the initial condition

u (x, t)|t=0 = u0 (x) (−∞ < x < ∞) . (202)
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The exact solution is

u (x, t) =

∞∫

−∞
H (x, y, t)u0 (y) dy (203)

and the Green function can be found in the form

H (x, y, t) = H0 (x, y, t) ea(t)x+b(t)y+c(t), (204)

where

H0 (x, y, t) =
√

r

π (1− r2)

× exp

(
4xyr − (

x2 + y2
) (

1 + r2
)

2 (1− r2)

)
(205)

with r = e−2κt. Indeed, substitution of (204) into (201) gives
the system of equations

d

dt
(sinh (2κt) a (t))=f (t) sinh (2κt)

+g (t) cosh (2κt) , (206)

d

dt
b (t) =

2κa (t)− g (t)
sinh (2κt)

, (207)

d

dt
c (t) = κa2 (t)− g (t) a (t) (208)

and the solutions are

a (t) =
1

sinh (2κt)

×
t∫

0

(f (s) sinh (2κs) + g (s) cosh (2κs)) ds, (209)

b (t) =

t∫

0

2κa (s)− g (s)
sinh (2κs)

ds, (210)

c (t) =

t∫

0

(
κa2 (s)− g (s) a (s)

)
ds (211)

provideda (0) = b (0) = c (0) = 0.

An analog of the expansion (99) is

H (x, y, t) =
∞∑

n=0

∞∑
m=0

cnm (t) Ψn (x)Ψm (y) (212)

with

cnm (t) =
1√

2n+mn!m!
ec−κt−(ab/2) sinh(2κt)+λ2/4

× (a + br)n (b + ar)m
2 F0

(
−n,−m;

2
λ2

)
. (213)

Herer = e−2κt, λ2 = a2+b2+2ab cosh (2κt) and functions
a (t) , b (t) andc (t) are given by the integrals (209)–(211),
respectively. This can be derived by expanding the kernel
(204) in the double series in the same fashion as in Sec. 11,
or by the substitutiont → −it, a → −ia, b → −ib, and
c → −ic in (99). The coefficientscnm (t) are positive when
t > 0.

The solution (203) takes the form

u (x, t) =
∞∑

n=0

Ψn (x)
∞∑

m=0

cnm (t)

×
∞∫

−∞
Ψm (y)u0 (y) dy. (214)

These results can be extended to the case when parameterκ
is a function of time in Eq. (201). The details are left to the
reader.
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