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We construct an explicit solution of the Cauchy initial value problem for the one-dimensiondidBuper equation with a time-dependent
Hamiltonian operator for the forced harmonic oscillator. The corresponding Green function (propagator) is derived with the help of the
generalized Fourier transform and a relation with representations of the Heisenberg—WeyNg{®un a certain special case first, and

then is extended to the general case. A three parameter extension of the classical Fourier integral is discussed as a by-product. Motion of
a particle with a spin in uniform perpendicular magnetic and electric fields is considered as an application; a transition amplitude between
Landau levels is evaluated in terms of Charlier polynomials. In addition, we also solve an initial value problem to a similar diffusion-type
equation.

Keywords: The Cauchy initial value problem; the Sékinger equation; forced harmonic oscillator; Landau levels; the hypergeometric
functions; the Hermite polynomials; the Charlier polynomials; Green functions; Fourier transform and its generalizations; the Heisenberg—
Weyl groupN (3).

En el presente trabajo construimos una solucionietglunidimensional a la ecudci de Schidinger con condiciones iniciales de Cauchy

y con un operador Hamiltoniano dependiente del tiempo para el osciladonimarforzado. La correspondiente fudide Green (propa-

gador) se deriva con aplicaciones de la transformada de Fourier generalizada y con uba adiasirepresentaciones del grug¢3) de
Heisenberg—Weyl, para un caso especial primero y despel extiende al caso general. Estudiamos por medio de un producto ungextenci

de tres paametros a la integral &ica de Fourier. Consideramos, como una aplicacion, el movimiento de urilpagiratoria en un

campo ekctrico y en un campo magtico perpendicularmente uniforme; evaluamoséminos de polinomios de Charlier una transiti

de amplitud entre los niveles de Landau. Adasmesolvemos una ecuanisimilar a la de difugin con valores iniciales.

Descriptores: Problema de valor inicial de Cauchy; ecuatide Schidinger; osilador ard@nico forzado; niveles de Landau; funciones
hipergeometricas; polinomios de Hermite; polinomios de Charlier; funciones de Green; transformada de Fourier y sus generalizaciones; el
grupo Heisenberg—Weyl.

PACS: 45.20.-d; 02.30.-f; 02.30.Nw

1. Introduction whered () is a complex valued function of timeand the

_ o _ symbolx denotes complex conjugation. This operator is Her-
The time-dependent Sdjdinger equation for the one- mitian, namely,H (t) = H (¢). It corresponds to the case

dimensional harmonic oscillator has the form of the forced harmonic oscillator which is of interest in many
maj — Hy ) advanced problems. Examples include polyatomic molecules
ot ’ in varying external fields, crystals through which an electron
where the Hamiltonian is is passing and exciting the oscillator modes, and other in-
B 92 5 hw Lo teractions of the modes with external fields. It has particular
H = o (_8902 +z ) =5 (aa +a a) - @ applications in quantum electrodynamics because the electro-

) o magnetic field can be represented as a set of forced harmonic
Hereo_ﬁ andq are the creation and annihilation operators, re-gggillators [9, 20, 23, 34, 35, 45]. Extensively used propagator
spectively, given by techniques were originally introduced by Richard Feynman

1 0 1 0 in Refs. 16 to 19.
ol = —(z—-=— a=—xz+=—1]; @) . . .
V2 ox )’ V2 or )’ On this note we construct an exact solution of the time-

see [21] for another definition. They satisfy the familiar com-dependent Scbdinger equation

mutation relation m%ﬂ —H )Y ©6)
[a, aw —aa' —ala=1. (4)
A natural modification of the Hamiltonian operator (2) is with the Hamiltonian of the form (5), subject to the initial
as follows: condition
w(‘ratﬂt:O :U)O (Z’), (7)

H—H(t) = o (aa’ + a'a)

2
. ; whereyy (z) is an arbitrary square integrable complex-valued
+h(0(t)a+d"(t)al), (3)  function from £2 (—co, o) . We shall start with a particular
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choice of the time-dependent functiéiit) given by (22) be- 2. The simple harmonic oscillator in one di-

low, which is later extended to the general case. The explicit  mension

form of Eq. (6) is given by (25) and (77) below, and an ex-

tension to similar diffusion-type equations is also discussed.The time-dependent Hamiltonian operator (5) has the follow-
ing structure:

This paper is organized as follows. In Sec. 2 we re-Where Fiw
mind the reader about the textbook solution of the station- Hy = > (aaT + aTa) 9)
ary Sphodmger equation for the one-d|.men3|onall simple h.ar'is the Hamiltonian of the harmonic oscillator and
monic oscillator. In Sec. 3 we consider the eigenfunction
expansion for the time-dependent Sittinger equation (6) Hi(t)=h (5 (t)a+ 8% (t) aT) (10)
and find its particular solutions in terms of the Charlier poly-
nomials for a certain forced harmonic oscillator. The serieds the time-dependent “perturbation”, which corresponds to
solution to the corresponding initial value problem is ob-an external time-dependent force that does not depend on
tained in Sec. 4. It is further transformed into an integralthe coordinate: (dipole interaction) and a similar velocity-
form in Sec. 7 after discussing two relevant technical toolsdependent term (see Refs. 20, 23, and 34 for more details).
namely, the representations of the Heisenberg-Weyl group The solution to the stationary Scfuinger equation for
N(3) and the generalized Fourier transform in Sec. 5 and éthe one-dimensional harmonic oscillator
respectively. An important special case of the Cauchy ini- B 92
tial value problem for the simple harmonic oscillator is out- HoU =EY, Ho=— (_axg + 552)
lined in Sec. 8 and a three-parameter generalization of the
Fourier transform is introduced in Sec. 9 as a by-productis @ standard textbook problem in quantum mechanics (see
In Secs. 10 and 11 we solve the initial value problem forRefs. 13, 21, 28, 34, 35, 39, 45, and 52 for example). The
the general forced harmonic oscillator in terms of the correOrthonormal wave functions are given by

(11)

sponding Green function (or Feynman’s propagator) and the 1 a2/
eigenfunction expansion, respectively, by a different method U=1,(z)= NCTNG e "/ FHy(x)  (12)

that uses all technical tools developed before in the special
case. An extension to the case of time-dependent frequenayith
is given in Sec. 12. Then in Sec. 13, we outline important

- L - 1 n=m
special and limiting cases of the Feynman propagators. Fi- / U* (2) Uy (2) dz = Spm = { ’ ’ (13)
nally in Sec. 14, the motion of a charged particle with a spin " 0, n #m,
in uniform magnetic and electric fields that are perpendicular
to each other is considered as an application; we evaluatewehere H,, (x) are the Hermite polynomials, a family of the
transition amplitude between Landau levels under the influ{very) classical orthogonal polynomials (see Refs. 1, 2, 4,
ence of the perpendicular electric field in terms of Charlierl2, 14, 38, 39, 41, and 49). The corresponding oscillator dis-
polynomials and find the corresponding propagator in threerete energy levels are
dimensions. Solutions to similar diffution-type equations are 1
discussed in Sec. 15. E=F, =hw (n + 2) (n=0,1,2,...). (14)

o0

The actions of the creation and annihilation operators (3)

The Cauchy initial value problem for a forced harmonic on the oscillator wave functions (12) are given by

oscillator was originally considered by Feynman in his path ¢ — \/n @, ,, 'O, =vn+1V,.;. (15)
integrals approach to the nonrelativistic quantum mechanics

[16,17,20]. Since then this problem and its special and limit-These “ladder” equations follow from the differentiation for-
ing cases were discussed by many authors [7,23,25,29,34,50]ulas

the simple harmonic oscillator; [3, 10, 24, 37, 43] the particle 4

in a constant external field; see also references therein. Itis—Hn (¢) = 2,1 (1) = 20H, (2) = Hup (2), (16)
worth noting that an exact solution to thedimensional time-
dependent Scbdinger equation for a certain modified osci
lator is found in Ref. 30. These simple exactly solvable mod-

els may be of interest in a general treatment of the non-lineaB.  Eigenfunction expansion for the time-
time-dependent Scdinger equation (see Refs. 26, 27, 36, dependent Schidinger equation

44, 46, 53, and references therein). They also provide explicit

solutions which can be useful for testing numerical methodsn the spirit of Dirac’s time-dependent perturbation theory in
of solving the time-dependent Sédinger equation. guantum mechanics (see Refs. 13, 21, 28, 35, and 45), we are

. which are valid for the Hermite polynomials.
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looking for a solution to the initial value problem in (6)—(7) In the next section we will obtain the functien,, (¢) in
as an infinite series terms of the Charlier polynomials; see Eq. (33) below. In
0o Sec. 5 we establish a relation with the representations of the
= Z cn (t) U, (), (17)  Heisenberg—Weyl group/(3); see Eq. (46). A generaliza-
n=0 tion to an arbitrary functiod (¢) will be given later.

where U, (x) are the oscillator wave functions (12) which

depend only on the space coordinateand ¢, (¢) are the

yet unknown time-dependent coefficients. Substituting thisve can now construct the exact solution to the origi-

form of solution into the Scliidinger equation (6) with the nal Cauchy problem in (6)—(7) for the time-dependent

help of the orthogonality property (13) and the “ladder” rela- Schivdinger equation with the Hamiltonian of the

tions (15), we obtain the following linear infinite system: form (8)—(10) and (22). More explicitly, we will solve the
following partial differential equation:

Z_dcgt(t) = w (n + ;) en () +0 (@) vVn—+1cuyr(t) aw W ( 9%y .\ 21/})
LWV () (n=0,1,2.) (18) o2

o ol
of the first-order ordinary differential equations with +v2p <C0& w—1)t) xzyp+i (sin (w—1)¢t) &c) (25)
c—1 (t) = 0. The initial conditions are

4. Solution of the Cauchy problem

subject to the initial condition

cn(0) = / U7 (z)tbo(x) do (19) ¥ (@Dl = Yo (2) (7OO_< @ < 00). (26)
ke By (17), (19), and (23) our solution has the form
due to the initial data (7) and the orthogonality property (13). ¥ (z,t) = i v, (z) i Crm (1)

Now we specify the exact form of the functiorit) in or-
der to find a particular solution to the system (18) in terms of

the so-called Charlier polynomials that belong to the classical T
orthogonal polynomials of a discrete variable (see Refs. 11, X Wi (¥) Yo (v) dy, (27)
12, 14, 38, and 39). One can easily verify that the following -
Ansatz where
n/2 n-m [ml _.. _(
— n K t) = (—pul/? M —iw(nt1/2)=(ntp))t
n (1) = (-1 con ()= (=) e
) . m X k
—i(w(n+1/2) = (nbm)t (g=iXty () 20 r_ —ikt —nk
xXe (e7pn (V) (20) S kZ_Oe ct (k) bt (k) e ™ o
gives the three-term recurrence relation B
. (71)77. mo- M(n+m)/2 e (w(n+1/2)—(n+pu))t
APn ()‘): - :u'pn+1()‘)+(n + /Jf)pn()‘)_npnfl(A) (21) - nlm)
for the Charlier polynomialg,, (\) = ¢* (\) (see Refs. 38 ) ) (ﬂefit)’“
and 39 for example), when we choose x Z cy (k) T’ (28)

§(t)=ype@ 5 (t) = e @ (22)  in view of the superposition principle and the orthogonality

ropert

with the real parameter such thatd < p < 1. Thus with property i
pn (A) = ¢ (X), EQ. (20) yields a particular solution of the (k) b ek m! 5 0 1) (29
system (18) for any value of the spectral paramater Zc ) e K opm M (O<p<1) (29

By the superposition principle the solution to this linear
system of ordinary differential equations, which satisfies the’
initial condition (19), can be constructed as a linear combina-
tion

fthe Charlier polynomials (see Ref. 38 for example).

The right-hand side of (28) can be transformed into a sin-
gle sum with the help of the following generating relation for
the Charlier polynomials:

Z Cnm Cm ) (23) o] k
(/'61/11'25) Cﬁ;l (k‘) cumz (k‘) — eulugle(l _ uls)m
wherec,,,, (t) is a “Green function, or a particular solution ;=9 k!
that satisfies the simplest initial conditions s

X (1—pas)™ 2 Fy <—n, —m; > . (30)

Cam (0) = Gpm. (24) (1—p1s) (1—pas)
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(See Refs. 31 to 33, and 22 for more information and Ref. Gvhere

for the definition of the generalized hypergeometric series.) oo
Choosingu; = jp = pands = e~ /1, we obtain Ty (00 B, 7) = / U (2)e OB, (2 + )da
()" ™ (Dt (ntm) /2t —2usin’(1/2) o
qun(t): e 2((w n n-r+m e A SIn
V2 tmplm)l _ gm—n ei(’y—(xﬁ/Z)e—u/Q
w e—i(usint+(w/2—pm)t) (2 2usin (t/Q))an vmln!
ta+ B\™ ria— B\,
1 x( ) ( ) e’ (n) (37)
xq Fy <—n, —m; —.2) . (32) \/§ \/i m
4psin® (t/2)

2 2 imilar i
The hypergeometric series representation for the CharllevrvIth V= (a +8 ) /2138]. A similar integral

polynomials is oo
1 / Hm(x+y)Hn(a:+z)e_‘”2dx
cn (¥) = oFp | —n, —x; ~ (32)
(see [38] for example). Thus =Vm2hm! 2" Ly (—2y2) (38)
Cnm (1) = e s+ (W/2=0)t) p=i((W=Dn+(ndm)/2)t is evaluated in Ref. 15 in terms of the Laguerre polynomials

Andm L (&), whose relation with the Charlier polynomials is
(—’L) 2 2
e~/ gram (B7/2 () (33)

X —— -n r—n
V2ntmplm] " cp(x) = (=p) "nlLy™" (1), (39)

with § = [ (t) = 2/2psin (/2) and, as a result, by sub- gee Ref. 38. Its special cage- = in the form of
stitution of this expression into the series (27), we obtain

(oo}

the eigenfunction expansion solution to the original Cauchy )

problem (25)—(26). We shall be able to find an integral form / Hy, (2) Hy () e dy

of this solution in Sec. 7 after discussing representations of

the Heisenberg—Weyl groul§ (3) and a generalization of the B nt o m—m pn—m 9

Fourier transform in the next two sections. This complete =V 2"mly Lo (—2y ) (40)

solution to the particular initial value problem (25)—(26) will g ¢ particular interest in this paper.
suggest a correct form of the Green function (propagator) for 1,4 unitary relation
the general forced harmonic oscillator in Secs. 10 and 11.

. . . Z mn T (@, 3,77) = Sy (41)
5. Relation with the Heisenberg—Weyl group

N(3> holds due to the orthogonality property of the Charlier poly-
Let N(3) be the three-dimensional group of the upper trian-"omials (29).
gular real matrices of the form The relevant special case of these matrix elements is
Z'm+n
1 a 7 - mn( ﬁv ) = tmn (6) = T
01 B)=(x8"). (34) V2mtnmlnl
0 0 1

x e P gmin B2 (), (42)
The map

i(y-H52) which explicitly acts on the oscillator wave functions as fol-
T (a,8,7) ¥ (z) = 0 W (2 4 a) (35 lows:

defines a unitary representation of the Heisenberg—Weyl ePrw,, ( Z tmn (B) U (). (43)
group N (3) in the space of square integrable functions
U € £?(—o0,0) (see Ref. 51, 38, and 47 for more details). Relations (30), (32) and (42) imply
The set{¥,, (z)}22, of the wave functions of the har-
monic oscillator (12) forms a complete orthonormal sys-

k
tem in £ (—o0, 00) . The matrix elements of the representa- ; bk (B1) bk (02) 5
tion (35) with respect to this basis are related to the Charlier =0
polynomials as follows: _ e o~ (BT +53+261525) /4
00 vV 2mt+nmlnl
T (a..7) =D Tom (@.8.7) ¥ (), (36) X (B + B25)™ (B2 + Br8)" €, () (44)
m=0
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with where ¥, (z) are the oscillator wave functions defined
) ) . by (12) andr| < 1, r # +1 (see Refs. 14, 41, 49, and 52 for
A= (i 4065+ 1P (s+571)) /2, example). Using the orthogonality property (13) one gets

which is an extension of the addition formula
oo / K, (z,y) ¥, (y) dy, Ir| < 1. (49)
Dtk (B1) tuk (B2) = twn (B + B2)  (45)
k=0

Thus the wave function¥,, are also eigenfunctions of an

for the matrix elements. . ~ integral operator corresponding to the eigenvalties
In order to obtain functions,,, () in terms of the matrix We denote
elements,,,,, (8) of the representations of the Heisenberg— .
Weyl group, we compare (33) and (42). The result is o _ellm/2mm)/2
Kr (2,y) = Keir (7,y) = Worrred
Com (£) = (—1)" ™ g=ilusin (/20 T
) . o ,2:cy7(:z: +y)cos7' 50
x emi@=Dnt(mtm)/2ty () (46) x exp | @ Y (50)
where/3 = 2/2usin (1/2) . Our solution (27) takes the form - o~ - = and use the fact that the oscillator wave
o o o0 functions are the eigenfunctions of the generalized Fourier
V() =3 U, () Y com (t) / U, (y) o (y)dy ~ transform
n=0 m=0 oo [ee}
N - | @)= [ Ko ) Ul dy (6D
— e—z(usmt-i-(w/Q—u)t) Z (_1)71 e—zt(w—l/Z)n e
n=0
o oo corresponding to the eigenvalugs™. (See Refs. 5, 42, and
z) Z " / (—1)™ o—imt/2 48 for more details on the generalized Fourier transform, its
e inversion formula and their extensions. It is worth noting that

m=0 SO

the classical Fourier transform corresponds to the particular
X U, (y) Yo (y) dy. (47) valuer = w/2 [52]. Its three-parameter extension will be

discussed in Sec. 9.)
In the next section, we will discuss a generalization of

the Fourier transformation, which will allow us to transform . .
this multiple series into a single integral form in Sec. 7; see/- An integral form of solution

Egs. (55) and (60)—(62) below. Now let us transform the series (47) into a single integral

_ ) form. With the help of the inversion formula for the gen-
6. The generalized Fourier transform eralized Fourier transform (see (51) with— —7) and the

symmetry property
The Mehler generating function, or the Poisson kernel for

Hermite polynomials, is given by H, (—z)=(-1)" H, (z)
> 1
_ g ()0, _ we get
Y= " (@) Ualy) = —= T
(—1)me=imti2g,, / K_oja(—4, 2) U ()dz. (52)
4 _ 2 2 1 2
xexp( e bt )> . )
(1 —r2) Then by (43) and Fubuni’s theorem,

S tral® [ (<17 € ) o () dy= 3 ton(9) [ ( / /ct/2<—y,z>wz>dz) Yo(y)dy
m=0 oo m=0 oo oo

= / t/2 (Z tmn ) 1/10 dde - // t/2 —Y,z ( 7lﬁz\pn('z)) 1/10 (y) dydz (53)

m=0

Rev. Mex. . 55 (2) (2009) 196-215



THE CAUCHY PROBLEM FOR A FORCED HARMONIC OSCILLATOR

Now the series (47) takes the form

" (m,t) — p—ilpsint+(w/2—p)t) Z (_l)n e~ it(w=1/2)n v, (.%')/ / IC,t/Q (_y7 Z) (eiﬁijn (Z)) Yo (y) dydz

n=0

=izt [y e (Z e g, (), <z>> Yo (y) dydz
— 00 n=0
= e~ tusintt(w/2=u)t) / K_i2 (=y,2) €Ki /20y (=2, 2) dz | 1o (y) dy

in view of the generating relations (48) and (50). Thus

W (w,t) = e e tH (/200 / Gi (,y) Yo (y) dy,

— 00

where we define the kernel as
gt ($7 y) = / ’Ct(l/Q—w) (—LL', Z) eiﬁZ’C—t/Z (_y7 Z) dz.

This can be evaluated with the help of the familiar elementary integrals

/ e—wz do = \/,7_[_7 / ei(az2+2bz)7dz _ Tﬁe—ibQ/a
a
— 00 — 0o
(see Refs. 9, 15, and 40 also). Denoting= ¢ (w — 1/2) andr, = t/2, from (50) we get
. ei(wt_ﬂ)/2 [ 2 2 . . . . 2
K:,-,— —z, Zﬁz’C,T —y, — z(a: cot 71 +y~ cot 72)/2 i(B+x/sinTi+y/sinTe)z _i(cot T1+cot T2)2% /2
L (—z,2)e , (—y,2) —QW\/me e e
and
3 , pilwt—m)/2 L )
K,T —z, 152’(:77 —y, dz = z(m cot 71 +y~ cot 7—2)/2
~ / ez’((ﬁ—i—:c/sinn—i—y/ sin 72)z+(cot 71 +cot 7'2)22/2)dz.
As aresult
G (6.1 = pi(wt—m/2)/2 (il cotmiyt ot m) /2 o siny sin Ty (8 4 x/sinty +y/sin )
’ V27 sin wt 24 sin wt
with 71 =t (w — 1/2), 72 = t/2 and = 3(t) = 24/2usin(t/2). Thus the explicit form of this kernel is given by
ilwt—m/2)/2 (2% 4+ y?) sinwt — (22 — y?) sin (w — 1) ¢ ik? (z,y)
Gt (z,y) = ——— ex - exp | — ,
V2 sin wt 2i (coswt — cos (w — 1) t) sinwt (coswt — cos (w — 1) t)
where

ki (z,y) = (z + y) sin (wt/2) cos ((w — 1) t/2)

— (z —y)cos (wt/2)sin ((w —1)t/2) — \/2usin (t/2) (coswt — cos (w — 1) 1) .
The last expression can be transformed into a somewhat more convenient form

sin ((w —1/2)t) sin (¢/2) ﬂ2> exp ((a:sin (t/2) + ysin ((w — 1/2) 1)) ﬁ)

21 sin wt 4 sinwt

G (2,y) = K2y (2,y) exp (

Rev. Mex. . 55 (2) (2009) 196-215
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(58)

(59)
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(63)



202 R.M. LOPEZ AND S.K. SUSLOV

with 3 = 24/2usin(¢/2) in terms of the kernel of the has the following explicit solution:
generalized Fourier transform (50). Our formulas (55) and
(60)—(63) provide an integral form to the solution of the
Cauchy initial value problem (25)—(26) in terms of a Green ¥ (z,t) Ze w2y, (2)
function.

By choosingyy(z) = 0 (z — ), whered(x) is the o0

Dirac delta function, we formally obtain X / U, (y) Yo (y) dy = B S
27 sin (wt)

W (2,t) =Gz, xo, t)=e W LTG0 1), (64)

oo

+ cos (wt) — 2
which is the fundamental solution to the time-dependent x /eXp (Z (=t ) (wr) xy) Yo(y)dy. (72)

Schibdinger equation (25). One can show that “oo 2sin (wt)
Jm. 4 (@,t) = 9o (2) (65 The last relation is valid whed < t < r/w. Analytic con-

' tinuation in a larger domain is discussed in Ref. 29 and 50.
by methods of Refs. 5, 42, and 52. The details are left to the Equation (72) gives the time evolution operator (66) for

reader. . . . the simple harmonic oscillator in terms of the generalized
The time evo_lutlon operator for the _t'me'der)endemFourier transform. This result and its extension to a general
Schidinger equation (6) can formally be written as forced harmonic oscillator without the velocity-dependent
¢ term in the Hamiltonian are well-known (see Refs. 7, 17
U (t,to) = (exp (i/H(t/) dt/)) 7 (66) 20, 23, 25, 29, 34, 50, and references therein; fgrther gener-
alizations are given in Secs. 10-12; more special cases will
be discussed in Sec. 13).

where T is the time ordering operator which orders operators
with larger times to the left [9], [21]. Namely, this unitary

operator takes a state at timigto a state at time, so that 9. Three parameter generalization of the

¥ (x,t) = U (L, to) ¥ (z, to) (67) Fourier transform
and The properties of the time evolution operator in (67)—(70)
Ult,to) =U (£ 1)YU (', 1), (68)  suggest the following extension of the classical Fourier in-
tegral:
U (tto) = Ul (to) = Ulto 1) (69) °
We have constructed this time evolution operator explic- / L (z,y)g(y) dy (73)
itly as the following integral operator ’

st to)+ (/2 1) (1))
U (t,to) ¥ (z,t0) = e where the kernel given by

X / gtfto (JJ, y) w (y7 to) dy (70) Et (177 y) = Kwt (I, y)
sin ((w —1/2) t) sin® (¢/2) 52>

with the kernel given by (60)—(63), for the particular form of = ¢XP ( 9 sin wi

the time-dependent Hamiltonian in (8)—(10) and (22). The ) ) )

Green function (propagator) for the general forced harmonic , ey, (Z (zsin(t/2)+y Sm('(w — 1/2)t)) sin(t/2) 5) (74)
oscillator is constructed in Sec. 10; see Egs. (79)—(84). sinwt

_ depends on the three free parameters ande. If ¢ = 0
8. The Cauchy problem for the simple har- andwt = r we arrive at the kernel of the generalized Fourier

monic oscillator transform (50). The formal inversion formula is given by
In an important special cage= 0, the initial value problem 00
D (P ) M@_Zﬁ@@f@m- (75)
ot 2 Ox? ’
¥ (@, )] = Yo (z)  (—00 <z <o0) (71) The details are left to the reader. Note that, in terms of a

Rev. Mex. . 55 (2) (2009) 196-215



THE CAUCHY PROBLEM FOR A FORCED HARMONIC OSCILLATOR 203

distribution, provideda (0) = (0) = ¢(0) = 0. The casgy (t) = 0 is

oo discussed in Refs. 17, 20, and 34, but the answers (for
/ C: (2,y) Lo (, 2) dx andc (t) are given in different forms; we shall elaborate on

’ ’ this later.
e Indeed, the previously found solution (63)—(64) in the
— ¢ cot(wt)(y>—27)/2 pie(z=y) sin((w—1/2)t) sin(t/2)/ sin wt special case of the forced oscillator (25) suggests to look for
. a general Green function in the form (80), namely,
1 ix(z— sin wt i
P / ez=v)/ dr =0(y — 2), (76) ¥ =ue”, (85)

. . ) . whereu = Gy (z,y,t) is the fundamental solution of the
which gives the corresponding orthogonality property of theg . jinger equation for the simple harmonic oscillator (71)
L-kernel. These results admit further generalizations with the, \ y ¢ (t)a + b(t)y + c(t). Its substitution into (77)

help of the time evolution operators found in Secs. 10 and 1zgives

10. The general forced harmonic oscillator da  db  dey _ W
g a Tl a ) (ag+xf 2“)“
Our solution to the initial value problem (25)—(26) obtained ou
in the previous sections admits a generalization. The Cauchy +i(aw — g) 92’ (86)
problem for the general forced harmonic oscillator v
where by (81)
0w Py, N
25—5 <—ax2+$ ¢ _f (t) Qﬂp—f—lg (t) 377 (77) @ B Z,.I'COS(Ut —y y (87)
wheref (t) andg () are two arbitrary real valued functions Oz sinwt
of time only (such that the integrals in (82)—(84) below con-As a result
verge and: (0) = 0), with the initial data da db de w
J— _— p— — — 2
V@)=t (@) (~o<z<oo),  (78) at Tl T g Tt e
r cOs wt —
has the following explicit solution: — (aw — g) w, (88)
sin wt
_ and equating the coefficients of y and1, we obtain the fol-
V(@ t) = / G (2,y,) Yo (y) dy- (79) lowing system of ordinary differential equations

Here the Green function (or Feynman’s propagator [17], [20], 4 (sinwt a(t)) = f (t)sinwt + g () coswt, (89)
[34]) is given by dt
db = wa (t) — g (t)

G (2,,t) = Go (z,y,t) OO (80) a' 0= "anw 40)
; d
with e =gtalt) - Sa (), (o1)
Co o 8)= o dt 2
e V2misinwt whose solutions are (82)—(84), respectively, if the integrals
(x2+ 2) oS wh— 2 converge. This method is equivalent to solving the quantum
X exp <z i _ y) (81)  mechanical Hamilton—Jacobi equation for the general forced
2sinwt harmonic oscillator [34].

Equation (83) can be rewritten as

and
o) = 5oz [ F@sinws g (eosws) ds. @) b(0) =~ [ Ginwsa(s) deotws — [ L s
0 0 0

: d, integrating by parts,

b(t) _ / M ds, (83) and, integrating ny parts
) sinws b(t)=—coswt a(t)

c(t) = / (9()a(s) = Sa*(s)) ds (84) + / (f (s) cosws—g (s)sinws) ds ~ (92)
0 0
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by (89). With the help of (82) and the addition formulas for
trigonometric functions we finally arrive at

¢ X (—f(s) cosws + g(s) sinws)ds. (94)
b0 = - [ (F()sinw(s— 1) . | -
sin wt This can be transformed into the form given in Refs. 17
0 and 20 whery (t) = 0. The details are left to the reader.
+g(s) cosw (s — 1)) ds, (93) Evaluation of elementary integrals results in (63) again in
which is equivalent to the form obtain in Refs. 17, 20, and 34the special case (25). The simple cgs@) = 2 coswt and
wheng (t) = 0. g (t) =0 gives
In a similar fashion, sinwt
¢ . ¢ a(t) = — b(t)=t,
c(t) = /g(s)a(s) ds + f/(sinwsa(s))z dcotws 1 1
2 _ .
0 i c(t) = g2 Sin 2wt — @t. (95)

and as a result . i i
The corresponding propagator in (80) does satisfy the

Schibdinger equation (77), which can be verified by a direct

differentiation with the help of a computer algebra system.

The details are left to the reader. A case of the forced modi-
| fied oscillator is discussed in Ref. 30.

¢
1 n
c(t) = 3 sin wt cos wt az(t) + / sinws a (s)
0

11. Eigenfunction expansion for the general forced harmonic oscillator

Separation of the andy variables in Feynman’s propagator (80) —(84) with the help of the Mehler generating function (48)
written as

(,y,t Ze‘“ FRUDE Wy () Wy () (96)

gives

G (fﬂ,yﬂf) _ G() ($7y,t) ei(aw-i—by-i—c) _ ei(c—wt/2) Ze—iwkt (eiamqjk (.’E)) (eiby\:[}k (y))

= cilemet/2) §7 ikt (Z tok (a) Ty, (a:)) (Z tmk (b) Wiy (y)>
k=0 n=0 m=0

D S 4 () ) (z o (a) <b>> o0
n=0 m=0 k=0
by (43). The last series can be summed by using the addition formula (44) in the form
e -m+n
—iwkt _ L i(absinwt)/2 —x?/4 n m x?/2
e tn tmk (b) = e e a+bz)" (b+az)" c/'*(n), 98

with z = e~™* andx? = a? + b + 2abcos wt. As a result we arrive at the following eigenfunction expansion of the forced
harmonic oscillator propagator:

‘n—+m

i(c—(wt—absinw —x2 — ¢
G (wyy,1) = T CTmOD IEY| D L W (@) U (4) e

in terms of the Charlier polynomials. The special case) = 0 is discussed in Ref. 20 but the connection with the Charlier
polynomials is hot emphasized.
The solution (79) takes the form

(a+b2)"(b+az)"cS/2(n)  (99)

n=0m=0

n=0 m=0

V) =0 @)D e () [ V)0 )y (100)
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where it

V2rtmplm!
with 2 = e~ andy? = a® + b? + 2abcoswt. Functionsa = a (t), b = b(t) andc = ¢ (t) here are given by the integrals
(82)—(84), respectively, ariéhn; o+ cnm (t) = Onm.

If 1o () = ¢ (x,1)|,_y = ¥m (), EqQ. (100) becomes

Com () = ilem(wimabsinwt)/2) o—x*/4 (a+b2)" (b+az)™ X /2 (n) (101)

Z Cnm, 7L . (102)

n=0

Thus functiore,,,,, (t) gives explicitly the quantum mechanical amplitude that the oscillator initially in stagefound at time
t in staten [20]. An application to the motion of a charged particle with a spin in uniform perpendicular magnetic and electric
fields is considered in Sec. 14.

As a by-product we found the fundamental solutupll;h (t) of the system (18) in terms of the Charlier polynomials for
an arbitrary complex valued functiah(t) = (—f (t) +ig (¢)) /+/2. The explicit solution of the corresponding initial value
problem in given by (23).

12. Time-dependent frequency

Iand the system (89)—(91) becomes

An extension of the Sdidinger equation to the case of

the forced harmonic oscillator with the time-dependent fre- d . )
quency is as follows: dr (sinTa(r)) = fi (r)sin T+ g1 (1) cosT, (109)
d a(r) =91 (7)
0 t 0? 0 — ==~ 7
Gr=2) (- Gt ) v+ 5. (103 & (110)
d 15
— = - = . 111
wherew (t) > 0, f(t) andg (¢) are arbitrary real valued dTC(T) g (alr) 2" ™) (111)
functions of time only. It can be easily solved by the sub- Thus

stitution

t 1 )
T:T(t):/w(s) ds, ﬂzw(t), (104) a(T):SinT/(f(s)smT(s)+g(s)cos¢(s))ds, (112)
0

dt o
which transforms this equation into a familiar form b(T):/W(S)a(T (s) =g (s) ds (113)
sin T (s) ’
81& 1/ 0% , oY 105 0
=5 (-G ) ~h D avrin() 52, @05) ,

()= [ (s66)a ()~ 5w (a2 (o) ) s, (11
0

see the original Eq. (77) with respect to the new time variable
7, wherew = 1 and

which is an extension of equations (82)—(83) to the case of

fi(r) = f (t), g1 (1) = f(@) (106) the forced harmonic oscillator with the time-dependent fre-
w(t w(t quency. The solution to the Cauchy initial-value problem is
iven b
Therefore by (80)-(81) the propagator has the form v y
G (z,y,7) = Go (2,y,7) eila(m)z+b(r)y+e(r)) (107) U (z,t) = / G (z,y,7) o (y) dy (115)
with
1 with
G v =
0 (@,7) V2misin T t
2 1 02) cosT — 9 T:/w(s)ds.
X exp z(x Ty )?OST Y (108)
2sinT 0

The details are left to the reader.
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13. Some special cases Here
The time-dependent Sasdinger equation for the forced har- - G (2, y,¢,¢,) = \/ _mw
monic oscillator is usually written in the form 2mifisinw (t — o)
ov 2 4,2
ih = H (116) X (zﬁbmw@ gy (@)
with the following Hamiltonian x cosw(t — to) — 2ay > (124)
2 2
p° mw h 0
2m+ 2 w*=F (t)2=G (t)p, = o (117 mw sinw(s — to)
a(t to) = 7/ (F(s)
. . . h t—1t
wheref is the Planck constanty is the mass of the particle, sinw ( 0) to e
w is the classical oscillation frequendyt) is a uniform in
space external force depending on time, functi®(t) rep- + G(s) cosw(s — to) | ds, (125)
resents a similar velocity-dependent term, aridl the linear
momentum operator. The initial value problem is bt to) (0. 1) (126)
,lo) = —allo,

ov RO mw? ,
— = v
ih ot~ 2m 922 RN 2 ¢ and

_F(8) 2UtinG (1) 2 (118) / B,
Ox c(t, o) :/ <G (s)a(s,to) 5@ (s,t0)> ds. (127)
m
with fo
B The simple harmonic oscillator propagator, when
V(@ )]y, = ¥ (2, 20) - (A19) g _ G — 0, is given by Eq. (124); see Refs. 7, 17, 20, 23,

) _ ) 25, 29, 34, 50, and references therein for more details. In the
Among important special cases are: the free particle, whefimit ., — 0 we obtain

w = F = G = 0; a particle in a constant external field,
wherew = G = 0 andF' = constant; the simple harmonic ™

oscillator with F = G = 0. In this section for the benefits ~ Go(z,y,t,t0)= Srihi—t) &P (
of the reader we provide explicit forms for the corresponding 0
propagators by taking certain limits in the general solution.

The usual change of the space variable

im(z —y)?
2h(t — to) > (128)

as the free particle propagator [20].

mw <

\Ij($7t) =¢(f7t)7 §= Tl' (120)

reduces Eq. (118) to the form (77) with respect twith

) o fw
JW=TJ== 9=\ 7 G0 @2 A

T

The time evolution operator is

with the propagator of the form

G($7y7tat0) :GO (l’,y,t,to) x y

i(a(tto)z+b(t,to)y+e(t,t
x ellalttoyrblttopreltto)), (123)  Feurel. Magnetic and electric fields iR?.
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For a particle in a constant external field= G = 0 and  wave function in the Sclkdinger equation (131) can be taken
F = constant. The corresponding propagator is given by  as an ordinary coordinate functidn= ¥ (r,¢,0) .
) 5 The Hamiltonian (133) does not contain the coordinates
G (x,y,t,t0) = m ex im ( — y)
BTN SR — o) TP\ 2 — t)

x and z explicitly. Therefore the operatofs, andp, also
commute with the Hamiltonian and theand 2 components
iF (2 +y) P of the linear momentum are conserved. The corresponding
X exp ( (t—to) — —— (t — t0)3> . (129) eigenvalueg, andp, take all values from-oo to oo; see [28]
2h 24hm for more details. In this paper we consider the simplest case
This case was studied in detail in Refs. 3, 10, 20, 24, 37yvhen the magnetic fiel# is a constant and the electric force

and 43. We have corrected a typo in Ref. 20. F'is a function of timet (see Fig. 1); a more general case
will be discussed elsewhere. Then the substitution

14. Motion in uniform perpendicular mag-

. o U (r,t) = ¢! @Patap==SEL))/R gy (4 1) 134
netic and electric fields (1) vwh) (134)
14.1. Solution of a particular initial value problem where
A particle with a spins has also an intrinsic magnetic mo- t
mentumy with the operator Pl _po Pu

fi = i3 /s, (130) fo

wheres is the spin operator and is a constant character- results in the one-dimensional time-dependent Sdimger
izing the particle, which is usually called the magnitude ofeéquation of the harmonic oscillator driven by an external
the magnetic momentum. For the motion of a charged partiforce in they-direction

cle in uniform magnetid? and electricE fields, which are

perpendicular to each other (Fig. 1), the corresponding three- maw h? 0%y

dimensional time-dependent Sétinger equation at  2m oy
A /ZEPN Mw?
has the Hamiltonian of the form [28] )
with
=~ 1 eH \?
2m <p c y) wy = |8‘ , Yo = _g (137)
1 1 mc eH
t o2 P - e H —yF, (132)
2m' Y 2m s

The Cauchy initial-value problem subject to special data
wherep = —iAV is the linear momentum operator, functions

H andF/e are the magnitudes of the uniform magnetic and U (rt)],_, = e @retap)/ly (y 44)

electric fields inz andy directions, respectively. The corre- -

sponding vector potentiak = —yH e, is defined up to a = ei@Patzp)/h 5 (4 — yy0) (138)
gauge transformation. Here we follow the original choice of

Ref. 28 (see a remark at the end of this section). has the following solution:

Since (132) does not contain the other components of the
spin, the operato§, commutes with the HamiltoniaH and

o - — pi(@patzp.—S(tto)) /R
the z-component of the spin is conserved. Thus the operator W (r,t) =V (rt ps,p.) =e ’

5, can be replaced by its eigenvalsie = ¢ in the Hamilto- 0
nian < [ Gu-mntt) o dr. (139)
~ 1 [ eH \* 1 . ~oo
H=—(p:+—y) +5-D,
2m c 2m= Y
where the propagator takes the form
1
T Mg yr (133)
m S
G (ya 7, ta tO) = Gl (y7 m, t— tO)
with o = —s,—s + 1,... ,s — 1,s. Then the spin depen-

’ ) i(alt,to)y+b(t,to)nte(t,t
dence of the wave function becomes unimportant and the x e/(abloytblttoyreltto)) (140)
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with
mw g

Gy (yot) = | — 19
1y 1) 2mihsinwyt

o TMWH
exp | —
P 2hsinwpt

(t.t0) :
a =
YT Rsinwg (t— to)

((y2 + 772) coswgt — 2yn)) , (141)

t

X /F (1) sinwgy (1 — to) dr, (142)
to
b (t, t(]) = —Qa (t(), t) (143)
and

t

o) = — - [ a® (r10)d (144)
0(70)— % a (7'7 0) T.
to

See Egs. (122)—(127) witf = 0. Functionc (¢, o) can be
written in several different forms.

14.2. Landau levels

In an absence of the external forge= 0, Eq. (136) is for-
mally identical to the time-dependent Séimger equation
for a simple harmonic oscillator with the frequency;. The

standard substitution

¥ (y,t) = e~y (y)

gives the corresponding stationary Sidinger equation as
follows [28]:

(145)

. (146)

which has the square integrable solutions only when

2m 1 2
x”+ﬁ2(€—mw%(y—yo) )XZO,

1

€ = hwy (n—|—2>, n=0,1,2,.... (147)
The eigenfunctions are
1

Xn (¥) = \/WT\/E
2
X exp <_(y_2yO) ) H, (y—y()) 7
2a%; ag

ag = “ L, (148)

mwg

whereH,, () are the Hermite polynomials.

Thus the total energy levels of a particle in a uniform

magnetic field have the form

p:Ho
2m S

1
E, = E, (p:,0) = hwy <n+2) +

(n=0,1,2,...). (149)

R.M. LOPEZ AND S.K. SUSLOV

The first term here gives the discrete energy values corre-
sponding to motion in a plane perpendicular to the field. They
are called Landau levels. The expression (149) does not con-
tain the quantityp,., which takes all real values. Therefore
the total energy levels are continuously degenerate. For an
electronu/s = — |e| i/mc, and formula (149) becomes

2
P>  (150)
2m

1
E, =FE, (p,,0) =hwy (n+2+0)+

In this case, there is an additional degeneracy: the levels with
n,o =1/2andn+ 1,0 = —1/2 coincide:

K, (pza 1/2) = Ent1 (p27 _1/2) :

The three-dimensional wave functions corresponding to the
energy levels (149) are given by

v, (r,t,a) =Y, (T,t,pgﬁpz, U)

— e_i’En(pz ,0)(t—to)/h ei(mf’w""zf’z)/ﬁ Xn (y) . (151)

They are the eigenfunctions of the following set of commut-
ing operator®,,., p., s, andH with FF =0 :

ﬁ\:[jn = Enana gz\:[/n = U\Ijnv

The orthogonality relation ilR? is

/‘I’Z (7t Doy P2y 0) o (7,8, 00, P, 0") dadydz
R3

= (271)° G Ooor 0 (P — PL) 6 (D — 1),  (153)
where
§(a) = 1 7 g ge (154)
o) = 27T (&

is the Dirac delta function.

14.3. Transition amplitudes

In the presence of external force, the quantum mechanical
amplitude of a transition between Landau’s levels under the
influence of the perpendicular electric field can be explicitly
found as a special case of our formulas (100)—(102). Indeed,
solution (139) takes the form

U (r,t,0) = e SE/A N, (r, 8, 0)

n=0
<Y com(tt0) [ o ()0 (nto)dy (155)
m=0 0o
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in view of the bilinear generating relation (99). If where functionsa (p,,p.) do not depend on time and
¥ (y,to) =xm (y) , this equation becomes S (t,to) is given by (135). Now we replace the special initial
; 3
U (rit0) = o—iS(tt0) /1 data (138) inR” by the general one

> v (""a t)|t:t0 =¢ (xa Y, Z) s (160)
XY Cum (tt0) Wy (rito,0),  (156)
n=0 |
where coefficients,,,, (¢, to) are given by (101) in terms of Which is independent g, (andyo). Letting? — to in (159)
Charlier polynomials as follows: and using the fundamental property of the Green function,
Crm (t7 tO) — ei(c—(wH(t—to)—absian(t—to))/Q) 6—72/4 o0
e tlirg / G (y — yo,m:t:t0) ¢ () dn=¢ (y — vo) , (161)
1 2 —1y
X ———— (a+b8)" (b+ad)" ) /? (n 157 —o0

, , one gets
with §=e~n(t=t) andy?=a? + b? + 2abcos wy (t — tg) .

Functionsa = a(t,tg), b = b(t,tp) andc = c(t,ty) are o0

evaluated by the integrals (142)—(144), respectively. The last o (z,y,2) = // a(pz,p2) e (Y — yo)

two formulas (156)—(157) and (135) give us the quantum me- S

chanical amplitude that the particle initially in Landau state i(apst2p2) /R

m is found at timet in staten. For the particle initially in the x et e = Rdpydp., (162)
ground staten = 0, the probability of occupying state at

time ¢ is given by the Poisson distribution wherey, is a function ofp, in view of (137). Thus

1
R— . - =
eno (8 t0)|* = e £ a (pa, =) 9 (¥ = Yo) (2nh)?

1
n=y (a2+b2+2abcost (t—to)) < 1. (158)

[oe]
< [[ole w0 eerraaacac e3)
The details are left to the reader. S
14.4. Propagator in three dimensions by the inverse of the Fourier transform. Its substitution into
(159) gives
Our patrticular solutions (139) subject to special initial data

(138) have been constructed above as eigenfunctions of the 1 ° _

operatorsp, andp., whose continuous eigenvalugs and U (r,t) = 72// dpydp, €' (*Petap==S(tt))/h
p. vary from —co to co. By the superposition principle, one (2mh) oo

can look for a general solution iR® as a double Fourier in-
tegral of the particular solution

oo

X \/dnG(yiy(bniyO?tatO)

v (r,t) Z//a(pmpz)\lf(r,upmpz) dp.dp. .
oo x / / 6 (€, ¢) e iAo Maeac  (164)

oo
= // dpxdpz a (pa:7pz)ei(-’EPz+sz)/he—i5(t»t0)/ﬁ
as a solution of our initial value problem. A familiar integral

;:O form of this solution is as follows:
<[ ew-wntwowm A9 wirn) = [Grpititn) o(en0) dedndc, (169
e FA

where the Green function (propagator) is given as a double Fourier integral

1

G ('l", P, ta tO) = (277h)2

/ / (o=t e=Qpa) =SNG (y — o, = o, t,to) dpydp. (166)
— 00

with the help of the Fubini theorem.
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This integral can be evaluated in terms of elementary functions as follows. Integratiop.ogemres the free particle
propagator of a motion in the direction of magnetic field

2

1 [ i P2 _ m im (z — ()"
Gole =t =t =5z [ e (5 (=02 - 10) ) o= [ eXp(Zﬁ(t—t0)> (167)

— 00

by the integral (57). Thus

00 t
G (roptotn) =exp (LT 0= 10) ) Go (o= Gt =) 5 [ oo (0= ) oo (—;j};/F @ dr)
to

— 00

ipo H

(t—to)) GQ (Z_C7t_tQ)G1 (y7’l7,t—t0)

e} t
) 1 3 -
x ettt ) / exp (’; (z —e- % / F(r) dT))
to

X G(y_y07n_y07tat0)dpa: :eXp(

— 00

< exp (i(a(t,to) - b(t,to))cpm) exp (—z’ (pg%JrleI (y+n)pm> tan (wy (t_to)/2)> .. (168)

eH h \mwyg e

In view of (57), the last integral is given by

o [ o (1,; (m—&— 2 /Fo dT)) oxp (L1104 o))

con (5 (G mp )t (0 10)/2)) dpy = o (2 0) )
% exp (ime cot (cj;; (t—t0)/2) 52> ’ (169)
where
f=w—€= 1o ) tan i (t = to) /2)+d(t 1) (170)
with )
d(t,ty) = eHsian = to)/F (7) (sinwyr (7 — to) — sinwy (1 — t) — sinwy (£ — to)) dr. (171)

to

Here we have used (143)—(142). As a result, we arrive at the following factorization of our propagator:
G (7’, P, ta to) = GO (Z - Ca t— tO) Gl (y7 m, t— tO) ei(a(t’t())y+b(t’t0)n+C(t’t0))G2 (‘Ta 67 y,n, ta tO) ) (172)

whereGy (z — (,t — to) is the free particle propagator in (167); (y,n,t — to) is the simple harmonic oscillator propagator
in (141), and

G (2. 62,11, 0) = exp (Z/,Lf;H (i to)) \/me cot (Zfzét —t9) /2) exp <ime cot (“:112 (t—to)/2) 52) (173)

with 8 = 8 (z,€,y, 1., to) given by (170)~(171).
Our propagator can be simplified to a somewhat more convenient form as follows:

G (T, P; t, tO) = GO (Z - Cat - tO) GH (1'7 ga Y, n, t— tO) GF (l’, 57 y,n, tv tO) . (174)
HereGy (z,t) is the free particle propagator in the direction of magnetic field. The function
ipuoHt MW
t =
G (@,6,9,m,1) = exp < hs ) 4mitisin (wyt/2)

X exp (Z"Z;H (((x — O+ (y—n)°) cot (wit/2) - 2% (z—&y+ n))) (175)

Rev. Mex. . 55 (2) (2009) 196-215



THE CAUCHY PROBLEM FOR A FORCED HARMONIC OSCILLATOR 211

is the propagator corresponding to a motion in a plane perpendicular to the magnetic field in the absence of an electric field
(compare our expression with one in Ref. 20, whEre- ;1 = 0, and see a remark below in order to establish an identity of
two results). The third factor
GF (x7§7y7777t7t0) = eiWF(t7t0)/ﬁ (176)
with

1
Wr (t,t0) = h(a(t,to) y +b(t,t0)n+c(t,to)) + 1"wH d(t,to)

e
< (@0 t0) 420 - ) ot om (0= 10)/2) -2 (141 @)
is a contribution from the electric field. WheR = 0, |
Wp=0andGp = 1. and in view of (179)
The solution to the Cauchy initial value-problem R
subject to the general initial data : :
G — exp <wf (z, y)> G exp <_Z€f (fﬂ?))
U (r, )=y, =V (r,to) = ¢ (z,y,2) (178) he he
has the form :
= #exp M([(SE _ 5)2 + (y _ 77)2]
U (r,t) = / G (r,p,t,to) W (p,to) didnd(, — (179) Amifisin(wpt/2) 4h
RS
which gives explicitly the time evolution operator for a mo- X cot(wgt/2) — 2%(3:77 — gy))>, (183)
tion of a charged particle in uniform perpendicular mag-

netic and electric fields with a given projection of the spin _
s, = o in the direction of the magnetic field. By choosing Which is, essentially, Eq. (3-64) on page 64 of [20], where
U (r,t9) = 0 (r — 7), whered (r) is the Dirac delta func- We have corrected a typo. The details are left to the reader.

tion in three dimensions, we formally obtain
U (r,t) = G (r,ro,t,to) (180)

as the wave function at timeof the particle initially located 15. Diffusion-type equation

ata pointr = ro. Then Eq. (179) gives a general solution by

the superposition principle. 15.1. Special case

Remark. The vector potential of the uniform magnetic field

in the z-direction is defined up to a gauge transformation [28]A formal substitution ot — —it andy) — wu into Eq. (25)
A= —yHe, » A = A+ V] with w = 2k and/2p = ¢ yields the following time-

* dependent diffusion-type equation:
= —%yH e, + %wH e, = %H X r (181)

ou 0%u 9
with f (z,y) = xyH/2. The corresponding transformation ~ 3; = * <3xz -z “)
of the wave function is given by

. . ou
WU = Wexp (zeff(iamy)) —& ((cosh (2k—1) t) zu+ (sinh (2k—1) t) &L) ., (184)
c
— Vexp (ime (2€a:y)) (182) where the initial condition is
4h le]
| w(w,t)],_g = uo (x) (—o0 <2 < 00). (185)

As in the case of the time-dependent Stinger equation, in order to solve this initial value problem, we use the eigenfunction
expansion method. Hence the solution is given by

w(@,t)=> Un(@) Y cum (t) / U, (y) uo (y) dy, (186)
n=0 m=0 oo
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where
nem  €Mtm —(2/2)(1=e7*) —((2r—1)ntr—e?/2)t _tym+n
Cnm (t) = (=1) Vo e (1—e™) 2Fo
2 —t
< | =n, —m; ——— (187)
e2(1—et)

by analytic continuatiom — —it with w = 2k andu = €2/2 < 1in (28) and (31). One can easily verify that

Hm cpm (t) = 0nm
t—0t

and that ifd < ¢ < v2ands > 1/2, k > £2/2,

lim cppm (() =0 (myn=0,1,2,...).

t—oo

Thus the limiting distribution is

lim u(z,t) =0 (—o0 <z < 00), (188)

t—o0

which is independent of the initial data (185). Relation (47) becomes

oo

” (.CE, t) :6—(52/2) sinh t—(n—s2/2)t i (_l)n eft(2n71/2)n v, (:l?) i . (ﬂ) / (_1)m efmt/Z U,, (y) U (y) dy (189)
n=0 m=0 — 00

with 5 = 3 (t) = —2ie sinh (¢/2) . With the help of (49), (43) and the Fubuni theorem we transform

3 timn (B) e M2, (—y)uo (y)dy = K, 12 (—y,2) ( 3 tmn (B) U (z)) ug (y) dydz
mZ:O _ZO y)uo (y) dy /_ZO 2 (—y mzzo 0 (y) dy
= // K, 12 (—y,2) (€770, (2)) uo (y) dydz, (190)

wherey = i3 = 2esinh (¢/2) . The series (189) becomes

u(x,t) = e~ (€7/2) sinht—(r—e?/2)t Z et g () // K 2 (—y, 2) (7, (2)) ug (y) dydz

n=0
— ¢ (£7/2) sinht—(n—e?/2)t // K, —t2 (—y,2)e"* (Z et Y2ng ()W, (z)) uo (y) dydz
0o n=0
— ¢ (£7/2) sinht—(k—e?/2)¢ / </ K, 2 (—y,2) €K, —t2n-1/2) (—,2) dz) uo (y) dy (191)

in view of the generating relation (48). Therefore, the integral form of the solution (186)—(187) is

U (.’ﬂ, t) _ 67(62/2) sinh t7(5752/2)t / Ht (LC, y) Uo (y) dy7 (192)
where by the definition
Hi (z,y) == / K, icn-172) (—2,2) €7 K 12 (—y, 2) dz. (193)
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Denotingr; = e~ *2%~1/2) andr, = ¢~/ we obtain by (48) that

[ ok o) K (e — 1 Q) (=)t + (1) (L4 )
[ Fo e R e = e, eXp( 2= (1 - 13) )

— 00

oo

) /.exp<(1—r%)(1—7"%)7—27"1(1—7‘%)95—27“2(1—7“%)92)6}(13( (17%5) 22> " (194)

(1=r})(L—r3) 1—rf) (13

— 00

and the integral can be evaluated with the help of an elementary formula

/ emaF +2bzg, \/? e g (195)
a

As aresult, an analog of the heat kernel in (192)—(193) is given by

H; (z,y) = 1) exp (_ (1—rir3) (> +9?) + (ri —r3) (2 - y2)>

(1 —rirs 2(1=7r2)(1—13)

177"% 177”‘% — (1 T2 177‘17’2 X — (1 —Tg 1 r17r2 X — 2
Xexp<[< =rf)ro (e G onr ) (v ) y)]) (196)

with ry = e~ *25=1/2) py — ¢=t/2 andy = 2esinh (t/2), ¢ > 0. The last expression can be simplified to a somewhat more
convenient form

—r _7.% _7.3 2
M, (2,y) = exp (—(“”2 (o ty)+ L (x—y)) ”) exp<(l ) (1~ r3) ”) Ky () (197)

1+rire 1—1rire 2 1— r%r% 4
in terms of the Mehler kernel (48). One can show that tion
li t) = 198
M u (z,1) = uo (x) (198)

by methods of Ref. 52. The details are left to the reader.
A formal substitution ofug (z) = § (x — x) into (192)
gives ou ( *u

E:ﬁ Oz

ou

— x2u> +f(t) zu—g(t) e (201)
u(x,t) = H (x,20,1) “

(B2 (- 20, () (199)

as the fundamental solution of the diffusion Eq. (184).
In the limite — 0 we obtain
wheref (t) andg (t) are real-valued functions of time, sub-

7 ject to the initial condition
u@t) = [ Kooy wl) dy  @0)

as the exact solution of the corresponding initial value prob-

lem in terms of the Mehler kernel (48). This kernel gives also

a familiar expression in statistical mechanics for the density

matrix for a system consisting of a simple harmonic oscilla- w(z,t)],_g = uo (x) (—oo <z < ). (202)
tor [20].

15.2. Generalization

A formal substitution ot — —it andy) — w into (77) with
w=2kandf — f, g — —ig yields a diffusion-type equa-
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The exact solution is

u () = /H@,y,t)uo(y) dy

and the Green function can be found in the form

H (z,y,t) = Hy (z,y,t) e?Ortb@yte®)

where

with » = e~2"*. Indeed, substitution of (204) into (201) gives

T

Hy (z,y,t) = (=)

2(1—1r2)

(203)

(204)

< exp <4xyr — (22 +y*) (1+ 7"2)) (205)

the system of equations

d . .
7 (sinh (2kt) a (t))=f (t) sinh (2kt)

+g (t) cosh (2kt) ,
d _ 2ka(t)—g(t)
&b )= sinh (2kt)

dett)=ra® ()~ g () alt)

and the solutions are

1
sinh (2kt)

t

a(t) =

X / (f (s)sinh (2xs) + g (s) cosh (2ks)) ds,

b(t):/w ds,

sinh (2ks)

(206)

(207)

(208)

(209)

(210)

(211)

R.M. LOPEZ AND S.K. SUSLOV

An analog of the expansion (99) is

H (ai,yﬂf) = Z Z Cnm (t> v, (m) U, (y) (212)

n=0m=0
with
Com (t) — 1 ecfntf(ab/2) sinh(2rkt)+A%/4
Vv 2rtmplm!
2
x (a+ b’l’)n b+ a’r);n Fy <n7 —m; )\2) . (213)

Herer = e=2% A2 = a2 +b2 +2ab cosh (2xt) and functions
a(t), b(t) andc(t) are given by the integrals (209)-(211),
respectively. This can be derived by expanding the kernel
(204) in the double series in the same fashion as in Sec. 11,
or by the substitution — —it, a — —ia, b — —ib, and

¢ — —icin (99). The coefficients,,, (t) are positive when
t>0.

The solution (203) takes the form

w(zt) =Y W, ()Y cum (t)
m=0

n=0

oo

x / U, (y) uo () dy.

— 00

(214)

These results can be extended to the case when parasneter
is a function of time in Eq. (201). The details are left to the
reader.
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