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Quantum confinement particle in a 2D quadrupole potential
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We analytically solve the Hamiltonian for a quantum particle confined in a cylindrical hard-wall well, subject to the action of a two
dimensional quadrupolar potential at the well center. The angular part of the wavefunction is expressed by Mathieu functions whose anc
eigenenergies take negative values when the quadrupolar momentum is above a certain threshold. We show that in this case, the radi
of the eigenfunctions is expressed in terms of Bessel functions of an imaginary order which are imaginary-value functions whose phi:
are not well defined at the origin. However, the density of probability is well defined everywhere and the wave function satisfies hard-w
boundary conditions for any value of the parameters involved. We discuss an alternative criterion for determining the eigenenergies of
system based on the expected value of the symmetrized radial momentum.

Keywords:Quadrupolar potential; quantum confinement.

Se resuelve anigicamente el hamiltoniano para una peuta confinada en un pozo fitlrico de paredes duras, sujeto a la asale un
potencial cuadrupolar bidimensional en el centro del pozo. La parte angular de lanfaleconda es escrita e@rminos de funciones de
Mathieu cuyas enetgs propias toman valores negativos cuando el momento cuadrupélanesha de cierto umbral. Se demuestra en este
caso que la parte radial pede ser expresad@mmirios de las funciones de Bessel de orden complejo cuyas fasesandiest definidas

en el origen. Sin embargo, la densidad de la probabilidal@sh definida en todos lados y la fumcide onda satisface las condiciones
de frontera para cualquier valor de los @@etros involucrados. Se discute un criterio alternativo para determinar lasasnapias del
sistema basado en el valor esperado del momento radial simetrizado.

Descriptores:Potencial cuadrupolar; confinamientcaeiico.

PACS: 52.58.Qv

1. Introduction tals [3] which nowadays are ubiquitous substances whose
. ) ] ] highly nonisotropic interactions have been usually modeled

Isotropic central force problems are widely discussed in textby electric dipoles. The macroscopic effects of this non-

books of quantum mechanics [1], but the solutions to Sysisotropic interaction give rise to many interesting physical

tems with nonisotropic forces are rarely treated. Howeverprgperties which have been widely applied in technology.
the recent boom in the construction of artificial semiconduc-

tor structures of diverse geometries makes it interesting to Analyzing a nonisotropic potential, we find wavefunc-
consider a nonisotropic potential which leads to nonisotropidions with some unusual characteristics, shared by a certain
wavefunctions whose larger density of probability is concen-general class of nonisotropic systems which do not allow us
trated in certain given directions, determined by the featureto use the standard formalism to obtain their eigenvalue spec-
of the interaction. For example, the confinement model for arum. As a consequence, we develop an alternative procedure
charged particle might suggest an alternative way for desigrto obtain the eigenvalues of the system. It is well known that
ing a cantilever tip, instead of using a specific wall setup inthe energy spectrum for a cyclic variable as an angle is nor-
an angular sector geometry [2]. Moreover, most of the intermally positive but discrete. Indeed, the particle is granted to
actions in nature are nonisotropic ones, like for example, ircover uniformly the whole space available to the angular co-
the case of water molecules which present a polar interactioardinate with the only restriction that of being periodic. A
whose direction of stronger strength are those of their hydrodifferent situation is found when some specific directions are
gen bonds. It is well known that those substances whose pdyiased with respect to other ones. This is the case when we
lar arrangement are able to adapt and preserve the hydroglave a nonisotropic potential whose angular dependence is
bonds structure can be dissolved in water and are known asich that its magnitude is much greater for certain given an-
polar solvents. In this way, chemists used to classify chemigles. This means that the angular energy of the particle might
cal compounds in polar and non-polar ones. Also, in the sambe negative, as well as the square of its angular momentum.
spirit, molecules and parts of molecules are denominated hydence, the effective equivalent one particle potential coming
drophilic and hydrophobic because of their tendency to stayjrom the angular part, in the radial equation, which normally
or not within water. Another example is given by liquid crys- is repulsive, turns out to be attractive.
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In particular, for a two-dimensional system, this leads to awhich can be constructed by four charges, two of which
complex eigenfunction whose value is not completely definedire positive and two negative. Of course some more com-
but still remains bounded at the origin. It should be recalledplex charge arrangement could behave predominantly as a
that the complexity of the wavefunction is a peculiar featurequadrupole, as for example a system with a pair of perpendic-
for bound states, as is mentioned in undergraduate quantumar electric dipoles. The explicit form for the total potential
mechanics courses. In fact, it implies that the vanishing lineais given by
momentum condition is not automatically fulfilled, as hap-

pens for most of the textbook examples. Ve, p?) =Q COS22¢, for p<R
We stress that even though we shall consider particu- p
larly only the nonisotropic potential corresponding to a two- V(¢,p®) =00, for p>R, 1)

dimensional quadrupole, a similar behavior is to be expected
for potentials having the following general features. First, thewhereQ is the quadrupolar magnitude.

angular energy, the linear momentum gnand the Hamil- In Fig. 1 we schematically show the system including
tonian should form a group of mutually commutable opera-some field lines of the quadrupolar potential together with
tors which makes possible therefore to describe properly théhe hard well.

quantum solution in terms of its eigenvalues. Second, its The Hamiltonian of our system is given by

anisotropy degree should be controlled by changing a certain

S L. . . —_h2Vy2 ]32 H— ]32
parameter which in our case is the quadrupole momentum. H= +V =2 4 729 z 2)
In Sec. 2 we write the Schdinger equation for our 2m 2m - p 2m
model and solve it analytically by separating variables. Upyhere
to this point, we also discuss the lack of standard criteria to 9
obtain the energy spectrum of our system. In Sec. 3 we cal- Dp = —ih=—. (3)
culate the symmetrized radial momentum and exhibit graph- dp
igally its peguliar bghavior. From this, we eSFainsh anew  This leads to Eq. (2) wherg(¢) = C' cos 2,
kind of criterion to find the allowed eigenenergies. In Sec. 4,
we summarize our results. s —ihi
Y iz
2. Quadrupole confinement and
Hy = —(1*/2m)d*/d6* + f(9). (4)

First consider a particle constrained by an infinite cylindrical

well with impenetrable walls located at= 2 . Inthe center  The Schédinger equation for our system can be written in
of this well there is a segment of linear quadrupole potentialcylindrical coordinates as

2m

_ﬁ 137\11+82\I/+i82\11+82\11
pOp  0p®>  p?0g2 072
+V(9,0")¥ = EV, 5)

whereFE is the energy andt (¢, p?) is given by the Eq. (1).
Before solving this equation, note th&t Hy andp, are
a group of mutually commutable operators so that the eigen-
states of the Hamiltonian can be described in terms of the
eigenvalues of these operators [1]. This is valid for any func-
tion f(¢), but we should consider only functions whose non-
isotropic distribution can be controlled by a given parameter
as is the case far.
Equation (5) can be solved by assuming a solution of the

form W(p, ¢, z) = R(p)®(¢)Z(2):

<

d*Z 9
ﬁ +a*Z=0 (6)
d*®
— + (a—2qcos2¢) P =0 (7)
X dg*
2 2
FIGURE 1. Diagram of the system where the positions of the @ + lﬁ 4 ( 2 _ ﬁ) R=0 (8)
: ; o 2 d 2
guadrupole and particle coordinates are indicated. dp p ap
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where the parameters or separation constants are given by br
»_ 2mE — %0? o b
Y Tz 204
mC

Equation (7) is the Mathieu equation, which is present in
physical situations where harmonic periodic potentials are in- 0+
volved [6]. In this case, the Mathieu functions depend on the 0
parameters: andq. Forg # 0, the Mathieu functions are
periodic functions ofp only for certain values of: known

as Mathieu characteristic values andb,, for even and odd -20-
functions, respectively, whereis an integer number. In our
caseq is the dimensionless angular eigenenergys also

a dimensionless parameter measuring the magnitude of the a,
quadrupolar momentum, andis the corresponding angular ggure 2. Normalized angular eigenenergies as defined by
quantum number. Eq.(10) for ever,- and odd b with (r = 1, ..., 5) states as function

A solution to Eq. (7) with period or 27, @, is the Math-  of the dimensionless quadrupolar strength

ieu function and its Fourier expansion is given in the form:
In Fig. 2, these eigenvalues are shown as a functian of

0 Notice that asg increases, the values af become nega-
® =) (Ap cosme + By, sinma), (11)  tive and the interval for whichu is positive is small for a
m=0 smalln. As can be seen, the relation (16) prevents any in-

tersection of the curves. Fagr = 0, we haveaq(0) = 0;
where By must be taken equal to zero [6]. Here we are, (0) = az(0) = 223 by(0) = a4(0) = 42, etc.

. . . . 2
consllderlng bot.h even and odd solutions. A'nother pos.S|bI.e For larger values of, we have the asymptotic behav-
Fourier expansion which separates the solutions by parity is

given by for [8]
1
o a2n(q)——2q+2(2n+1)\/g— 7 [(n+1)°+n%]  (17)
Popen = Z Aopipcos(2m +p)o (12) 1
m=0 bon(¢)——2¢+2(2n=1)/g—[(n—1)*+n?].  (18)
Doaa = Z Bampsin(2m + p)¢. (13)  In Fig. 3 we have plotted the ground state and the two first
m=0 excited states corresponding to some valuesastthe eigen-

) values shown in Fig. 2. It can be seen that the curves change
Herep takes the val_ues 10r0. Fpr=1, the sol_utlon has sharply near the origin for large values@&nd the number
a per|od27_r which will be the only re_levant solution for OU" 5 nodes increases with the order of the state. In the limit
purpose since our system has to fulfil the boundary cond|t|0n8f vanishingg, the curves reduce to sinusoidal functions as
expected for a planar rotor. Consistently, states with negative
®(2m) = 2(0) 14 energy are associated with more localized wavefunctions.
For positive values of, (3 is a real number so that the
and general solution of Eq. (8) is, as usual, the linear combina-
d(2r)  dd(0) tion of cylindrical Be;sel and Neumgnn functions. Hovx_/ever,
= , (15)  the Neumann function has to be discarded because it has a
do d¢ singularity at the origin, whereas the zeros of Bessel func-
tions x g, provide us with the allowed eigenenergies given by

() + ()

where R and L are the radius and height of the confining
ag < by <ag <bg<ay--- (16) cylinder.

because for our system, both valugsnd¢ + 27 describe
the same physical point.

In the Mathieu theory [7], it is shown that eigenvalues Egsy =
satisfy the following relation:

W(a?+5%) _ W
2m - 2m

(19)
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FIGURE 3. Angular eigenfunctions for the a) ground state, b) first excited state, and c) second excited state parametrized by the dimensionless

quadrupolar strengti

S have as
0012{ ......... IH !5
pp> J; _cos(fBlnz) £isin(BInzx) 21
...... B=Q25 Nig [ 3! ; (21)

—_— B:O"TS wherex! denotes the factorial function af. Thus, the ra-
dial part of the wavefunction is not well defined at the ori-

QOB memm— [3:1 gin. Nevertheless, the density of probabilhzy|2 which is

™ ’ the quantity having a physical meaning, is completely de-
fined. Additionally, since the phase of the functions defined
by Eg. (21) rotates much more rapidly as one gets near to
the origin, the phase of the wavefunction will have the same
behavior in the vicinity of the origin.

The general solution in this case is given by

Re(p) = C1dig(Xpsp) + CaNig(Xipsp) (22)

]
:
Q004 A
p ]
)
1
) wherep = p/R andC, C, are constants to be determined.
i W et s In Eg. (21), we can see that near the origin the lineally
Qoo B e e L e independent functiond;; and N;5 have the dependences,
D 2 4 6 8 10 cos(fInx) £isin(81lnx), which diverge at the origin. Since
the physical restrictions are imposed on the density of prob-
‘th ability, whose radial partP, = p \R|2, whereR is given by
_ ~ Eqg. (22). Thermpcos(f1Inp) andpsin(B1n p) are finite, so
FIGURE 4. Expected value of the radial momentum as a function {nat the density of probability exists, even at the origin, as we
will be seen in Fig. 5. We can take both solutiodg; and

of x. s for various values of.
. - . . N, 3 as physically valid.

Equation (7) exhibits that a negative value which corre-* ; Lo
sponds to a bound state fér If we seta < 0in Eq. (10), we To ngsfy the hard wall boundary conditidn(p=1)=0,
obtain an imaginary value ¢f. Thus Eq. (8), for the radial we require

part yields C Nig(Xigs)
d*>R 1dR 32 Cy  Tip(Xips) 23)
ﬁ d+<’72+2>R:0. (20) ! e
P pap P Itis important to stress that with Eq. (22) and (23), the bound-

which is the Bessel function of complex order as can beary condition can be fulfilled for any value gfiss. That is
checked by replacing by —gi. By direct substitution into  to say, up to this point we have apparently a continuous spec-
the first term of the series expansion of the Bessel functrum described by Eq. (19), since any valuexgs, is per-

tion [9], we find that near the origin the latter functions be- mitted.
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FIGURE 5. Radial part of the density of probability, = 5 |R|? for the three first states for various values.of

In 3D the whole wavefunction for our particle can be which vanishes, sincgg, denotes the roots of the Bessel

therefore written in the following form: functions.
U(p, ¢, Z)psx = N sin Amz®p(¢) Analogously, we can calculatg,) for an imaginaryg.
Nis(Xigs o o Then by introducing the variable = i3, Eq. (24) takes the
T 1)+ Np(to)| @8) fomm

wherez = (z/L), N is the normalization constant, afid¢) V(p,0,2)sx = Nsin \rz®(¢)

is one of the Mathieu functions given by Egs. (12) and (13).

For hard walls located at = 0 andz = L, A must be an ~ <‘]V(XV5)J (Xvsp) — NV(XVSﬁ)) (29)
integer number. Ju(Xvs) ’

21. Radial momentum and its derivative is given by

The expected value of the radial momentygp) is not nec- % = Nsin \rz®(¢)
essarily zero form < 0, becauseR is not a real function. P
Using the bidimensional operator for the radial momentum No(Xvs) - S
given by Eq. (3), we get x (J (Xos) g, (Xvsp) = Ny (Xvsp) (30)
(Dp) = /\Il*ﬁpllldv. (25) and as a consequengg;) is given explicitly by
o . , . N2hi
Let us consider first the case whenis real, for which (Dp) = — 1
Eq. (24) turns out to be )
1 27 1 _ J—I/ 71/3 N—l/ 71187
i X/(Jy(xusp)— (Xvs)N—v (X p))
(pp) = —N=hi sin?(\z) <I>ﬂ (¢) J N_v(Xvs)
0 O 0

Ju,(Xvs) N, (Xvsp)
Nl/ (XVS)

Ve = L
x | Ta(xssP) T (X300 | dzdopidp X (']"(X”p) - )pdp' (1)
N2hin? _ o o A direct numerical calculation of this expression shows

T o /0 pJs(xssP)Js(xpsp)dp.- (26) that|(p,)| is always positive for values of andv within the
intervals[0, 20] and [0, 100], respectively. This result is not
consistent with the concept of a confined particle, for which

1 we expect(p) = 0. This expression for confined systems
/pJﬁ(ngp) Jﬁ(ngp)d —Jﬁ(xﬁsp)| (27)  described by real-valued wavefunctions, is a consequence of
0 the fact that the momentum is a self-adjoint operator. Never-
theless for the 2D casg; is not self-adjoint. Using this in-
N sight we decide to explore the exgectation value of the sym-
o T 9 . metrized momentung$ = (p; + p; )/2, which is by con-
(Pp) = = 75 Wl AmzmJs(xss) =0, (28) struction aself-adjoinl{ ope(ra";or. Hpe)ré

To perform the last integral, we integrate by parts to get

to finally obtain
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Then from Eqg. (7) we know that also satisfies

(1 0 N h2a
T
T — _in( =+ = -
Py =i ( + (%) Hyp = 5, (33)
is the adjoint operator tg. so Eg. (32) becomes
In Fig. 4 we plot|(p5)| as a function ofy, . for various P2 h2a B2 )2
values ofv. Note that it has oscillatory behavior and even 2—”}% + 5 s = (E + 5 Z) R. (34)
vanishes for specific values gf,;. Since a bound state, as m mp m

the one we describe here, is physically expected to have gence, for a negative value af we have a quite unusual,
vanishing radial momentum, then, we assume, the conditiogttractive inertia potential which, in contrast to the potential
(p3) = 0 that determines the values pf, which correspond  \wall located atp = R that just reflects back the particle, at-
to bound states. tracts the particle to the origin. The effectiy&-associated

We must point out that the approach to obtgi)) = 0 eigenenergyE. sy = E — (h%a/2mp?) + h*k?/2m also gets
is purely mathematical. The physical conditigh;) = 0  larger becaus®& behaves as if the particle was in an excited
does not give us information to find the valuesygf. This  state. Thus, for this case, the ground state is expected to have

mathematical approach is justified when obtaining the resultgany oscillations as shown in the curves of Fig. 5 for large
shown in Fig. 4 in that it provides the discrete values of the

parametery s, for which the approach of thg3) = 0 value
is satisfied.

To illustrate our results, we have calculated and shown ifye nhave written and solved the Séhinger equation for a

. . . . _ 2
Fig. 5 the radial part of the density of probability = p || particle confined in a cylindrical well with a 2D quadrupole
for the three first eigenstates = 0,7 = 1 andr = 2, 4t jts center. We showed that the angular part of the wave-
and various values of. Notice that for the eigenfunctions fynction of this nonisotropic potential can be expressed in
with smaller values of, P, exhibits the number of oscilla-  terms of periodic Mathieu functions, whereas the radial part
tions corresponding to the order of the eigenstate, whereasg \yritten in terms of both real and imaginary order Bessel
for larger values ofs additional oscillations of less ampli- 514 Neumann functions for smaller and larger valueg o-
tude appear near the origin. Moreover, the number of addigpectively. The peculiarities of the solution for larger values
t|on§1I osc[llanons increases for larger vaIuesuofeadln'g to. of ¢, written in terms of imaginary order Bessel and Neumann
profiles with many oscillations. One can hardly distinguishgnction, are twofold. First they can satisfy the boundary con-
them from the curves of different eigenstates, even if thesgjtion without imposing any restriction on the parameters of
are the ground state and the first excited state. To understaggk solution. and second the expectation-values of their ra-
this, notice that from Fig. 2 the density of probability has the i3 momentum are not identically null. Thus, we require a
form of two angular sectors centeredra®2 and—37/2and  yanishing expectation-value for the symmetrized linear mo-
joined at the origin, whose widths diminish as the anisotropyyentum in order to determine the allowed values of energy.
increases. Then, the position of the particle at the origin also  \yie should point out that the system we consider is orig-
tends to be determined Wh'(@p> gets larger for an increas- 4| and has a relatively simple analytical solution, but the
ing anisotropy, as is manifested by the increasing in the nUMga 5 res of its solution and solving procedure are not stan-
ber of oscillations near the origin. This is consistent with they5rq. The same behavior is expected for a general class of

3. Conclusions

Heisenberg principle. N . potentials whose angular energy, linear momentum,@md
This also can be argued by writing the Sadinger  Hamiltonian form a group of mutually commutable opera-
Eq. (2) in the following way: tors, having a controlling parameter for increasing the inter-
o . action anisotropy. We hope that our analysis helps to explain
3 Py Ho p? the behavior of some anisotropic potential for which, as far
Hf= Lyt J)p+ 2y =Ep. (32 pic po !
2m P 2m as we know, there are no exact solutions.
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