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Quantum confinement particle in a 2D quadrupole potential
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We analytically solve the Hamiltonian for a quantum particle confined in a cylindrical hard-wall well, subject to the action of a two-
dimensional quadrupolar potential at the well center. The angular part of the wavefunction is expressed by Mathieu functions whose angular
eigenenergies take negative values when the quadrupolar momentum is above a certain threshold. We show that in this case, the radial part
of the eigenfunctions is expressed in terms of Bessel functions of an imaginary order which are imaginary-value functions whose phases
are not well defined at the origin. However, the density of probability is well defined everywhere and the wave function satisfies hard-wall
boundary conditions for any value of the parameters involved. We discuss an alternative criterion for determining the eigenenergies of the
system based on the expected value of the symmetrized radial momentum.

Keywords:Quadrupolar potential; quantum confinement.

Se resuelve analı́ticamente el hamiltoniano para una partı́cula confinada en un pozo cilı́ndrico de paredes duras, sujeto a la acción de un
potencial cuadrupolar bidimensional en el centro del pozo. La parte angular de la función de onda es escrita en términos de funciones de
Mathieu cuyas energı́as propias toman valores negativos cuando el momento cuadrupolar está encima de cierto umbral. Se demuestra en este
caso que la parte radial pede ser expresada en términos de las funciones de Bessel de orden complejo cuyas fases no están bien definidas
en el origen. Sin embargo, la densidad de la probabilidad está bien definida en todos lados y la función de onda satisface las condiciones
de frontera para cualquier valor de los parámetros involucrados. Se discute un criterio alternativo para determinar las energı́as propias del
sistema basado en el valor esperado del momento radial simetrizado.

Descriptores:Potencial cuadrupolar; confinamiento cuántico.

PACS: 52.58.Qv

1. Introduction

Isotropic central force problems are widely discussed in text-
books of quantum mechanics [1], but the solutions to sys-
tems with nonisotropic forces are rarely treated. However,
the recent boom in the construction of artificial semiconduc-
tor structures of diverse geometries makes it interesting to
consider a nonisotropic potential which leads to nonisotropic
wavefunctions whose larger density of probability is concen-
trated in certain given directions, determined by the features
of the interaction. For example, the confinement model for a
charged particle might suggest an alternative way for design-
ing a cantilever tip, instead of using a specific wall setup in
an angular sector geometry [2]. Moreover, most of the inter-
actions in nature are nonisotropic ones, like for example, in
the case of water molecules which present a polar interaction
whose direction of stronger strength are those of their hydro-
gen bonds. It is well known that those substances whose po-
lar arrangement are able to adapt and preserve the hydrogen
bonds structure can be dissolved in water and are known as
polar solvents. In this way, chemists used to classify chemi-
cal compounds in polar and non-polar ones. Also, in the same
spirit, molecules and parts of molecules are denominated hy-
drophilic and hydrophobic because of their tendency to stay
or not within water. Another example is given by liquid crys-

tals [3] which nowadays are ubiquitous substances whose
highly nonisotropic interactions have been usually modeled
by electric dipoles. The macroscopic effects of this non-
isotropic interaction give rise to many interesting physical
properties which have been widely applied in technology.

Analyzing a nonisotropic potential, we find wavefunc-
tions with some unusual characteristics, shared by a certain
general class of nonisotropic systems which do not allow us
to use the standard formalism to obtain their eigenvalue spec-
trum. As a consequence, we develop an alternative procedure
to obtain the eigenvalues of the system. It is well known that
the energy spectrum for a cyclic variable as an angle is nor-
mally positive but discrete. Indeed, the particle is granted to
cover uniformly the whole space available to the angular co-
ordinate with the only restriction that of being periodic. A
different situation is found when some specific directions are
biased with respect to other ones. This is the case when we
have a nonisotropic potential whose angular dependence is
such that its magnitude is much greater for certain given an-
gles. This means that the angular energy of the particle might
be negative, as well as the square of its angular momentum.
Hence, the effective equivalent one particle potential coming
from the angular part, in the radial equation, which normally
is repulsive, turns out to be attractive.
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In particular, for a two-dimensional system, this leads to a
complex eigenfunction whose value is not completely defined
but still remains bounded at the origin. It should be recalled
that the complexity of the wavefunction is a peculiar feature
for bound states, as is mentioned in undergraduate quantum
mechanics courses. In fact, it implies that the vanishing linear
momentum condition is not automatically fulfilled, as hap-
pens for most of the textbook examples.

We stress that even though we shall consider particu-
larly only the nonisotropic potential corresponding to a two-
dimensional quadrupole, a similar behavior is to be expected
for potentials having the following general features. First, the
angular energy, the linear momentum onz, and the Hamil-
tonian should form a group of mutually commutable opera-
tors which makes possible therefore to describe properly the
quantum solution in terms of its eigenvalues. Second, its
anisotropy degree should be controlled by changing a certain
parameter which in our case is the quadrupole momentum.

In Sec. 2 we write the Schrödinger equation for our
model and solve it analytically by separating variables. Up
to this point, we also discuss the lack of standard criteria to
obtain the energy spectrum of our system. In Sec. 3 we cal-
culate the symmetrized radial momentum and exhibit graph-
ically its peculiar behavior. From this, we establish a new
kind of criterion to find the allowed eigenenergies. In Sec. 4,
we summarize our results.

2. Quadrupole confinement

First consider a particle constrained by an infinite cylindrical
well with impenetrable walls located atρ = R . In the center
of this well there is a segment of linear quadrupole potential

FIGURE 1. Diagram of the system where the positions of the
quadrupole and particle coordinates are indicated.

which can be constructed by four charges, two of which
are positive and two negative. Of course some more com-
plex charge arrangement could behave predominantly as a
quadrupole, as for example a system with a pair of perpendic-
ular electric dipoles. The explicit form for the total potential
is given by

V (φ, ρ2) =Q
cos 2φ

ρ2
, for ρ ≤ R

V (φ, ρ2) =∞, for ρ > R, (1)

whereQ is the quadrupolar magnitude.
In Fig. 1 we schematically show the system including

some field lines of the quadrupolar potential together with
the hard well.

The Hamiltonian of our system is given by

Ĥ =
−~2∇2

2m
+ V =

p̂2
ρ

2m
+

Ĥθ

ρ2
+

p̂2
z

2m
(2)

where

p̂ρ = −i~
∂

∂ρ
. (3)

This leads to Eq. (2) wheref(φ) = C cos 2φ,

p̂z = −i~
d

dZ

and

Ĥθ = −(~2/2m)d2/dφ2 + f(φ). (4)

The Schr̈odinger equation for our system can be written in
cylindrical coordinates as

− ~2

2m

(
1
ρ

∂Ψ
∂ρ

+
∂2Ψ
∂ρ2

+
1
ρ2

∂2Ψ
∂φ2

+
∂2Ψ
∂Z2

)

+ V (φ, ρ2)Ψ = EΨ, (5)

whereE is the energy andV (φ, ρ2) is given by the Eq. (1).
Before solving this equation, note thatĤ, Ĥθ andp̂z are

a group of mutually commutable operators so that the eigen-
states of the Hamiltonian can be described in terms of the
eigenvalues of these operators [1]. This is valid for any func-
tion f(φ), but we should consider only functions whose non-
isotropic distribution can be controlled by a given parameter
as is the case forC.

Equation (5) can be solved by assuming a solution of the
form Ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z):

d2Z

dZ2
+ α2Z = 0 (6)

d2Φ
dφ2

+ (a− 2q cos 2φ) Φ = 0 (7)

d2R

dρ2
+

1
ρ

dR

dρ
+

(
γ2 − β2

ρ2

)
R = 0 (8)
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where the parameters or separation constants are given by

γ2 =
2mE − ~2α2

~2
, (9)

q =
mC

~2
and a = β2. (10)

Equation (7) is the Mathieu equation, which is present in
physical situations where harmonic periodic potentials are in-
volved [6]. In this case, the Mathieu functions depend on the
parametersa andq. For q 6= 0, the Mathieu functions are
periodic functions ofφ only for certain values ofa known
as Mathieu characteristic valuesan andbn for even and odd
functions, respectively, wheren is an integer number. In our
casea is the dimensionless angular eigenenergy,q is also
a dimensionless parameter measuring the magnitude of the
quadrupolar momentum, andn is the corresponding angular
quantum number.

A solution to Eq. (7) with periodπ or 2π, Φ, is the Math-
ieu function and its Fourier expansion is given in the form:

Φ =
∞∑

m=0

(Am cos mφ + Bm sin mφ), (11)

where B0 must be taken equal to zero [6]. Here we are
considering both even and odd solutions. Another possible
Fourier expansion which separates the solutions by parity is
given by

Φeven =
∞∑

m=0

A2m+p cos(2m + p)φ (12)

Φodd =
∞∑

m=0

B2m+p sin(2m + p)φ. (13)

Herep takes the values 1 or 0. Forp = 1, the solution has
a period2π which will be the only relevant solution for our
purpose since our system has to fulfil the boundary conditions

Φ(2π) = Φ(0) (14)

and

dΦ(2π)
dφ

=
dΦ(0)

dφ
, (15)

because for our system, both valuesφ andφ + 2π describe
the same physical point.

In the Mathieu theory [7], it is shown that eigenvalues
satisfy the following relation:

a0 < b2 < a2 < b4 < a4 · · · (16)

FIGURE 2. Normalized angular eigenenergies as defined by
Eq.(10) for evenar and odd br with (r = 1, ..., 5) states as function
of the dimensionless quadrupolar strengthq.

In Fig. 2, these eigenvalues are shown as a function ofq.
Notice that asq increases, the values ofa become nega-
tive and the interval for whicha is positive is small for a
small n. As can be seen, the relation (16) prevents any in-
tersection of the curves. Forq = 0, we havea0(0) = 0;
b2(0) = a2(0) = 22; b4(0) = a4(0) = 42, etc.

For larger values ofq, we have the asymptotic behav-
ior [8]

a2n(q)−→−2q+2(2n+1)
√

q−1
4
[(n+1)2+n2] (17)

b2n(q)−→−2q+2(2n−1)
√

q−1
4
[(n−1)2+n2]. (18)

In Fig. 3 we have plotted the ground state and the two first
excited states corresponding to some values ofq of the eigen-
values shown in Fig. 2. It can be seen that the curves change
sharply near the origin for large values ofq and the number
of nodes increases with the order of the state. In the limit
of vanishingq, the curves reduce to sinusoidal functions as
expected for a planar rotor. Consistently, states with negative
energy are associated with more localized wavefunctions.

For positive values ofa, β is a real number so that the
general solution of Eq. (8) is, as usual, the linear combina-
tion of cylindrical Bessel and Neumann functions. However,
the Neumann function has to be discarded because it has a
singularity at the origin, whereas the zeros of Bessel func-
tionsχβs provide us with the allowed eigenenergies given by

Eβsλ =
~2(α2 + γ2)

2m
=
~2

2m

[(
λπ

L

)2

+
(χβs

R

)2
]

(19)

whereR and L are the radius and height of the confining
cylinder.
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FIGURE 3. Angular eigenfunctions for the a) ground state, b) first excited state, and c) second excited state parametrized by the dimensionless
quadrupolar strengthq.

FIGURE 4. Expected value of the radial momentum as a function
of χνs for various values ofν.

Equation (7) exhibits that a negative value which corre-
sponds to a bound state forΦ. If we seta < 0 in Eq. (10), we
obtain an imaginary value ofβ. Thus Eq. (8), for the radial
part yields

d2R

dρ2
+

1
ρ

dR

dρ
+

(
γ2 +

β2

ρ2

)
R = 0. (20)

which is the Bessel function of complex order as can be
checked by replacingβ by −βi. By direct substitution into
the first term of the series expansion of the Bessel func-
tion [9], we find that near the origin the latter functions be-

have as

Jiβ

Niβ

}
≈ cos(β ln x)± i sin(β ln x)

(iβ)!
, (21)

wherex! denotes the factorial function ofx. Thus, the ra-
dial part of the wavefunction is not well defined at the ori-
gin. Nevertheless, the density of probability|R|2 which is
the quantity having a physical meaning, is completely de-
fined. Additionally, since the phase of the functions defined
by Eq. (21) rotates much more rapidly as one gets near to
the origin, the phase of the wavefunction will have the same
behavior in the vicinity of the origin.

The general solution in this case is given by

Rc(ρ) = C1Jiβ(χ̄βsρ̄) + C2Niβ(χ̄iβsρ̄) (22)

whereρ̄ = ρ/R andC1, C2 are constants to be determined.
In Eq. (21), we can see that near the origin the lineally

independent functionsJiβ and Niβ have the dependences,
cos(β ln x)± i sin(β ln x), which diverge at the origin. Since
the physical restrictions are imposed on the density of prob-
ability, whose radial part,Pρ = ρ̄ |R|2, whereR is given by
Eq. (22). Then̄ρ cos(β ln ρ̄) and ρ̄ sin(β ln ρ̄) are finite, so
that the density of probability exists, even at the origin, as we
will be seen in Fig. 5. We can take both solutions,Jiβ and
Niβ as physically valid.

To satisfy the hard wall boundary conditionΨ(ρ̄=1)=0,
we require

C1

C2
= −Niβ(χ̄iβs)

Jiβ(χ̄iβs)
. (23)

It is important to stress that with Eq. (22) and (23), the bound-
ary condition can be fulfilled for any value of̄χiβs. That is
to say, up to this point we have apparently a continuous spec-
trum described by Eq. (19), since any value ofχ̄iβs is per-
mitted.
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FIGURE 5. Radial part of the density of probabilityPρ = ρ̄ |R|2 for the three first states for various values ofν.

In 3D the whole wavefunction for our particle can be
therefore written in the following form:

Ψ(ρ̄, φ, z̄)βsλ = N sin λπz̄Φβ(φ)

×
[
−Niβ(χ̄iβs)

Jiβ(χ̄iβs)
Jiβ(χ̄βsρ̄) + Niβ(χ̄iβsρ̄)

]
(24)

wherez̄ = (z/L), N is the normalization constant, andΦ(φ)
is one of the Mathieu functions given by Eqs. (12) and (13).
For hard walls located atz = 0 andz = L, λ must be an
integer number.

2.1. Radial momentum

The expected value of the radial momentum〈p̂ρ〉 is not nec-
essarily zero fora < 0, becauseR is not a real function.
Using the bidimensional operator for the radial momentum
given by Eq. (3), we get

〈p̂ρ〉 =
∫

v

Ψ∗p̂ρΨdv. (25)

Let us consider first the case whenβ is real, for which
Eq. (24) turns out to be

〈p̂ρ̄〉 = −N2~i
1∫

0

2π∫

0

1∫

0

sin2(λπz̄)Φ2
β(φ)

×
[
Jβ(χβsρ̄)J

′
β(χβsρ̄)

]
dz̄dφρ̄dρ̄

= −N2~iπ2

2

∫ 1

0

ρ̄Jβ(χβsρ̄)J
′
β(χβsρ̄)dρ̄. (26)

To perform the last integral, we integrate by parts to get

1∫

0

ρ̄Jβ(χβsρ̄)J
′
β(χβsρ̄)dρ̄ =

ρ̄

2
J2

β(χβsρ̄)|10 (27)

to finally obtain

〈p̂ρ̄〉 = −N2~i
4λ

sin λπz̄πJ2
β(χβs) = 0, (28)

which vanishes, sinceχβs denotes the roots of the Bessel
functions.

Analogously, we can calculate〈p̂ρ̄〉 for an imaginaryβ.
Then by introducing the variableν = iβ, Eq. (24) takes the
form

Ψ(ρ̄, φ, z̄)νsλ = N sin λπz̄Φ(φ)

×
(

Nν(χ̄νs)
Jν(χ̄νs)

Jν(χ̄νsρ̄)−Nν(χ̄νsρ̄)
)

, (29)

and its derivative is given by

∂Ψ
∂ρ̄

= N sin λπz̄Φ(φ)

×
(

Nν(χ̄νs)
Jν(χ̄νs)

J ′ν(χ̄νsρ̄)−N ′
ν(χ̄νsρ̄)

)
, (30)

and as a consequence〈p̂ρ̄〉 is given explicitly by

〈p̂ρ̄〉 =− N2~i
4

×
1∫

0

(
J−ν(χ̄νsρ̄)− J−ν(χ̄νs)N−ν(χ̄νsρ̄)

N−ν(χ̄νs)

)

×
(

J ′ν(χ̄νsρ̄)− Jν(χ̄νs)N ′
ν(χ̄νsρ̄)

Nν(χ̄νs)

)
ρ̄dρ̄. (31)

A direct numerical calculation of this expression shows
that|〈p̂ρ̄〉| is always positive for values ofα andν within the
intervals[0, 20] and [0, 100], respectively. This result is not
consistent with the concept of a confined particle, for which
we expect〈p̂〉 = 0. This expression for confined systems
described by real-valued wavefunctions, is a consequence of
the fact that the momentum is a self-adjoint operator. Never-
theless for the 2D case,̂pρ̄ is not self-adjoint. Using this in-
sight we decide to explore the expectation value of the sym-
metrized momentum̂ps

ρ̄ = (p̂ρ̄ + p̂>ρ̄ )/2, which is by con-
struction a self-adjoint operator. Here

Rev. Mex. F́ıs. 56 (1) (2010) 1–7
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p̂>ρ̄ = −i~
(

1
r

+
∂

∂r

)

is the adjoint operator tôpρ̄.
In Fig. 4 we plot

∣∣〈p̂s
ρ̄〉

∣∣ as a function ofχνs for various
values ofν. Note that it has oscillatory behavior and even
vanishes for specific values ofχνs. Since a bound state, as
the one we describe here, is physically expected to have a
vanishing radial momentum, then, we assume, the condition
〈p̂s

ρ̄〉 = 0 that determines the values ofχ̄νs which correspond
to bound states.

We must point out that the approach to obtain〈p̂s
ρ̄〉 = 0

is purely mathematical. The physical condition〈p̂ρ̄〉 = 0
does not give us information to find the values ofχβs. This
mathematical approach is justified when obtaining the results
shown in Fig. 4 in that it provides the discrete values of the
parameterχβs for which the approach of the〈p̂s

ρ̄〉 = 0 value
is satisfied.

To illustrate our results, we have calculated and shown in
Fig. 5 the radial part of the density of probabilityPρ = ρ̄ |R|2
for the three first eigenstatesr = 0, r = 1 and r = 2,
and various values ofq. Notice that for the eigenfunctions
with smaller values ofν, Pρ exhibits the number of oscilla-
tions corresponding to the order of the eigenstate, whereas
for larger values ofν additional oscillations of less ampli-
tude appear near the origin. Moreover, the number of addi-
tional oscillations increases for larger values ofν, leading to
profiles with many oscillations. One can hardly distinguish
them from the curves of different eigenstates, even if these
are the ground state and the first excited state. To understand
this, notice that from Fig. 2 the density of probability has the
form of two angular sectors centered atπ/2 and−3π/2 and
joined at the origin, whose widths diminish as the anisotropy
increases. Then, the position of the particle at the origin also
tends to be determined while

〈
p̂2

ρ

〉
gets larger for an increas-

ing anisotropy, as is manifested by the increasing in the num-
ber of oscillations near the origin. This is consistent with the
Heisenberg principle.

This also can be argued by writing the Schrödinger
Eq. (2) in the following way:

Ĥψ =
p̂2

ρ

2m
ψ +

Ĥθ

ρ2
ψ +

p̂2
z

2m
ψ = Eψ. (32)

Then from Eq. (7) we know thatψ also satisfies

Ĥθψ =
~2a

2m
ψ, (33)

so Eq. (32) becomes

p̂2
ρ

2m
R +

~2a

2mρ2
R =

(
E +

~2k2
z

2m

)
R. (34)

Hence, for a negative value ofa, we have a quite unusual,
attractive inertia potential which, in contrast to the potential
wall located atρ = R that just reflects back the particle, at-
tracts the particle to the origin. The effectiveR−associated
eigenenergy,Eeff = E−〈

~2a/2mρ2
〉
+~2k2

z/2m also gets
larger becauseR behaves as if the particle was in an excited
state. Thus, for this case, the ground state is expected to have
many oscillations as shown in the curves of Fig. 5 for largeν.

3. Conclusions

We have written and solved the Schrödinger equation for a
particle confined in a cylindrical well with a 2D quadrupole
at its center. We showed that the angular part of the wave-
function of this nonisotropic potential can be expressed in
terms of periodic Mathieu functions, whereas the radial part
is written in terms of both real and imaginary order Bessel
and Neumann functions for smaller and larger values ofq, re-
spectively. The peculiarities of the solution for larger values
of q, written in terms of imaginary order Bessel and Neumann
function, are twofold. First they can satisfy the boundary con-
dition without imposing any restriction on the parameters of
the solution, and second the expectation-values of their ra-
dial momentum are not identically null. Thus, we require a
vanishing expectation-value for the symmetrized linear mo-
mentum in order to determine the allowed values of energy.

We should point out that the system we consider is orig-
inal, and has a relatively simple analytical solution, but the
features of its solution and solving procedure are not stan-
dard. The same behavior is expected for a general class of
potentials whose angular energy, linear momentum onz, and
Hamiltonian form a group of mutually commutable opera-
tors, having a controlling parameter for increasing the inter-
action anisotropy. We hope that our analysis helps to explain
the behavior of some anisotropic potential for which, as far
as we know, there are no exact solutions.
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