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A simple inquiry on the critical electric dipole moment in one space dimension
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The magnitude of an electric dipole moment must be larger or equal to a certain critical value to support bound states. This is not a widely
known fact that nevertheless is easy to understand on heuristic terms and relatively easy to calculate. This critical dipole moment,pC , has
been calculated in 2 and 3 dimensions. It has been ascertained that it does not exist in one dimension or, at least, that it is not computable. In
this work, after giving simple arguments on the existence of this critical moment, we computepC in one dimension.

Keywords:1D critical electric dipole; 1D quantum system.

El valor de un momento dipolar eléctrico debe ser mayor o igual a un valor crı́tico para que admita estados ligados. Este no muy conocido
hecho puede comprenderse en forma muy simple y su valor calculado en forma relativamente simple como lo hacemos en este trabajo. Se ha
calculado el momento crı́tico en 2 y 3 dimensiones y se ha sugerido que no existe en una dimensión o que, al menos, no se le puede calcular.
Damos argumentos simples para argüir su existencia y lo calculamos exactamente en una dimensión.

Descriptores:Dipolo eĺectrico cŕıtico en una dimensión; sistemas cúanticos unidimensionales.

PACS: 03.65.Ge; 11.30.-j

1. Introduction

Electric dipoles,p(= qd), support 3D bound states only if
the magnitude,p = |p|, of the dipole moment is larger than
or equal to

pC = (0.6393) 4πε0~2/qeme = 5.420× 10−30C ·m,

whereqe andme are, respectively, the charge and mass of
the electron [1-8]. The consequences of this property can
be seen in that an electron binds to certain polar molecules
like H2O (water), withp = 6.19 × 10−30 C· m, but not
to others, like H2S (rotten egg or open sewer gas), with
p = 3.26 × 10−30 C·m [8]. This curious feature can be un-
derstood from scaling properties of the Schrödinger equation
with the result that if there exists a bound state with binding
energyE, then there necessarily exists another bound state
with energyβ2E, whereβ any real number. For details of
the argument see in Ref. 5. This property also manifests it-
self in scattering studies where the calculated cross- sections
did not completely agree with the observed ones in the case of
polar molecules [2,9,11]. The explanation of such behaviour
was found to be related to the fact that, for binding electrons,
it is not enough for a molecule to have a non-vanishing dipole

moment,p, it is also necessary forp to be greater than a cer-
tain critical value,pC [11].

An intuitive way of understanding the mentioned features
is to consider the following argument: Two point charges,
one posively and the other negatively charged, of fixed mag-
nitude and approaching each other, will produce in the limit
|d| → 0, a point dipole of zero magnitude,p = 0, which
definitively cannot cause binding (Fig. 1). It should be also
clear that a sufficiently extended physical dipole (that is, two
faraway charges) should have bound states; as the system,
dipole plus charge, could be regarded as a hydrogen atom
perturbed by another charge. As the separation between the
charges is made to decrease, the bound state would disappear
as the electron gets expelled —and the dipole moment would
vanish afterwards asd → 0 with q fixed. Hence, there would
be a minimum separation,dmin, which is just enough to bind
the charge [5,6,9-11]. We have argued for the existence of a
pC = qdmin. This is a well-known result in three dimensions
[1,10,11].

But, in spite of the apparent generality of the argument
given above, it has been shown that a critical electric dipole
moment does not exist in two dimensions, that is, in 2D
pC = 0 [3,5]. It has been also suggested that the non-
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FIGURE 1. Schematic representation of a charged particle in
the presence of a physical —that is, point charges at a finite
separation— electric dipole. Of course, in one dimension we need
to picture all the charges on a single straight line.

existence of the critical dipole also happens in one dimension.
This claim is based on the mistaken belief in the existence
of an infinite energy ground state in the one-dimensional
hydrogen atom problem, a belief disproved a long time
ago [13,14,25], for the existence of this type of state would
mean that the 1D hydrogen atom Hamiltonian is not Hermi-
tian [12,14].

In this work, our aim is to calculate the 1D critical dipole
moment using rather simple quantum arguments, proving
along the way that the claim of its non-existence is false. We
again point out that the only objective of this paper is the
calculation of the 1DpC . It is important to notice that the
value we compute is also the critical dipole moment for a 1D
physical dipole with charges separated at a finite distance, as
pC is separation independent. This is explicitly proven in the
Appendix. The importance of this 1D result, apart from the
purely pedagogical, becomes clear when we recall the rele-
vance attained by excitons in condensed matter and from the
search for quantum computing devices using dipole-like 1D
interactions, see Ref. 27 to 29.

2. First, a simple estimation

We begin estimating the 1D critical dipole moment. Think
of the problem as a 1D hydrogen atom perturbed by an-

other charge, and consider the interaction modelled by the
1D Coulomb potential,

V0(x) = − λ

|x| , (1)

whereλ = qk andqe the charge of the nucleus. Let us pin-
point that the potential (1) is usually referred to as the one-
dimensional Coulomb potential but, strictly speaking, the
correct Coulomb potential in one dimension is−2π|x|. We
use the one-dimensional potential (1) —just for the record,
the problem associated with the 1D Coulomb potential (1)
was first solved (both relativistically and non-relativistically)
in Ref. 23 and 24. The associated energy spectrum is

En=− q2
e/(8πε0aBn2),

n=1, 2, 3, . . . , whereaB=4πε0~2/(q2
eme) is the Bohr ra-

dius. The ground state energy is−q2
e/(8πε0aB) [12-16].

To estimate the distance,d, at which ionization of a one-
dimensional atom occurs due to the presence of another
charge, qe, [5] and obtain a rough value for the critical
dipole moment, we need to equate the repulsion energy
Ere=q2

e/(4πε0d) with the energy of the ground state,E1.
We obtain

p
(est)
crit ' qe d = 8πε0/(~2qeme).

On comparing this result with (10), we see that this estimate
is sixteen times larger than the exact value.

3. Using the Schr̈odinger equation to find the
critical value of the dipole moment

In one dimension, the physical dipole with charges±qe, sep-
arated at a distanced, is

V (x) =
1

4πε0

(
qe

|x− d/2| −
qe

|x + d/2|
)

(2)

But, given the separation independence of the 1D critical mo-
ment, it is more direct to use the well-known one-dimensional
point-dipole potential [5]

Vdp(x) =
p

x|x| , where k ≡ qe/(4πε0), (3)

and search for bound states using the Schrödinger equation
with the potential (3), corresponding to zero energy, as must
be done to find the critical electric dipole moment [2,5].

The Schr̈odinger equation for an electron interacting with
a point dipole is

− ~
2

2m

d2Ψ
dx2

+ qe
p

x|x|Ψ(x) = EΨ(x). (4)

Notice that forx > 0, the potential is repulsive, hence
Ψ(x > 0) = 0 [3]. Thus x = 0 acts as an impenetrable
barrier and any particle has zero probability of crossing from
the left to the right- hand side and viceversa [12,17]. This fea-
ture can be traced back to the superselection rule (SR) [18,19]

Rev. Mex. F́ıs. 56 (1) (2010) 8–11
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that is known to act in the quantum problem defined in (4).
The SR prevents any relationship between the happenings on
the left-with those on the right-hand side of the origin. The
two sides can be described as effectively disconnected even
in classical terms [4].

We should also pinpoint that forx < 0, our quantum
problem (4) reduces, after taking into account the effect of
the superselection rule, to the problem with a−1/x2 poten-
tial. This problem admits states of any negative energy —see
Refs. 3, 4, and 11 and the references therein. A way of get-
ting a “normal” bound state for such a system, hence also to
our problem, is through renormalization, which enables us
to obtain a non-zero energy state with a normalizable wave
function. This state is, however, not a standard quantum state
in the sense of elementary quantum mechanics [4,11].

To proceed with the solution, let us make the change
x = −y in Eq. (4); we obtain

−d2Ψ
dy2

− α

y2
Ψ(y) = −ξΨ(y) (5)

whereα ≡ 2mepqe/(4πε0~2) > 0 andξ ≡ −2mE/~2. We
write Ψ(y) as the power series

Ψ(y) =
∞∑

j=0

ajy
j+ν . (6)

Substituting (6) into (5), it becomes

∞∑

j=0

ajy
j+ν−2[(j+ν)(j+ν − 1)+α]=ξ

∞∑

j=0

ajy
j+ν , (7)

leading to the recurrences

[ν(ν − 1) + α]a0 =0,

[ν(ν + 1) + α]a1 =0, and

[(ν + j + 2)(ν + j + 1) + α]aj+2 =ξaj . (8)

From Eqs. (8), we conclude that all the odd coefficients van-
ish; furthermore we findν± = (1±√1− 4α)/2 as possible
values for the leading exponent. We have demonstrated the
existence of two independent solutions,Ψ+(y) andΨ−(y),
behaving neary = 0 as

Ψ±(y) ∼ a0
√

ye±
√

1/4−α ln y. (9)

For these solutions to be well behaved, the quantity√
1/4− α has to be imaginary. Thusα ≥ 1/4 for bound

states to exist, and thereforeα = 1/4 is the value we
need [3,4,20]. Armed with this value, we can directly ob-
tain the critical value of the point electric dipole moment in
one dimension as

pC =
πε0
2

~2

qeme
= 1.052× 10−30 C ·m. (10)

We emphasize again thata physical dipole should have the
same critical value as the point dipole. We do not need to

pursue the solution further, but we consider it important to
mention that the1/x2 potential leds to an extremely peculiar
quantum problem which requires renormalization or other
advanced techniques to reveal its rather interesting proper-
ties [4,5,11,22].

Summarizing, a one-dimensional dipole does not always
support bound states. For a 1D electric dipole to be able to
bind charged particles, its dipole moment must be larger than
or at least equal topC [4,5,11].

4. Conclusion

As a conclusion to the calculation of the one-dimensional
critical point dipole problem, we state that thedipole moment
critical valuefor allowing bound states is

pC = 1.052× 10−30 C ·m. (11)

Moreover, it can be shown that the system supports at most
a single renormalized bound state[3,4]. The existence of a
critical value for the electric dipole in one dimension matches
the well-established result in three dimensions. Any 1D sys-
tem with an electric dipole moment smaller thanpC cannot
bind charged particles. However, in two dimensions a critical
electric dipole does not exist. The electric dipole potential
in two dimensions supports at least one bound state no mat-
ter how small the two-dimensional moment [5]. Hence, the
two dimensional case is remarkable. One may even wonder
is if this property is shared by all even-dimensional electric
dipoles.

We can compare the results of this electric problem with
the rather different properties of the corresponding mag-
netic problem, also known as the Störmer problem, in which
chaotic and regular motion has been found [30-33]. It is also
worth noting that we would expect to find an anomaly in the
one-dimensional quantum interaction of an electron with the
field of an electric dipole [21]. We remind the reader that
an anomaly arises whenever the classical invariance of a sys-
tem is violated upon quantization, or when a quantity that
vanishes according to classical physics acquires a non-zero
value when quantum dynamics is used [26].
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APPENDIX

The critical dipole does not depend on the charge separa-
tion

In one dimension the Schrödinger for the problem of anex-
tendeddipole is

d2

dx2
ψ(x)− µ

(
qe

|x− d/2| −
qe

|x + d/2|
)

ψ(x)

= 4Eψ(x) (A.1)

whered is the separation between charges (Fig. 1),

µ ≡ 2m

~2

qep

4πε0
, (A.2)

and

E ≡ −meE

2~2
d2. (A.3)

Assume we have solved the Schrödinger Eq. (A.1) and ob-
tained the ground state energy,E1, as a function of the dimen-
sionless dipole momentµ:

E1 = Egs(µ). (A.4)

Now we decreaseµ by reducing gradually the charge —we
are assuming that the distanced between the charges is fixed
and that the charge reduction is just a strategy for establish-
ing thed-independence— until the energy,E1, vanishes and
all the bound states have been squeezed out: that is, until
Egs(µC) = 0. This condition tells us the critical dipole mo-
mentpC has the form

pC =
(µC

2

) (
4πε0~2

qem

)
. (A.5)

The critical dipole is therefore completely independent of the
separationd asµC does not depend ond —since it is sim-
ply theµ-value at which the largest energy eigenvalue of the
quantum Eq. (A.1) vanishes. Notice that this property can be
also argued from the role played byd as just a scale-fixing
factor for the energy [see (14)] with no relevance for the
dipole moment [13]. The independence ofpC on the separa-
tion between charges has hence been proven. This argument
has been borrowed from Refs. 5 and 11. See also Ref. 9.
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