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This article presents a six-step problem-solving strategy, aimed at addressing three major problems in the learning and teaching of physics:
1) the demand by physics instructors for effective teaching strategies that could help in the teaching of intuitive conceptual and quantitative
reasoning in physics, and how to teach both aspects holistically; 2) the students’ need for suitable methodology that could help students
to fill the gap in textbooks on enhancing their mathematical reasoning abilities, which are essential for reinforcing students’ knowledge of
conceptual physics; and 3) a deficiency in the teaching of physics leading to students not being taught a coherent physics problem-solving
strategy that would enable them to engage in both mathematical and conceptual reasoning.
After a review of publications made by thePhysics Education Research group(PER), the importance of a structured, systemic methodology
to solve physics problems is considered. Then a structured, systemic methodology for solving physics problems is described by extending
the well-known problem-solving steps presented by Polya. The proposed strategy includes the following steps: 1. Understand the problem,
2. Provide a qualitative description of the problem, 3. Plan a solution, 4. Carry out the plan, 5. Verify the internal consistency and coherence
of the equations used, and 6. Check and evaluate the obtained solution.
Finally, an illustrative example is provided: the calculation of the moment of inertia of a thin hollow right circular cone.

Keywords:Physics problem-solving; physics learning; teaching of physics; quantitative reasoning.

Este art́ıculo presenta una metodologı́a de seis pasos para resolver problemas, con la intención de abordar tres grandes problemas en el
aprendizaje y la enseñanza de la fı́sica: 1) la demanda de los profesores de fı́sica de estrategias de enseñanza efectivas, que permitan ayudar
en la ensẽnanza del razonamiento conceptual y cuantitativo en fı́sica, y ćomo ensẽnar ambos aspectos de manera integral 2) la necesidad de
los estudiantes de contar con una metodologı́a adecuada que los ayude a cubrir las deficiencias de los textos en cuanto al fortalecimiento
de sus habilidades de razonamiento matemático, las cuales son esenciales para consolidar el conocimiento conceptual de fı́sica y 3) una
deficiencia en la enseñanza de la fı́sica en presentarle a los estudiantes una estrategia coherente de solución de problemas, que los involucre
en razonamiento tanto cuantitativivo como cualitativo.
Despúes de presentar una revisión bibliogŕafica en cuanto a publicaciones sobre el tema aparecidas en elárea deInvestigaciones sobre
la Ensẽnanza de la F́ısica (PER, por sus siglas en inglésPhysics Education Research), la importancia de una metodologı́a estructurada y
sisteḿatica para resolver problemas de fı́sica es considerada. Luego, por extensión del conocido esquema de resolución de problemas de
Polya, se describe una metodologı́a sist́emica y estructurada para resolver problemas de fı́sica. La estrategia propuesta incluye los siguientes
pasos: 1. Comprender el problema, 2. Proporcionar una descripción cualitativa del problema, 3. Planificar la solución, 4. Ejecutar el plan, 5.
Verificar la consistencia interna y la coherencia de las ecuaciones utilizadas, y 6. Inspeccionar y evaluar la solución obtenida.
Porúltimo, se presenta un ejemplo ilustrativo: el cálculo del momento de inercia de un cono circular recto hueco muy delgado.

Descriptores:Resolucíon de problemas en fı́sica; aprendizaje de fı́sica; ensẽnanza de la fı́sica; razonamiento cuantitativo.

PACS: 01.40.gb; 01.40.Ha; 01.40.Fk

1. Introduction

It is not difficult to find instructors of general physics courses
anxiously perusing articles published by the Physics Educa-
tion Research (PER) community, searching essentially for
advice on how to approach the teaching of physics effec-
tively. Despite the demand for an actually useful pedagogy
of physics, PER has not produced so far any ultimate theory
in this regard, and the great amount of published research on
the subject, in addition to being controversial [1-9], might
be overwhelming and even confusing to physics instructors
in the sense that since physics is intrinsically a quantitative
based subject, much of the recent research favors an overem-
phasis on qualitative (conceptual) physical aspects [5,10-12],
while standard mathematical abilities, which are crucial for
understanding physical processes, are not stressed, or even
taught, because, rephrasing a passage from a recent edito-

rial [13], they interfere with the students’ emerging sense of
physical insight. Consequently, physics instructors face the
problem of finding suitable advice on how to approach the
teaching of physics in the most efficient way and an answer
to the question of how much time should be spent on intu-
itive conceptual reasoning and how much time in develop-
ing quantitative reasoning. Let us mention, in passing, that
the aforementioned editorial [13] has produced an interest-
ing debate [14-16] regarding the benefits and shortcomings
of science education reform in the United States in relation
to its influence on the development of reasoning skills on the
students, expressed in the way students use or apply the ma-
terials learned in their courses.

On the other hand, physics instructors need also be mind-
ful of the importance of selecting the most appropriately
functional textbook, basically because innovative active-
learning teaching methods require students to acquire basic
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and fundamental knowledge through reading textbooks. Cor-
respondingly, innovative teaching strategies should be de-
signed to help students in processing their ever thicker and
heavier textbooks, which are laden with physical and mathe-
matical insights [5,17-20]. Thus, the panorama regarding the
learning of physics is even more dramatic on the side of the
students. For one reason, in their struggle to fully participate
in the process of learning, at the moment of trying to find
suitable learning materials that could help them to go beyond
classroom instruction (i.e. aiming to develop self-confidence
on their own through exercising their role as active learners),
students face the dilemma of deciding which textbook could
be helpful: perhaps a conceptual physics textbook (i.e. [21]),
the student might wonder; or maybe a calculus-based physics
textbook (i.e. [22]); or why not an algebra-based physics
textbook (i.e. [23]); or what about a combination of all
of them? These questions could have the student to verify
his/her pocket/handbag to see if the money in there could be
enough to take some extra weight home (for a good account
of the drama of choosing a textbook, see for instance [24] and
references therein). For another, in a typical course work for
students majoring in science and/or engineering, they usually
need to take more than one physics class. It could happen that
in one term his/her physics instructor may emphasize quanti-
tative reasoning over conceptual analysis, and in another term
the respective instructor could rather accentuate conceptual
learning over quantitative analysis, likely causing confusion
for students, leading them to wonder which emphasis is cor-
rect.

Finally, it is not difficult to find results published by
the PER community in which the inability of students to
express, interpret, and manipulate physical results in math-
ematical terms is shown directly or indirectly. That is,
students shows a clear deficiency in their training to ex-
ploit the mathematical solution of a problem (which some-
times could be obtained mechanically or by rote proce-
dures) to enhance their knowledge regarding conceptual
physics [2,3,11,25-28]. More importantly, the analysis of
published excerpts of student’s responses to interviews con-
ducted by some researchers to further understand students’
way of reasoning while solving physics problems, shows that
students lack a structured methodology for solving physics
problems [2,11,12,26]. These findings can not be surprising
at all. In fact, none of the most commonly recommended
physics textbooks (i.e. [22,29,30]) make use of a consis-
tent, clear problem-solving methodology when presenting the
solution of the textbook worked out for illustrative exam-
ples [31]. Moreover, the lack of a coherent problem-solving
strategy can also be found in the solutions given in both
the student and instructor manuals that usually accompany
textbooks. Generally, problem-solving strategies in standard
textbooks encourage the use of a formula-based scheme as
compiled by the formula summary found at the end of each
chapter of the text, and this strategy seems to be common
even in classroom teaching [32]. Consequently, students
merely imitate the way in which problems are handled in

the textbooks. Furthermore, from the aforementioned student
interview excerpts, one can also appreciate the lack of rea-
soning skills trying to associate or connect a way to solving
a problem with the solution of other similar problems from
another previous context (i.e. by using analogies). Again,
the absence of this skill can not be surprising at all because
students are just mirroring the unrelated way in which com-
monly used physics textbooks present the themes (i.e. the use
of analogies is not fostered) [33-35].

2. On the importance of a structured, systemic
methodology to solve physics problems

To further motivate the subsequent discussion, let us summa-
rize our introductory commentaries. We are essentially point-
ing out three major problems in the learning and teaching of
physics:

1) the demand by physics instructors for effective teach-
ing strategies that would explain how much time
should be spent on teaching intuitive conceptual rea-
soning and how much time on developing students’
quantitative reasoning, and how to teach both aspects
holistically;

2) the students’ need for suitable textbooks that will help
them develop mathematical abilities reasoning, which
are essential for enhancing their knowledge of concep-
tual physics; and

3) a deficiency in the teaching of physics leading to stu-
dents not being taught a coherent physics problem-
solving strategy that would enable them to engage in
both mathematical and conceptual reasoning.

A moment of thought about the above summarized diffi-
culties leads us to postulate the need for a systemic [36,37]
approach which, from an operational point of view, could
help instructors and students to achieve a better performance
in the process of teaching and learning physics.

On the instructor’s side the need for a systemic approach
in the teaching of physics could be justified by the advantage
of using a methodology which would help them to incorpo-
rate both conceptual and mathematical reasoning systemati-
cally in their teaching. In this way, students will obtain the
necessary training in their computational skills while learn-
ing how to use mathematical formulae to obtain the physics
in the equations, even when they can obtain the mathematical
solutions to a problem by rote procedures. In other words,
students could apply “higher-order thinking skills.” [38] via
the mathematical understanding of a physics problem, which
in turns involves meaningful learning which goes beyond the
mere application of rote procedures. Moreover, using prop-
erly designed quantitative problems that require students to
illustrate their conceptual learning and understanding will re-
veal much to instructors about their students’ learning and
will provide invaluable feedback [17,39-41]. Such problems
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can also be a powerful way to help students to understand
the concepts of physics [38,41], a point emphasized by the
great Nobel prize-winning, physicist Lev Davidovich Landau
on the importance of first mastering the techniques of work-
ing in the field of interest because “fine points will come by
themselves.” In Landau’s words, “You must start with mathe-
matics which, you know, is the foundation of our science. [...]
Bear in mind that by ’knowledge of mathematics’ we mean
not just all kinds of theorems, but a practical ability to inte-
grate and to solve in quadratures ordinary differential equa-
tions, etc.” [42] To further enhance their reasoning skills, the
students would have the opportunity to increase their intuitive
conceptual skills in the physics laboratory, where conceptual
learning is reinforced by experience [43,44].

On the student’s side, the need for a systemic approach
in the learning of physics could be justified by the usefulness
of applying a working methodology which could help them
to approach the learning of physics from a interrelated point
of view. That means that his/her knowledge of mathemat-
ics is useful for mastering ideas from physics, and that the
use of analogies are important in approaching the solution of
physical, mathematical and engineering problems. In short,
this kind of practical, unified problem-solving strategy will
help students to formulate and address any kind of problem.
In other words, with such an approach, students would in-
ternalize the fact that it is in physics classes where they can
start to apply what they have learned in their math classes and
to find new non-formal approaches to performing computa-
tions [45]. To paraphrase Heron and Meltzer, learning to ap-
proach problems in a systematic way starts from teaching and
learning the interrelationships among conceptual knowledge,
mathematical skills and logical reasoning [46]. The problem
that arises after the opening of the Millennium Bridge can
further illustrate the needs for teaching and learning based on
a systemic approach which recognizes the interrelatedness of
every aspect of a physical process (physics, mathematics, and
engineering design) [47].

3. A systemic, structured methodology for
solving physics problems

Earlier work on the importance and necessity of a problem-
solving strategy can be found in the work of the great mathe-
matician George Polya [48,49], who placed emphasis on the
relevance of the systematicity of a problem-solving strategy
for productive thinking, discovery and invention. Some of
his views, either provocative or encouraging, about teaching
and learning can be found in some PER publications, like for
instance his statements thatteaching is not a science(i.e. [2])
and thatteaching is an art(i.e. [50]), and his views onthe aim
of teaching(i.e. [6,38]) and on the importance ofproblem-
solving skills(i.e. [3,39,40,51]), etc. For a further detailed
account of Polya’s work please refer to [48,49,52-55].

In How to Solve It, Polya set four general steps to be fol-
lowed as a problem-solving strategy:

P1 Understanding the problem,

P2 Devising a plan,

P3 Carrying out the plan, and

P4 Looking back.

Surprisingly, these steps encompass “the mental pro-
cesses and unconscious questions experts explore as they
themselves approach problem solving” [55]. These four steps
also form the basis for some computational models devised
to “model and explore scientific discovery processes” [55].
Nevertheless, even though the aforementioned four steps
seems very simple, their generality makes it hard for novices
to follow them.

Thus, in order to have a more approachable problem-
solving strategy for students, we extended the four-step
problem-solving strategy into a six-step strategy. We made
our choice based on empirical observations after experiment-
ing with a five-step strategy reported in Ref. 51. Justification
for having a more detailed problem-solving strategy can be
found in the words of Schoenfeld: “First, the strategies are
more complex than their simple descriptions would seem to
indicate. If we want students to use them, we must describe
them in detail and teach them with the same seriousness that
we would teach any other mathematics” [56]. In addition, we
shall further rationalize below the need for explicitly includ-
ing the new step in our proposed methodology (see item 5
below). Accordingly, our proposed six step problem-solving
strategy is as follows:

1. Understand the problem: some considerations to de-
velop at this step involve drawing a figure and asking
questions like What is the unknown? What is the con-
dition? Is it possible to satisfy the condition? Is the
condition sufficient to determine the unknown? Or is
it insufficient? Or redundant? Or contradictory? That
is, at this stage students need to actually be sure what
the problem is. In addition to making drawings to get a
grasp of the problem, students might need to reformu-
late the problem in their own words, making sure that
they are obtaining all the given information needed for
solving the problem. This is a crucial step in the sense
that if we do not know where are we going, any route
will take us there.

2. Provide a qualitative description of the problem: at
this stage students need to think and write down the
laws, principles, or possible formulations that could
help them to solve the problem. For instance students
need to consider any possible framework of analysis
that could help them to represent or describe the prob-
lem in terms of the principles of physics (i.e. New-
tons law, energy conservation, momentum conserva-
tion, theorem of parallel axis for computing inertia mo-
ment, non-inertial reference system, etc.) If necessary,
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the drawings of the previous step could be comple-
mented by the corresponding free-body and/or vector
diagram.

3. Plan a solution: some considerations to have in mind
in order to develop this step involve looking at the un-
known and trying to think of a familiar problem having
the same or a similar unknown. Some questions to be
asked are: Have you seen this before? Or have you
seen the same problem in a slightly different form?
Once the student as all the many possibilities of ap-
proaching approach the problem, he/she only needs
to pick one strategy of solution and write down the
corresponding mathematical formulation of the prob-
lem, avoiding as much as possible plugging numbers
into the respective equations. Also, they need to think
whether the information at hand would be enough to
find a solution (i.e. if a set of algebraic equations is
under-or over-determined, or if the number of bound-
ary conditions provided is enough to solve a differen-
tial equation).

4. Carrying out the plan : at this stage the student will
try to find a solution to the mathematical formulation of
the problem sketched according to the previous steps,
and perhaps will need to go back in order to find an eas-
ier mathematical formulation of the problem. This can
be facilitated if the students have written down alterna-
tive solutions as they were supposed to do on item 2.

5. Verify the internal consistency and coherence of the
equations used: at the moment of finding a solution to
the mathematical equations involved, students need to
verify whether the equations are consistent with what
they represent (i.e. are the equations dimensionally
correct? Do they represent a volume or a surface?).
Though this seems to be an unnecessary step, experi-
ence shows that students too often do not verify the
internal consistency and coherence of the equations
they solve. And this mistake is also found to be per-
formed by textbook writers, as discussed in a recent
editorial [57]. After verifying no inconsistencies are
found in the mathematical solution to the problem, stu-
dents could then plug numbers into the obtained results
to find, whether required or not, a numerical solution
which in turn could be used in the next step to fur-
ther evaluate the obtained result. In the next section,
by means of an illustrative example, we shall show
how the right answer to the problem posed could be
obtained, even though the internal consistency of an
equation used is not right [58].

6. Check and evaluate the obtained solution: once a
solution has been obtained, its plausibility needs to be
evaluated. Some questions could be asked in this re-
gard: can the results be derived differently? Can the
result or the method be applied to solve or fully un-
derstand other problems? Can the solution be used to

write down the solution of a less general problem? Can
the solution be used to further understand the qualita-
tive behavior of the problem? Is it possible to have a
division by zero by changing a given parameter? Does
it makes sense?, and so forth.

A first comment on our six-step problem-solving strat-
egy is that it provides a unified, systemic way of approaching
the solution to a physical problem encompassing both qual-
itative (steps 1-3) and quantitative (steps 4-6) reasoning. In
this sense, instructors could place as much emphasis as they
choose on any of the set of steps, providing the students with
a structured recipe on how to approach in detail the other side
of the problem’s solution. That is, if the instructor decides to
emphasize steps 1-3, students could still follow steps 4-6 at
their own pace, and viceversa. Second, comparing our six-
step problem-solving strategy with Polya’s four-step scheme,
it could be appreciated that we have explicitly divided Polya’s
step one (P1) into two steps (1-2), and Polya’s step three (P3)
into two steps (4-5). A further comment on our problem-
solving strategy is that we prefer to call the second step (2)
Provide a qualitative description of the problemrather than
Physics descriptionas in Ref. 51, because one shares the
idea that students tend to think that, by providing a qualitative
analysis of a problem, they are also providing the solution re-
quired by a physicist, and that the mathematical solution to
the problem is just uninteresting mathematics. Instead, we
place emphasis on the fact that a physical solution to a prob-
lem is a combination of both qualitative and quantitative rea-
soning. As stressed by the great physicist Lord Kelvin: “I
often say that when you can measure something and express
it in numbers, you know something about it. When you can
not measure it, when you can not express it in numbers, your
knowledge is of a meager and unsatisfactory kind. It may be
the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of science, whatever it may
be.” [21] Freeman Dyson was more eloquent: “...mathemat-
ics is not just a tool by means of which phenomena can be
calculated; it is the main source of concepts and principles
by means of which new theories can be created” [59].

4. Illustrative example

In the following example, we shall present an approach on
how to introduce students to the use of our proposed six-
step problem-solving strategy. Though each one of the steps
has its importance, we shall provide further evidence of why
step five needs to be taught explicitly. It is pertinent to
point out that, paraphrasing Polya’s words, by proper train-
ing students could absorb the steps of our problem-solving
strategy in such a way that they could perform the corre-
sponding operations mentally, naturally, and vigorously. The
dynamics of teaching is left to the instructor. In this arti-
cle we are not claiming to show how the teaching should
be carried out. Innovative teaching strategies can be found
elsewere [5,17-20,51,60].
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FIGURE 1. A hollow right circular cone with radius R, lateral
length L, and uniform mass M. The cone’s high isH=

√
L2 −R2.

The figure also shows at the lateral distancel, measured from the
cone’s apex at the origin of the coordinate system, an infinitesi-
mal ring of lateral lengthdl and radiusr. Two useful geometrical
relations among some of the dimensions shown in the figure are
r = (R/L) l andr = (R/H) z.

4.1. The problem statement

Problem: About its central axis, find the moment of iner-
tia of a thin hollow right circular cone with radiusR, lateral
lengthL, and massM uniformly distributed on its surface
with densityσ.

1. Understand the problem: “It is foolish to answer a
question that you do not understand.· · · But he should
not only understand it, he should also desire its solu-
tion” [48]. Following Polya’s commentary, before at-
tempting to solve this problem, students need to have
been exposed to a basic theory on computing moment
of inertia (I). Particularly, students need to be famil-
iar with the computation ofI for a thin circular ring
about its main symmetric axis. To further understand
the geometry of the present problem, students could,
for example, have a discussion about the shape of an
empty ice cream cone. After some talk, a drawing bet-
ter than the one shown in Fig. 1 could be presented on
the board. Let’s mention that additional ways of pre-
senting each step in meaningful ways can be found in
Refs. 48 and 51.

2. Provide a qualitative description of the problem: In
this step one could further motivate the discussion by
associating the computation ofI with rotational mo-
tion quantities (i.e. kinetic energy, angular momentum,
torque, etc.). One can even motivate the qualitative dis-
cussion by considering the hollow cone as a first crude
approximation of a symmetric top or of a cone concrete
mixer. The drawing of Fig. 1 could even be made more
explicative.

3. Plan a solution: “We have a plan when we know, or
know at least in outline, which calculations, computa-
tions, or constructions we have to perform in order to
obtain the unknown.. . . We know, of course, that it is
hard to have a good idea if we have little knowledge
of the subject, and impossible to have it if we have no
knowledge.. . . Mere remembering is not enough for a
good idea, but we cannot have any good idea without
recollecting some pertinent facts” [48]. Accordingly, at
this stage instructors could point out the superposition
principle to solve the problem by slicing the hollow
cone into a set of small, infinitesimal, rings distributed
along the symmetrical axis of the cone. Thus, each
infinitesimal ring will have in common the same rota-
tional axis about which the moment of inertia of them
is already known:dI = r2dm = r2σdS, wherer is
the radius of each ring, whiledS represents the respec-
tive infinitesimal surface of each ring.

4. Carrying out the plan : To carry out the plan, it
won’t be a surprise to choose the wrongdS. In fact,
it is not difficult, at first sight, to choose wrongly
(see Fig. 1): dS = 2πrdz = 2π(R/H)zdz,
which leads toS = πRH, as the hollow cone sur-
face (this result is of course wrong). Using this sur-
face element, the momemnt of inertia for the small
ring takes the formdI=2πσ(H/R)r3dr, which leads
to I=2πσ(H/R)(R4/4)=(1/2)(σS)R2=MR2/2, as
the required moment of inertia of the hollow cone
(which is the right answer). It is not difficult to get stu-
dents performing this sort of computations and they be-
come uneasy when trying to convince them that in spite
of having found a correct result, it is specious because
it was obtained via a wrong choice fordS. Eventually
students might agree on the incorrectness of their pro-
cedure if asked to compute explicitly the cone’s mass.

5. Verify the internal consistency and coherence of
the used equations: “Check each step. Can you see
clearly that the step is correct? Can you prove that it is
correct?. . . Many mistakes can be avoided if, carrying
out his plan, the student checks each step” [48]. Judg-
ing from our teaching experience, it is only too easy
for students to perform without hesitation the incorrect
computations, as presented in the previous step. And it
is not easy to get students to realize their mistake. For
God’s Sake, they have computed the right answer!!!:
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for a hollow thin cone, rotating about its symmet-
ric axis, I = MR2/2 !!!. In this situation, to make
students aware of their mistake, the easy way is the
experiment. Instructors could unfold several hollow
cones to actually show the students that the respective
surface isS = πRL, instead of the wrongly obtained
S = πRH. Accordingly, we hope to have provided
enough evidence for the need to, explicitly and re-
peatedly, remind to students of the need to check each
computational step, including checking for dimen-
sionality correctness. In this case, the right approach
is to considerdS = 2πrdl = 2πl(R/L)dl, which
yieldsS = πRL, the right answer forS. This choice
for dS leads to dI=2πσ(L/R)r3dr, which yields
I=2πσ(L/R)(R4/4)=(1/2)(σS)R2=MR2/2, the
right answer.

Considering that it is not hard to find stories on re-
ported wrong results due to wrong or incomplete com-
putations [47,61], this problem could also be used as
an example of how computations of a physical quan-
tity (the surface of a cone shell) can be used to judge a
mathematical result (the wrong value forS) that is used
in additional computations yielding a right answer..

6. Check and evaluate the obtained solution: “Some of
the best effects may be lost if the student fails to reex-
amine and to reconsider the completed solution” [48].
After gaining confidence with the obtained solution of
the problem, it is necessary to spend some time in eval-
uating its plausibility. Examining the solution to our
problem one could ask: it is not striking that the ro-
tational inertia for a hollow cone about its symmetric
axis is the same as for a solid disk having the same
uniformly distributed massM and radius equal to the
cone’s base? Is it not a counter example to the state-
ment that rotational inertia only depends on how the
mass is distributed around the axis of rotation? Further-
more, if for some reason the wrong choice for thedS
was not caught in the previous step, it could be detected
by analyzing the case of having a non-constantσ. A
further interpretation of the result can be found at [62].

5. Concluding remarks

Previous work by researchers inPhysics Education Re-
search[3,39,40,45,46,51] shows clear evidence that when ap-
plied via active teaching and learning strategies [51,63-65],
a problem-solving methodology increases students’ perfor-
mance in solving physics problems quantitatively and help
them to enhance their conceptual understanding of physics
concepts.

Nevertheless, the number of published “Comments
on . . . ” and “Reply to . . . ” articles, in which much of the
discussion is about the incorrectness of the physical interpre-
tation of a concept or an idea, is indicative of the fact that
the qualitatively understanding of the concepts of physics is
a very elusive task, which even experienced researchers can
fail to grasp [66].

Let’s finish by recalling a particular point of view which
the great mathematician Polya stressed very much in his writ-
ings and that, in some sense, can be considered as an “ax-
iomatic thought” about the art of teaching and learning. He
was emphatic regarding the fact that “for efficient learning,
the learner should be interested in the material to be learnt
and find pleasure in the activity of learning.” In other words,
inspiration to learn is without doubt a necessary condition in
order to have an efficient and effective teaching and learn-
ing environment. This, is of course, by no means a new dis-
covery, and, paraphrasing Schoenfeld [64], some ideas for
circumventing a few of the barriers between the dedicated in-
structor and his/her students’ attitudes in “learning” the sub-
ject that is being taught have been set forward in Refs. 64,
63 and 65. Nevertheless, one should keep in mind that “we
know from painful experience that a perfectly unambigu-
ous and correct exposition can be far from satisfactory and
may appear uninspiring, tiresome or disappointing, even if
the subject-matter presented is interesting in itself. The most
conspicuous blemish of an otherwise acceptable presentation
is the ’deus ex machina’ ”[67].
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