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This article presents a six-step problem-solving strategy, aimed at addressing three major problems in the learning and teaching of physics:
1) the demand by physics instructors for effective teaching strategies that could help in the teaching of intuitive conceptual and quantitative
reasoning in physics, and how to teach both aspects holistically; 2) the students’ need for suitable methodology that could help students
to fill the gap in textbooks on enhancing their mathematical reasoning abilities, which are essential for reinforcing students’ knowledge of
conceptual physics; and 3) a deficiency in the teaching of physics leading to students not being taught a coherent physics problem-solving
strategy that would enable them to engage in both mathematical and conceptual reasoning.

After a review of publications made by tiRhysics Education Research gro(RER), the importance of a structured, systemic methodology

to solve physics problems is considered. Then a structured, systemic methodology for solving physics problems is described by extending
the well-known problem-solving steps presented by Polya. The proposed strategy includes the following steps: 1. Understand the problem,
2. Provide a qualitative description of the problem, 3. Plan a solution, 4. Carry out the plan, 5. Verify the internal consistency and coherence
of the equations used, and 6. Check and evaluate the obtained solution.

Finally, an illustrative example is provided: the calculation of the moment of inertia of a thin hollow right circular cone.

Keywords:Physics problem-solving; physics learning; teaching of physics; quantitative reasoning.

Este artculo presenta una metodolagde seis pasos para resolver problemas, con la iterig# abordar tres grandes problemas en el
aprendizaje y la enganza de laifica: 1) la demanda de los profesoresidied de estrategias de efiaaza efectivas, que permitan ayudar
en la ensBanza del razonamiento conceptual y cuantitativasind, y ®mo ensBar ambos aspectos de manera integral 2) la necesidad de
los estudiantes de contar con una metodal@gecuada que los ayude a cubrir las deficiencias de los textos en cuanto al fortalecimiento
de sus habilidades de razonamiento matirn, las cuales son esenciales para consolidar el conocimiento conceptisitag f3) una
deficiencia en la ensanza de laiica en presentarle a los estudiantes una estrategia coherente densiéuproblemas, que los involucre

en razonamiento tanto cuantitativivo como cualitativo.

Despues de presentar una revisi bibliogéfica en cuanto a publicaciones sobre el tema aparecidas&raetelnvestigaciones sobre

la Ensdianza de la Fsica (PER, por sus siglas en irigi Physics Education Resealclia importancia de una metodoliagestructurada y
sistenatica para resolver problemas dsi¢a es considerada. Luego, por exténgilel conocido esquema de resolucide problemas de
Polya, se describe una metoddlgisémica y estructurada para resolver problemadsied. La estrategia propuesta incluye los siguientes
pasos: 1. Comprender el problema, 2. Proporcionar una descripealitativa del problema, 3. Planificar la sofuti4. Ejecutar el plan, 5.
Verificar la consistencia interna y la coherencia de las ecuaciones utilizadas, y 6. Inspeccionar y evaluadtaduikrgida.

Porltimo, se presenta un ejemplo ilustrativo: @laulo del momento de inercia de un cono circular recto hueco muy delgado.

Descriptores:Resolucbn de problemas ensica; aprendizaje dédica; ensanza de laiica; razonamiento cuantitativo.

PACS: 01.40.gb; 01.40.Ha; 01.40.Fk

1. Introduction rial [13], they interfere with the students’ emerging sense of
physical insight. Consequently, physics instructors face the

It is not difficult to find instructors of general physics coursesprObIem of finding suitable advice on how to approach the

anxiously perusing articles published by the Physics Educgl€aching of physics in the most efficient way and an answer

tion Research (PER) community, searching essentially fo]"0 the question of how much time should be spent on intu-

advice on how to approach the teaching of physics effec'-tive conceptual reasoning and how much time in develop-

tively. Despite the demand for an actually useful pedagogy9 duantitative reasoning. Let us mention, in passing, that

of physics, PER has not produced so far any ultimate theoz})_‘e aforementioned editor.ial [13] has produced an intergst-
in this regard, and the great amount of published research RY d_ebate [14'16_] regardmg_the bene_flts and shqrtcommgs
the subject, in addition to being controversial [1-9], might of science education reform in the United States in relation

be overwhelming and even confusing to physics instructorf® its influence on the. development of reasoning skills on the
in the sense that since physics is intrinsically a quantitativetUdents, expressed in the way students use or apply the ma-
based subject, much of the recent research favors an overertr‘?—rlals learned in their courses.

phasis on qualitative (conceptual) physical aspects [5,10-12], On the other hand, physics instructors need also be mind-
while standard mathematical abilities, which are crucial forful of the importance of selecting the most appropriately
understanding physical processes, are not stressed, or eviemctional textbook, basically because innovative active-
taught, because, rephrasing a passage from a recent editearning teaching methods require students to acquire basic
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and fundamental knowledge through reading textbooks. Cotthe textbooks. Furthermore, from the aforementioned student
respondingly, innovative teaching strategies should be ddnterview excerpts, one can also appreciate the lack of rea-
signed to help students in processing their ever thicker andoning skills trying to associate or connect a way to solving
heavier textbooks, which are laden with physical and mathea problem with the solution of other similar problems from
matical insights [5,17-20]. Thus, the panorama regarding thenother previous context¢. by using analogies). Again,
learning of physics is even more dramatic on the side of théhe absence of this skill can not be surprising at all because
students. For one reason, in their struggle to fully participatestudents are just mirroring the unrelated way in which com-
in the process of learning, at the moment of trying to findmonly used physics textbooks present the theinesliie use
suitable learning materials that could help them to go beyonadf analogies is not fostered) [33-35].

classroom instruction.g. aiming to develop self-confidence
on their own through exercising their role as active learners)
students face the dilemma of deciding which textbook coul
be helpful: perhaps a conceptual physics textbaek[R1]),
the student might wonder; or maybe a calculus-based physi
textbook (.e. [22]); or why not an algebra-based physics
textbook {.e. [23]); or what about a combination of all
of them? These questions could have the student to veri
his/her pocket/handbag to see if the money in there could b
enough to take some extra weight home (for a good account 1) the demand by physics instructors for effective teach-
of the drama of choosing a textbook, see for instance [24] and ing strategies that would explain how much time
references therein). For another, in a typical course work for should be spent on teaching intuitive conceptual rea-
students majoring in science and/or engineering, they usually soning and how much time on developing students’
need to take more than one physics class. It could happenthat  quantitative reasoning, and how to teach both aspects
in one term his/her physics instructor may emphasize quanti- holistically;

tative reasoning over conceptual analysis, and in another term

the respective instructor could rather accentuate conceptual 2) the students’ need for suitable textbooks that will help

. Onthe importance of a structured, systemic
methodology to solve physics problems

b further motivate the subsequent discussion, let us summa-

rize our introductory commentaries. We are essentially point-

ing out three major problems in the learning and teaching of
hysics:

learning over quantitative analysis, likely causing confusion them develop mathematical abilities reasoning, which
for students, leading them to wonder which emphasis is cor- ~ are essential for enhancing their knowledge of concep-
rect. tual physics; and

Finally, it is not d.ifficult- to “”d_fes%‘!ts published by 3) a deficiency in the teaching of physics leading to stu-
the PER community in which the inability of students to dents not being taught a coherent physics problem-
express, interpret, and manipulate physical results in math- solving strategy that would enable them to engage in
ematical terms is shown directly or indirectly. That is, both mathematical and conceptual reasoning.

students shows a clear deficiency in their training to ex-

ploit the mathematical solution of a problem (which some- A moment of thought about the above summarized diffi-
times could be obtained mechanically or by rote proce-ulties leads us to postulate the need for a systemic [36,37]
dures) to enhance their knowledge regarding conceptuapproach which, from an operational point of view, could
physics [2,3,11,25-28]. More importantly, the analysis ofhelp instructors and students to achieve a better performance
published excerpts of student’s responses to interviews corin the process of teaching and learning physics.

ducted by some researchers to further understand students’ On the instructor’s side the need for a systemic approach
way of reasoning while solving physics problems, shows thain the teaching of physics could be justified by the advantage
students lack a structured methodology for solving physic®f using a methodology which would help them to incorpo-
problems [2,11,12,26]. These findings can not be surprisingate both conceptual and mathematical reasoning systemati-
at all. In fact, none of the most commonly recommendedcally in their teaching. In this way, students will obtain the
physics textbooksi.e. [22,29,30]) make use of a consis- necessary training in their computational skills while learn-
tent, clear problem-solving methodology when presenting théing how to use mathematical formulae to obtain the physics
solution of the textbook worked out for illustrative exam- in the equations, even when they can obtain the mathematical
ples [31]. Moreover, the lack of a coherent problem-solvingsolutions to a problem by rote procedures. In other words,
strategy can also be found in the solutions given in bothstudents could apply “higher-order thinking skills.” [38] via
the student and instructor manuals that usually accomparthe mathematical understanding of a physics problem, which
textbooks. Generally, problem-solving strategies in standarth turns involves meaningful learning which goes beyond the
textbooks encourage the use of a formula-based scheme agere application of rote procedures. Moreover, using prop-
compiled by the formula summary found at the end of eacterly designed quantitative problems that require students to
chapter of the text, and this strategy seems to be commailiustrate their conceptual learning and understanding will re-
even in classroom teaching [32]. Consequently, studentgeal much to instructors about their students’ learning and
merely imitate the way in which problems are handled inwill provide invaluable feedback [17,39-41]. Such problems
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can also be a powerful way to help students to understand P1 Understanding the problem
the concepts of physics [38,41], a point emphasized by the

great Nobel prize-winning, physicist Lev Davidovich Landau P2 Devising a plan

on the importance of first mastering the techniques of work- .

ing in the field of interest because “fine points will come by 3 Carrying out the planand
themselves.” In Landau’s words, “You must start with mathe- P4 Looking back

matics which, you know, is the foundation of our science. [...]
Bear in mind that by '’knowledge of mathematics’ we mean Surprisingly, these steps encompass “the mental pro-
not just all kinds of theorems, but a practical ability to inte- casses and unconscious questions experts explore as they
grate and to solve in quadratures ordinary differential equag,emselves approach problem solving” [55]. These four steps
tions, etc.” [42] To further enhance their reasoning skills, they 5o form the basis for some computational models devised
students would have the opportunity to increase their intuitivgy «model and explore scientific discovery processes” [55].
conceptual skills in the physics laboratory, where conceptua\eyertheless, even though the aforementioned four steps

learning is reinforced by experience [43,44]. . seems very simple, their generality makes it hard for novices
On the student’s side, the need for a systemic approac, follow them.

in the learning of physics could be justified by the usefulness Thus, in order to have a more approachable problem-
of applying a working methodology which could help them gq)ing strategy for students, we extended the four-step
to approach the learning of physics from a interrelated pombroblem-solving strategy into a six-step strategy. We made
of view. That means that his/her knowledge of mathematy,r choice based on empirical observations after experiment-
ics is useful for mastering ideas from physics, and that the,q \yith a five-step strategy reported in Ref. 51. Justification
use of analogies are important in approaching the solution of,, having a more detailed problem-solving strategy can be
physical, mathematical and engineering problems. In shorfgnq in the words of Schoenfeld: “First, the strategies are
this kind of practical, unified problem-solving strategy will 1,51 complex than their simple descriptions would seem to
help students to formulate and address any kind of problempgicate. If we want students to use them, we must describe
In other words, with such an approach, students would inthem in detail and teach them with the same seriousness that
ternalize the fact that it is in physics .class.es where they caje would teach any other mathematics” [56]. In addition, we
start to apply what they have learned in their math classes angh | further rationalize below the need for explicitly includ-
to find new non-formal approaches to performing Computa-mg the new step in our proposed methodology (see item 5

tions [45]. To paraphrase Heron and Meltzer, learning t0 appg|ow). Accordingly, our proposed six step problem-solving
proach problems in a systematic way starts from teaching a”é’trategy is as follows:

learning the interrelationships among conceptual knowledge,

mathematical skills and logical reasoning [46]. The problem 1 jnderstand the problent some considerations to de-

that arises after the opening of the Millennium Bridge can velop at this step involve drawing a figure and asking
further illustrate the needs for teaching and learning based on questions like What is the unknown? What is the con-

a systemic approach which recognizes the interrelatedness of  yition? Is it possible to satisfy the condition? Is the
every aspect of a physical process (physics, mathematics, and  ondjtion sufficient to determine the unknown? Or is

engineering design) [47]. it insufficient? Or redundant? Or contradictory? That
is, at this stage students need to actually be sure what

3. A Systemlc Structured methodology for the problem is. In addition to making draWingS to get a

; . grasp of the problem, students might need to reformu-

solving physics problems late the problem in their own words, making sure that

Earlier work on the importance and necessity of a problem-  they are obtaining all the given information needed for
solving strategy can be found in the work of the great mathe- solving the problem. This is a crucial step in the sense
matician George Polya [48,49], who placed emphasis on the ~ thatif we do not know where are we going, any route
relevance of the systematicity of a problem-solving strategy will take us there
for productive thinking, discovery and invention. Some of
his views, either provocative or encouraging, about teaching
and learning can be found in some PER publications, like for
instance his statements theaching is not a sciendge. [2])
and thateaching is an arfi.e. [50]), and his views otthe aim
of teaching(i.e. [6,38]) and on the importance @roblem-
solving skills(i.e. [3,39,40,51]), etc. For a further detailed
account of Polya’s work please refer to [48,49,52-55].

In How to Solve ItPolya set four general steps to be fol-
lowed as a problem-solving strategy:

2. Provide a qualitative description of the problem at
this stage students need to think and write down the
laws, principles, or possible formulations that could
help them to solve the problem. For instance students
need to consider any possible framework of analysis
that could help them to represent or describe the prob-
lem in terms of the principles of physicsq. New-
tons law, energy conservation, momentum conserva-
tion, theorem of parallel axis for computing inertia mo-
ment, non-inertial reference system, etc.) If necessary,
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the drawings of the previous step could be comple- write down the solution of a less general problem? Can
mented by the corresponding free-body and/or vector the solution be used to further understand the qualita-
diagram. tive behavior of the problem? Is it possible to have a

division by zero by changing a given parameter? Does

. Plan a solution some considerations to have in mind .
it makes sense?, and so forth.

in order to develop this step involve looking at the un-
known and trying to think of a familiar problemhaving A first comment on our six-step problem-solving strat-

the same or a similar unknown. Some questions t0 bey is that it provides a unified, systemic way of approaching
asked are: Have you seen this before? Or have yoyq gojytion to a physical problem encompassing both qual-
seen the same problem in a slightly different form?;iaie (steps 1-3) and quantitative (steps 4-6) reasoning. In
Once the student as all the many possibilities of apyhis sense, instructors could place as much emphasis as they
proaching approach the problem, he/she only needgy,ose on any of the set of steps, providing the students with
to pick one strategy of solution and write down the 5 gictured recipe on how to approach in detail the other side
corresponding mathematical formulation of the prob- ¢ he problem’s solution. That s, if the instructor decides to
lem, avoiding as much as possible plugging numberg,myhasize steps 1-3, students could still follow steps 4-6 at
into the respective equations. Also, they need to thinkpeir own pace, and viceversa. Second, comparing our six-
whether the information at hand would be enough togien hroblem-solving strategy with Polya’s four-step scheme,
find a solution {e. if a set of algebraic equations is i ¢oy|d be appreciated that we have explicitly divided Polya’s
under-or over-determined, or if the number of bound-gien, one (P1) into two steps (1-2), and Polya’s step three (P3)
ary conditions provided is enough to solve a differen-jni, two steps (4-5). A further comment on our problem-
tial equation). solving strategy is that we prefer to call the second step (2)
. Carrying out the plan: at this stage the student will Provide a qualitative description of the problenather than

try to find a solution to the mathematical formulation of Physics descriptioras in Ref. 51, because one shares the
the problem sketched according to the previous stepddea that students tend to think that, by providing a qualitative
and perhaps will need to go back in order to find an eas@nalysis of a problem, they are also providing the solution re-
ier mathematical formulation of the problem. This canquired by a physicist, and that the mathematical solution to
be facilitated if the students have written down alterna-the problem is just uninteresting mathematics. Instead, we

tive solutions as they were supposed to do on item 2. Place emphasis on the fact that a physical solution to a prob-
lem is a combination of both qualitative and quantitative rea-

. Verify the internal consistency and coherence of the soning. As stressed by the great physicist Lord Kelvin: |
equations usedat the moment of finding a solution to  pften say that when you can measure something and express
the mathematical equations involved, students need tq in numbers, you know something about it. When you can
verify whether the equations are consistent with whatyot measure it, when you can not express it in numbers, your
they representi.e. are the equations dimensionally ynowledge is of a meager and unsatisfactory kind. It may be
correct? Do they represent a volume or a surface?}he peginning of knowledge, but you have scarcely in your
Though this seems to be an unnecessary step, expethoughts advanced to the state of science, whatever it may
ence shows that students too often do not verify theye » [21] Freeman Dyson was more eloquent: “...mathemat-
internal consistency and coherence of the equationgs is not just a tool by means of which phenomena can be
they solve. And this mistake is also found to be per-cajculated; it is the main source of concepts and principles

formed by textbook writers, as discussed in a recenby means of which new theories can be created” [59].
editorial [57]. After verifying no inconsistencies are

found in the mathematical solution to the problem, stu- .
dents could then plug numbers into the obtained result4¢-  lllustrative example
to find, whether required or not, a numerical solution

which in turn could be used in the next step to fur- In the following example, we shall present an approach on

ther evaluate the obtained result. In the next sectionhOW o introduce _students to the use of our proposed six-
Step problem-solving strategy. Though each one of the steps

by means of an illustrative example, we shal ShOWhas its importance, we shall provide further evidence of wh
how the right answer to the problem posed could be P ' P y

obtained, even though the internal consistency of aﬁstep five needs to be taught explicitly. It is pertinent to
equation,used is not right [58] point out that, paraphrasing Polya’s words, by proper train-

ing students could absorb the steps of our problem-solving
. Check and evaluate the obtained solution once a  strategy in such a way that they could perform the corre-
solution has been obtained, its plausibility needs to besponding operations mentally, naturally, and vigorously. The
evaluated. Some questions could be asked in this redynamics of teaching is left to the instructor. In this arti-
gard: can the results be derived differently? Can thecle we are not claiming to show how the teaching should
result or the method be applied to solve or fully un- be carried out. Innovative teaching strategies can be found
derstand other problems? Can the solution be used telsewere [5,17-20,51,60].
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FIGURE 1. A hollow right circular cone with radius R, lateral
length L, and uniform mass M. The cone’s highHs=v/L? — R?.

The figure also shows at the lateral distahcmeasured from the
cone’s apex at the origin of the coordinate system, an infinitesi-
mal ring of lateral lengthil and radius-. Two useful geometrical
relations among some of the dimensions shown in the figure are
r=(R/L)landr = (R/H) z.

4.1. The problem statement

Problem: About its central axis, find the moment of iner-
tia of a thin hollow right circular cone with radiug, lateral
length L, and massV uniformly distributed on its surface
with densityo.

1. Understand the problem “It is foolish to answer a
question that you do not understand. But he should
not only understand it, he should also desire its solu-
tion” [48]. Following Polya’s commentary, before at-
tempting to solve this problem, students need to have
been exposed to a basic theory on computing moment
of inertia (7). Particularly, students need to be famil-
iar with the computation of for a thin circular ring
about its main symmetric axis. To further understand
the geometry of the present problem, students could,
for example, have a discussion about the shape of an
empty ice cream cone. After some talk, a drawing bet-
ter than the one shown in Fig. 1 could be presented on
the board. Let's mention that additional ways of pre-
senting each step in meaningful ways can be found in
Refs. 48 and 51.

2. Provide a qualitative description of the problem In

this step one could further motivate the discussion by
associating the computation éfwith rotational mo-
tion quantitiesite. kinetic energy, angular momentum,
torque, etc.). One can even motivate the qualitative dis-
cussion by considering the hollow cone as a first crude
approximation of a symmetric top or of a cone concrete
mixer. The drawing of Fig. 1 could even be made more
explicative.

. Plan a solution “We have a plan when we know, or

know at least in outline, which calculations, computa-
tions, or constructions we have to perform in order to
obtain the unknown. .. We know, of course, that it is
hard to have a good idea if we have little knowledge
of the subject, and impossible to have it if we have no
knowledge.. .. Mere remembering is not enough for a
good idea, but we cannot have any good idea without
recollecting some pertinent facts” [48]. Accordingly, at
this stage instructors could point out the superposition
principle to solve the problem by slicing the hollow
cone into a set of small, infinitesimal, rings distributed
along the symmetrical axis of the cone. Thus, each
infinitesimal ring will have in common the same rota-
tional axis about which the moment of inertia of them
is already known:dI = r2dm = r20dS, wherer is

the radius of each ring, whiléS represents the respec-
tive infinitesimal surface of each ring.

. Carrying out the plan: To carry out the plan, it

won't be a surprise to choose the wrod§. In fact,

it is not difficult, at first sight, to choose wrongly
(see Fig. 1):dS = 2ardz = 2n(R/H)zdz,
which leads toS = wRH, as the hollow cone sur-
face (this result is of course wrong). Using this sur-
face element, the momemnt of inertia for the small
ring takes the formi/=2no(H/R)r3dr, which leads

to I=2n0(H/R)(R*/4)=(1/2)(cS)R>=M R?/2, as

the required moment of inertia of the hollow cone
(which is the right answer). It is not difficult to get stu-
dents performing this sort of computations and they be-
come uneasy when trying to convince them that in spite
of having found a correct result, it is specious because
it was obtained via a wrong choice faf. Eventually
students might agree on the incorrectness of their pro-
cedure if asked to compute explicitly the cone’s mass.

. Verify the internal consistency and coherence of

the used equations “Check each step. Can you see
clearly that the step is correct? Can you prove that it is
correct?. .. Many mistakes can be avoided if, carrying
out his plan, the student checks each step” [48]. Judg-
ing from our teaching experience, it is only too easy
for students to perform without hesitation the incorrect
computations, as presented in the previous step. And it
is not easy to get students to realize their mistake. For
God’s Sake, they have computed the right answer!!!:
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for a hollow thin cone, rotating about its symmet- 5.  Concluding remarks

ric axis, I = MR?/2 !Il. In this situation, to make . ] .

students aware of their mistake, the easy way is thé’revious work by researchers iRhysics Education Re-
experiment. Instructors could unfold several hollow S€arch3,39,40,45,46,51] shows clear evidence that when ap-
cones to actually show the students that the respecﬁ\,glied via active teaching and learning strategies [51,63-65],
surface isS = mRL, instead of the wrongly obtained @ problem-solving methodology increases students’ perfor-
S = nRH. Accordingly, we hope to have provided mance in solving physics problems quantitatively and help
enough evidence for the need to, explicitly and re-them to enhance their conceptual understanding of physics
peatedly, remind to students of the need to check eachRONCepts.

computational step, including checking for dimen- Nevertheless, the number of published “Comments
sionality correctness. In this case, the right approaci®n ---” and “Reply to ...” articles, in which much of the

is to considerdS = 2mrdl = 2rxl(R/L)dl, which discussion is about the incorrectness of the physical interpre-
yields S = wRL, the right answer foss. This choice tation of a concept or an idea, is indicative of the fact that

for dS leads todI=2ro(L/R)r3dr, which yields the qualitatively understanding of the concepts of physics is
I1=2r0(L/R)(R*/4)=(1/2)(¢S)R? =M R?/2, the @ Very elusive task, which even experienced researchers can

right answer. fail to grasp [66].
Let’s finish by recalling a particular point of view which
Considering that it is not hard to find stories on re- the great mathematician Polya stressed very much in his writ-

ported wrong results due to wrong or incomplete com-ings and that, in some sense, can be considered as an “ax-

putations [47,61], this problem could also be used adgomatic thought” about the art of teaching and learning. He

an examp|e of how Computations of a physica| quan_WaS emphatic regarding the fact théor efficient Iearning,

tity (the surface of a cone shell) can be used to judge 4he learner should be interested in the material to be learnt

mathematical result (the wrong value fythatis used ~and find pleasure in the activity of learnifign other words,

in additional computations yielding a right answer.. ~ inspiration to learn is without doubt a necessary condition in
order to have an efficient and effective teaching and learn-
ing environment. This, is of course, by no means a new dis-

6. Check and evaluate the obtained solution“Some of ~ covery, and, paraphrasing Schoenfeld [64], some ideas for

the best effects may be lost if the student fails to reex-circumventing a few of the barriers between the dedicated in-
amine and to reconsider the completed solution” [48].structor and his/her students’ attitudes in “learning” the sub-
After gaining confidence with the obtained solution of ject that is being taught have been set forward in Refs. 64,
the problem, it is necessary to spend some time in evalé3 and 65. Nevertheless, one should keep in mind that “we
uating its plausibility. Examining the solution to our know from painful experience that a perfectly unambigu-
problem one could ask: it is not striking that the ro- ous and correct exposition can be far from satisfactory and
tational inertia for a hollow cone about its symmetric may appear uninspiring, tiresome or disappointing, even if
axis is the same as for a solid disk having the saméhe subject-matter presented is interesting in itself. The most
uniformly distributed masd/ and radius equal to the conspicuous blemish of an otherwise acceptable presentation
cone’s base? Is it not a counter example to the statds the 'deus ex machina’ "[67].

ment that rotational inertia only depends on how the

mass i; distributed around the axis of rota_ltion? FurtherACknowledgments

more, if for some reason the wrong choice for the
was not caught in the previous step, it could be detected am grateful to Dr. Cheryl Pahaham and one anonymous

by analyzing the case of having a non-constantA referee, both of whom kindly provided useful comments on
further interpretation of the result can be found at [62].improving this article.
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