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A renormalization group (RG) approach shows that the relative dispersion of the distance series of a triplet for each half of most bacterial
chromosomes follows an inverse power-law as a function of the window size in a log-log plot. These straight lines indicate that when
each half of the bacterial chromosome is analysed a random monofractal is obtained. With this approach, inverse bilateral symmetry of
some triplets in the 4 bacterial chromosomes analyzed is also illustrated. Thus, DNA sequences of whole bacterial genomes contain both
long-range correlations and random components. In particular the RG approach captures a harmonic modulation of the underlying inverse
power-law. The frequency distributions of distances of triplets are also analyzed and they exhibit an oscillatory decaying pattern that displays
the well-known 3-base periodicity. It is concluded that the DNA fluctuations of the distance series of triplets are not completely random,
like Brownian motion, nor are they the result of processes with short-term correlations. Instead, the inverse power-law reveals that the DNA
distance series at any position is influenced by fluctuations that occurred hundreds or thousands of bases apart. This behavior is a consequence
of the fractional Brownian nature of the distance series of DNA.

Keywords: Frequency distributions of distances of triplets; bacterial chromosomes; statistical properties of DNA distance series; renormal-
ization group approach; scaling exponents; Hurst exponent.

El enfoque del grupo de renormalización (RG) muestra que la dispersión relativa de una serie de distancias de tripletes para cada mitad de
los cromosomas bacterianos sigue una ley de potencia inversa en función del tamãno de la ventana en una grafica log-log. Estas lı́neas rectas
indican que cuando la mitad de cada cromosoma bacteriano es analizado se obtiene un monofractal. Con este método se ilustra que ciertos
pares de tripletes exhiben una simetrı́a bilateral inversa en las 4 bacterias estudiadas. Asimismo, las secuencias de ADN de los genomas
de bacterias en su conjunto contienen correlaciones de largo alcance y componentes aleatorios. En particular, el enfoque RG captura una
modulacíon arḿonica de las leyes de potencia inversa. Se analizan también las distribuciones de frecuencias de las distancias de tripletes y
se presenta un patrón oscilatorio que muestra la conocida periodicidad de 3. Se concluye que las fluctuaciones de las series de distancia de
tripletes del ADN no son al azar, como en el movimiento Browniano, ni son el resultado de correlaciones de procesos a corto plazo. Por el
contrario, la forma de las leyes de potencia inversa revela que la serie de distancias en cualquier posición se ve influida por fluctuaciones que
tuvieron lugar a cientos o miles de bases de separación. Este comportamiento es consecuencia de la naturaleza fractal browniana de las series
de distancias de tripletes en las secuencias de ADN.

Descriptores: Distribución de frecuencias de distancias de tripletes; cromosomas bacterianos; propiedades estadı́sticas de series de distancias
de ADN; renormalizacíon de grupos; exponentes de escalamiento; exponentes de Hurst.

PACS: 87.10.+e; 05.40.+J

1. Introduction

The renormalization group (RG) analysis, introduced in field
theory and in critical phase transitions, is a very general
mathematical and conceptual tool, which allows one to de-
compose the problem of finding the macroscopic behavior
of a large number of interacting parts into a succession of
simpler problems with a decreasing number of interacting
parts, whose effective properties vary with the scale of ob-
servation [1]. The RG permits one to determine the scaling
properties of a system. At the outset, a set of equations that
may describe the behavior of the system is assumed. Then
the length scale at which the system is being described is
changed. By moving away from the system, some of the de-
tails are lost. At the new scale, the same set of equations is
applied, but possibly with different coefficients. The objec-

tive is to relate the set of equations on one scale to the set of
equations on the other scale. In this way, the scaling proper-
ties of the system can be obtained. The premise of the RG is
that exactly at a second order phase transition, the equations
describing the system are independent of scale.

The concept of RG is useful for systems that exhibit
the properties of scale invariance and self-similarities of the
observables at the critical point of the system [2]. The
RG approach deals with the concept that a critical point
results from the aggregate response of an ensemble of el-
ements. The two main transformations of the RG are
decimation and rescaling. When we go from the fine scale
to the coarse scale, the process is called decimation. The idea
of RG is to decimate the degrees of freedom, while rescaling
so as to keep the same scale by calculating, for example, the
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relative dispersion, the ratio of the standard deviation to the
mean. The procedure can be repeated using groupings of two,
three, four and more data points. In this way the fractal di-
mension that is independent of the degree of coarse-graining
can be determined.

The statistical analysis of DNA sequences has been stud-
ied for almost 60 years. Several properties have been un-
veiled using different methods for their analysis. A non-
exhaustive selected list of some of the methods and main
findings related to the statistical properties of DNA se-
quences is offered in Table I. The finding that several bac-
terial chromosomes possess an inverse bilateral symmetry
(IBS) was demonstrated by means of the RG approach and
to our knowledge this was the first time that this approach
was used for analyzing DNA sequences of whole bacterial
genomes [3,23]. Furthermore, in a more recent work we have
shown that the scaling exponents for a given triplet in several
prokaryotes have remained unaltered throughout their evolu-
tion [24]. Then, there is a strong evidence of critical scale
invariance in the scaling exponents which indicates that not
all information of ancestral organisms has been erased at least
for the last 3 billion years of evolution [24].

In this work we present the basic ideas of the RG ap-
proach and give examples of how this procedure can be ap-
plied for analyzing the entire genomes of 4 bacteria.

2. Renormalization group

The purpose of the RG is to translate into mathematical lan-
guage the concept that the sum is the aggregation of an en-
semble of defined sub-sums, each sub-sum defined by the
sum of sub-sums and so on. In other words, the RG ap-
proach implies that a critical point results from the aggregate
response of an ensemble of elements.

Let us assume the renormalization group scaling relation:

F (x) =
F (bx)

a
(1)

This relation expresses the property ofF (x) being self-affine,
i.e., the graph ofF (x) on a scalebx has to be scaled down
by a factor1/a to obtain the desired function on scalex.
Whereas self-similarity refers to the fact that the shapes are
identical under magnification, self-affinity expresses the fact
thatF andx have to be scaled by different amounts for the
two views to become identical. Scale invariance means repro-
ducing itself on a different time or space scale. An observable
F which depends on a control parameterx is scale invariance
under the arbitrary changex → bx if there is a numbera(b)
such that Eq. (1) holds.

The solution to (1) is:

F (x) = cxd with d =
ln (a)
ln (b)

(2)

Power-laws are the hallmark of scale invariance as the ratio,
(F (xb))/(F (x)) = bd, does not depend onx, i.e. the rela-

tive value of the observable at two different scales depends
simply on the ratio of the two scales.

Sornette [2] has generalized the continuous fractal dimen-
sion into what he calls the Discrete Scale Invariance. Consid-
ering the solution in (2) we get:

bd

a
= 1 = ei2πn

This leads to:

d =
ln (a)
ln (b)

+ i
2πn

ln (b)
, (3)

which characterizes the system in terms of complex fractal di-
mensions. The imaginary part of the fractal dimension trans-
lates itself into a log-periodic modulation decorating the lead-
ing power law behavior.

3. Aggregating data and relative dispersion
(Hurst exponent)

Let us examine how the relative dispersion (RD) changes as
a function of the number of adjacent data elements we ag-
gregate. We start by aggregatingn−adjacent data points,
so that thej− element in such an aggregation is given by
Y

(n)
j = Ynj +Ynj−1+Ynj−2+...+Ynj−(n−1). Here,Y rep-

resents the distance between two identical triplets. In terms
of these new data the arithmetic average is defined as the sum
over the total number of data points, where the bracket[ ] de-
notes the closest integer value, andN is the original number
of data points,i.e.,

Y
(n)

=
1

[N/n]

[N/n]∑

j=1

Y
(n)
j = nY

(1)

The variance for a monofractal time series is similarly
given by [18]:

V ar(Y
(n)

) = n2HV ar(Y
(1)

), (4)

whereH is the Hurst exponent, and the superscript on the av-
erage variable indicates that it was determined using all the
original data without aggregation and the superscript on the
average variable indicates that it was determined using the
aggregation of data points. Thus the relative dispersion (RD)
for an aggregated data set is:

RD(n) =

√
V ar(Y

(n)
)

Y
(n)

=

√
n2HV ar(Y

(1)
)

nY
(1)

= nH−1RD(1) (5)

which is exactly an inverse power-law in the aggregation
number for the Hurst exponent in the interval0 ≤ H ≤ 1
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TABLE I. Analysis of DNA Sequences

Method Finding Reference

Frequency analysis Statistical confirmation of the 1st and 2nd Parity Rules [4]

Positional Autocorrelation Function 3- and 10-11 base pair periodicities [5]

Correlation analysis 2nd Parity rule for n-tuples [6]

Fourier Spectra Long-range correlations in non-coding DNA sequences [7]

Detrending Fluctuation Analysis and Fourier Spectra Long-range correlations in non-coding DNA and lack of
correlations in coding sequences

[8,9]

Multifractal spectra and wavelets analysis Self-similarity and multiple scalings in both coding and
non-coding sequences

[9]

Indexes of base composition (C-G)/(C+G) Asymmetric substitution patterns coincide with Ori and
Ter sites of chromosome replication (GC-skews)

[10]

Cumulative skew diagrams GC-skews [11,12]

Autocorrelation function Power-laws in long DNA sequences [13,14]

Markov models of sequence alignments Origin and nature of low- and high-order symmetric
complementary DNA strands Long range correlations
in isochores

[15]

Log-log plots of standard deviation versus fixed window sizesLong range correlations in isochores [16]

Generalized Autocorrelation Long-range correlations of base composition at the 3
codon positions at distances which are multiples of 3
and anticorrelations for distances which are not multi-
ples of 3

[17]

Renormalization group approach Long-range correlations; inverse bilateral symmetry of
whole bacterial chromosomes; critical scale invariance

[3,24]

FIGURE 1. Log-linear plot of the frequency distribution of distances of (A) AGC (crosses) and GCT (empty circles) inD. radiodurans; (B)
CCA (crosses) and TGG (empty circles) inB burgdorferi; (C) ATG (crosses) and CAT (empty circles) inA. nostoc; (D) ACA (crosses) and
TGT (empty circles) inE. coli.

Rev. Mex. F́ıs. 56 (1) (2010) 69–74
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FIGURE 2. Aggregation analysis by chromosomal halves of the triplets (A) AGC and GCT inD. radiodurans; (B) CCA and TGG inB.
burgdorferi; (C) ATG and CAT in and TGT inE. coli. All fittings of Eq. (5) have correlation coefficients ofr2 = [0.97− 0.99].

It is well established [1819] that the exponent in such
scaling equations is related to the fractal dimension,D of
the underlying distance series byD = 2 − H. A simple
monofractal time series, therefore, satisfies the inverse pow-
erlaw relation for the RD given by Eq. (4), which can be
expressed by the linear regression relation [20]:

ln RD(n) = ln (RD(1)) + (1−D) ln (n) (6)

4. Methods and results

We illustrate the RG approach with 4 bacteria:Deinococ-
cus radiodurans, Borrelia burgdorferi, Anabaena nostocand
Escherichia coli. D radiodurans is a bacterium that can
live through intense levels of radiation. A human being ex-
posed to 1,000 rads of radiation energy, a dose delivered
in the atomic explosions of Hiroshima and Nagasaki, dies
within two weeks. At one million radsDeinococcusstill sur-
vives and at 3 million rads a very small number still endure.
The extraordinary genomic resilience of this impressive bac-
terium lies in its ability to repair broke DNA.B burgdorferiis
an spirochaete that produces Lyme disease, whose symptoms
are arthritis-like.A. nostocis a filamentous (metazoan-like)

nitrogen-fixing cyanobacterium whose genome is very large
(∼6.4 Mb). E. coli is the most studied organism in biology
and it is an enteric bacteria.

The complete sequences ofD. radiodurans B.
burgdorferi, A. nostoc and E. coli. were retrieved
from the NCBI, Genbank resource from the NIH
(http://www.ncbi.nlm.nih.gov) with the following corre-
sponding accession numbers: NC001263, NC001318,
NC 003272; NC000913.

Instead of using the classical stochastic random walk
mapping rules of DNA (e.g. the purine–pyrimidine (RY)
rule), the distance series of any triplet along chromosomal
halves were determined [3,23]. For a given triplet its ac-
tual position along the whole chromosome was determined
and from this the actual distance series (distance measured in
bases) of that particular triplet were obtained. In other words,
we can directly visualize how a given triplet is distributed
along the whole chromosome. In this work, we divide the
bacterial chromosomes into two non-overlapping halves ac-
cording to the location of the origin of replication usually
denoted by “Ori”.

In Fig. 1 the frequency distributions of distances at which
some triplets (e.g. ATG and CAT which are reverse comple-
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mentary of each other) are encountered along the bacterial
chromosomes of the 4 studied bacteria are presented. Note
that the upper envelope of both distributions for each triplet in
each bacterium occurs with a period of every 3 bases whereas
the lower envelope occurs at distances different from the 3-
base periodicity. These distributions are very similar for ev-
ery pair of codons with its corresponding reverse comple-
mentary, and they display an oscillatory decaying pattern.

In Fig. 2 the results of the aggregation analysis of a given
triplet and its reverse complementary for both halves of the
chromosome of each bacterium are illustrated. The fitting of
the data using Eq. (5) produces straight lines whose slopes
lie between−0.5 < 1−D < 0 in all bacteria indicating that
the corresponding distance series follow an inverse power-
law behavior and they are random monofractals. We also re-
mark that log-periodic variation of the data about this power-
law behavior can be observed if we amplify the behavior of
the relative dispersion for large window sizes, as was clearly
shown in a previous work (3). In Table I, the fractal dimen-
sions for each pair of triplets for each bacterium is shown.
Note that all scaling exponents lie between 1.51 (e.g.AGC in
B. burgdorferi) and 1.68 (e.g.TTA, TAA and TGG inE. coli).
In regard to the type of symmetry of the bacterial chromo-
somes, note, for example, that inD. radioduransfor the 1st
half of the chromosome the slope of the aggregation analysis
givesH = 0.37 and, for the 2nd halfH = 0.36 Using the
relation,D = 2 −H the corresponding fractal dimension of
AGC for the 1st half and for the 2nd half of the chromosome
areD = 1.63 andD = 1.64, respectively. These estimates
are in turn obtained for the reverse complementary triplet of
AGC which is the triplet GCT, whose fractal dimensions in
the 2nd and in the 1st half of the chromosome areD = 1.65
andD = 1.62, respectively (see Table II). Since the scaling
exponent of a given triplet along one half of the chromosome
is similar to the scaling exponent of the reverse complement
in the other half, then the chromosome ofD. radiodurans
does posses inverse bilateral symmetry. This type of symme-
try is also clearly observed for the triplets AGCGCT, ATG-
CAT and CCA-TGG inA. nostoc, for TTA-TAA, ATG-CAT,
and CCA-TGG inB. burgdorferi, for AGC-GCT, TTA-TAA,
TAG-CTA, and CCA-TGG inD. radiodurans, and for ACA-
TGT in E. coli In any case, for a given triplet the relative
dispersion has a dominant inverse power-law with an index
given byd and is modulated by a function that varies log-
arithmically with a fundamental periodln (b). The magni-
tudes of the fractal dimensionD, reveal that there are long-
range correlations in the distance series of a given triplet cor-
responding to what is called fractional Brownian motion. A
particular type of randomness, which seems to maximize the
information content, is also displayed by the distance series
of triplets.

5. Conclusions

In this work we have used a renormalization group approach
to obtain an expression for the aggregated relative dispersion

that is the product of an inverse power-law and a modulation
function that varies as the logarithm of the aggregation num-
ber.

In the literature it often appears that one has only two
choices, either a process is a monofractal or it is a multifrac-
tal. The latter applied to a distance series would imply that
the fractal dimension changes over distances, ultimately lead-
ing to a distribution of fractal dimensions [20]. This is not
the situation here, however. The aggregated relative disper-
sion indicates that the process has a preferential scale length,
b, in addition to the monofractal behavior determined by the
inverse power-law indexd [3]. Thus there is the interleav-
ing of two mechanisms, one that is scale free and produces
the monofractal, and the other has equal weighting on a log-
arithmic scale and is sufficiently slow as to not disrupt the
much faster fractal behavior [3]. The tying together of the
long and the short distance scales is necessary in order to
adaptively regulate the complex DNA sequences in a chang-
ing environment. The log-periodic modulation of the inverse
power-law is a consequence of the correlation function satis-
fying a renormalization group relation and having a complex
fractal dimension [2].

TABLE II.

Triplet Half Anabaena Borrelia Deinococcus Escherichia

nostoc burgdorferi radiodurans coli

AGC
first 1.59 1.51 1.63 1.61

second 1.56 1.55 1.64 1.59

GCT
first 1.54 1.55 1.65 1.63

second 1.60 1.58 1.62 1.62

TTA
first 1.63 1.59 1.59 1.68

second 1.61 1.60 1.61 1.66

TAA
first 1.63 1.62 1.61 1.68

second 1.57 1.60 1.61 1.65

ACA
first 1.59 1.65 1.58 1.61

second 1.57 1.60 1.56 1.62

TGT
first 1.64 1.53 1.59 1.60

second 1.59 1.67 1.61 1.61

ATG
first 1.57 1.68 1.60 1.62

second 1.58 1.65 1.64 1.60

CAT
first 1.60 1.65 1.59 1.62

second 1.58 1.68 1.60 1.66

TAG
first 1.58 1.54 1.61 1.62

second 1.57 1.59 1.59 1.61

CTA
first 1.59 1.55 1.58 1.65

second 1.56 1.56 1.58 1.61

CCA
first 1.57 1.67 1.59 1.64

second 1.59 1.67 1.62 1.65

TGG
first 1.57 1.67 1.60 1.66

second 1.57 1.66 1.61 1.68
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Sornette argues that the log-periodicity is a result of what
he calls Discrete Scale Invariance, that is, also a consequence
of renormalization group properties of the system.

According to the renormalization group theory [1], the
nature of bacterial genomes pertains to a class of phenomena,
where events at many scales of length make contributions of
equal importance. Any scaling analysis of DNA sequences
must take into account the entire spectrum of length scales
since we are facing a system near its critical point [24]. There
seems to be nothing more deterministic than the sum or mul-
tiplication of a large number of random variables [22].

The fractional Brownian nature in DNA sequences of
bacterial chromosomes as obtained by the RG approach must
be clearly considered in sequence analysis and in any further
studies on the evolution of prokaryotes and eukaryotes.
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Genome Res.8 (1998) 916.

15. P.F. Baisnee, S. Hampson, and P. Baldi,Bioinformatics 18
(2002) 1021.

16. O. Clay, N. Carels, C. Douady, G. Macaya, and G. Bernardi,
Gene276(2001) 15.
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