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In this paper we study a simple analytic continuation of the Rienggianction, using Bernoulli numbers and an analytic continuation of the

T" function in the complex plane. We use our results to study the critical condition in bosonic string theory. The approach is simple and gives

the student an alternative point of view of the subject. We also show that the mathematical basis needed to understand the critical condition is
based on well known properties of the Dirichlet series and the theory of entire functions, and is within reach of the average graduate student.

Keywords:Mathematical techniques in atomic physics; group theory.

En este trabajo estudiamos una contindaeinaitica simple de la funéin¢ de Riemann, usando lo§imeros de Bernoulli y una continuéai
analtica de la funddnT en el plano complejo. Utilizamos nuestros resultados para estudiar la @nditica en teora bosonica de cuerdas.
El desarrollo es simple y da a estudiante un punto de vista alternativo del temaématabiostramos que la base mai&oa necesaria para
entender la condioin ciitica esh basada en las caradgicas bien conocidas de la serie de Dirichlet y de laiéete funciones enteras, lo
cual esh al alcance de un estudiante de posgrado.

Descriptores:Métodos mateidticos en fsica abmica; teota de grupos.

PACS: 31.15.-p; 31.15.Hz

1. Introduction so we must have that

String theory is one of the most fascinating developments in s=1-243—---=(1-1+1-1+4--+)
Physics in the last twenty years, and one of its most inter- C(1-243— - )=h—s

esting proposals is the existence of hidden extra dimensions ’
in space time. To arrive at this conclusion, string theory fo-yhereh, calledGrandi's Seriesis the sum of the series
cuses on the properties of the Hamiltonian deduced from the

theory and analyzes the vacuum energy of the set of creation h=1-141-1+---

operators arranged in what is calledrmal order As is well
known, this order is defined in such a way as to obtain pre- =l-(-1+1l-14-)=1-h

cisely a zero contribution to the energy from the vacuum OfSoIving these equations we have= 1 — h ands — h — s.
the theory. When this procedure is carried out in string theWe obtainh = 1/2 and thens = 1/4. The series

ory, the following sum must be evaluated: 1-2+3-4.-. isinfact a divergent series, but Euler realized

oo that assigning the value 1/2 was a natural choice. Grandi sent

Z n. (1)  a copy of the 1703 work to Leibniz, who had already con-

n—1 sidered the divergent alternating series1-2+4 -8 +16 -

] ) _ several years before, in 1673. In 1675, as a result of his work,

Of course, this sum diverges clearly, but following the | eihniz formulated the first convergence test in the history of
regularization process that we present here, we shall see thayihematics, the alternating series test. At the end of his life
we can assign to this sum a finite value, and what is eveqgjpniz granted the value of 1/2 to Grandi's Series, because
stranger, a negative one: -1/12. one could obtain 0 or 1 depending on how we manipulate
Mathematicians have studied such sums in the pashe series, so that argued Leibnitz, the law of justice dictates
(Ref. 1). In the 18th century, Leonhard Euler discovered gnat the value of this series should be an intermediate one:
relationship that was so curious that he called it paradoxicalj /o Strange as it may seem, modern treatments give justice
1-2+3-4+5-.. =1/4. One way to study this relationship o this result. Later Jacob Bernoulli, and Jacopo Ricatti made
informally is the following: let us define some contributions in this area, but it was Leonhard Euler
and Riemann who finally found a modern, rigorous treatment

§=1-2+43-4+45—-, to this type of alternating series (Ref. 2).
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We can use Grandi's series to calculate the value ofvorld sheet, where,b = 1,2. 0 < o < 7 andr plays the

Eq. (1) as follows. Let us put role of a parametric time; we pu* (o, 7) for the string am-
- plitudes, whereu = 0,1,2,---, D — 1. We start with the
(1-4)> n=(1+2+3+4+5+6+-) Polyakov action
n=1 .
1 ab v
—(4+8+12+416+---) S=-1 / drdoy/ =7 0a X" 0 X 1y
=1-24+3—-4+5—-6+--- 1 abya
= /dza\/—fy’y bpad, 3)
= Z n(_l)n_lv . . .
—~ Herev = det(v,) is the determinant of the metric,
but the last step is precisely Grandi’s series hab = 0 X Op X" Ny
Z n(=1)""t = i, andd?c = drdo. Also
n=1

which in turn means that N = diag(—1,+1,---).

= -1 The universal Regge slofethe constank’ and is related to
Z =9 theintrinsic lengthof the stringi? = o/, (Ref. 4).
n=1

In modern mathematlcal language the sum [1] is the Rle—z_l_ Symmetries
mann((s) function defined as

oo To proceed further we need to study the symmetries present
¢(s) = Z n~ % seC, in action (3). First of all we have the global space-
n=1 time Lorentz-Poincd& symmetry. Under a Lorentz trans-

formation, action (3) remains unchanged. Second, the ac-

tion (3) is also covariant in the world-sheet indices- 1, 2

analytically continued to the value ef= —1. so, under an infinitesimal world-sheet reparametrization
In this paper we study the analytical continuation of Rie-0® — ¢’* = ¢ + €%(o,7), the action remains unchanged.

mann( function in a simple, accessible way. We show thatThat is the reason we have introduced the world-sheet volume

critical strings are closely related to the analyticity proper-invariant elemendo\/—>. Ford X*, we get (remembek *

ties of meromorphic functions and represent a natural choicdoesn’t have world-sheet indexes):

among all possible string theories available. This point is im-

portant since the choice of central charge in critical strings is OXH = "9, X" 4)

dictated by two physical considerations. First, to avoid the

existence of terms that could violate Lorentz invariance, andor the string amplitudes, and for the metric tensor itself we

second, to minimize the existence of negative norm states anust add the tensorial contribution of the reparametrization

ghosts in the spectrum. But here we see that there is a thirchanges

point related to the behavior of the analytic continuation of

the Riemani function. This last point is somewhat obscured Oy = 0,7 — €2y — Dpeb~C. (5)

in standard treatments, frequently giving the impression of

being too technical to the average reader, which it is not, as  But the string action has still more symmetries, which we

we discuss here. shall use to simplify it. In particular, we have what is called
This paper is divided in two parts: the first one tries to\Wweyl invariance

remind the reader of the physical basis of the problem, fo-
cused mainly on open string theory, since this system illus- Yab = Top = €% Vab, (6)
trates very well the physical background and is simpler to

present. The second part consists of the mathematical analyiherew (r, o) is an arbitrary function of ando (but well be-

s=oc+it with o>1, (2)

ical extension of thg function to negative values. haved). So we can rescale the metric and still end up with the
same theory. We notice then that there are as many parame-
2. Bosonic string theory ters needed to specify the local symmetries (three parameters)

as there are independent components of the symmetric world-
We discuss only the bosonic case, which is sufficient for ousheet metric. We shall use this fact to simplify the action in a
purposes. Let us call,; (o, 7) the auxiliary metric on the moment.
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2.2. String equations of motion oscillations in the string become zero, we still have a non-
] ] ] null contribution toX*, and we can then identify* with
We are now going to vary the action with respect to theine zero mode of the expansion @ = v/2a/p. We can
X* (o, 7) or, more precisely with respect to their derivative: gee already the resemblance of the last expression (12) with
1 Quantum Field Theory and the mode expansion of a vecto-
08 = o /deoaa (V=170 X" 0, X" ] 5 X 1)y rial field. In fact, these amplitude coefficients are promoted
to creation and annihilation operator in the quantized version

1 (7)  of string theory.

~ 5 /dT\/—’yagXp(SXM‘g:O

The last term in the above equation defines the boundary cor%‘3' Hamiltonian dynamics

dition and we can use it to define different types of stringsThe | agrangian density in the conformal flat gauge becomes
We put Neumann boundary conditions to defipen strings  gjmply

s — 1
XH(r,0)=0 L= (0, X0, X, — 0,X"0,X,),  (13)
’ T
X H(Ta 7T) =0, (8) . . . .
from which we can derive the canonical conjugate momen-
or periodic boundary conditions to definlsed strings tum
oL 1
X“J’(T, 0) _ X/H(T, 7_‘_) " = (5(8 XM) = 27‘(0/XH’ (14)
XH(r,m) = XH(7, ) where the point means derivative with respect to timiérom
Yab (7, 0) = Yap (7, 7). 9) this last expression we can now construct as usual, the Hamil-

tonian density
We can now take advantage of the symmetries of the the- )
ory. First of all, recall that we have the reparametrization in- HZXMHN—/JZM
variance symmetry, Egs. (4, 5). This means that we have two ) ) o
gauge symmetries, the two 2-dimensional reparametrizatiofiom Which we can construct in turn the Hamiltonih by
o, 7 — &(0,7), 7(c,7). On the other hand, the 2- dimen- Ntégrating over from O tor:

(0, X"0, X, + 0, X"0,X,), (15)

sional symmetric metric tensor has three arbitrary functions, m | &=

so we can use these two gauge degrees of freedom to fix the H= /do’H(o’) == Z Qp - O, (16)
- - R 2

metric to what is called aonformal flat spacehich is of the 5 ne——oo

form

wherea_,, - a;, = o, a,,,. Now, we point out that we are

Yab = Nape? = ( -10 > (o) (10) dealing with an invariant reparametrization theory (Egs. 4-5),

0 1 so we know that in this case the Hamiltonian must be zero
(or, more correctly, weakly zero). We can easily verify this
point by explicitly calculating the classical Hamiltonian from
Eqg. (3), but remember that we are dealing now with flat
space. The consequence of the reparametrization invariance
is in fact a much richer condition, because it is possible to
( 2 9?2 > X(o,7) = 0 define an infinite set of operatofs,,, calledVirasoro oper-

That is, we have a flat space multiplied by a positive func-
tion called theconformal factor. Here ¢ is a well behaved
function ofo andr. In this conformal gauge the equations of
motion are simply

902 912 1D ators that satisfy the so-called Virasoro algebra (Ref. 3) as
_ o _aresult of this symmetry. Here, the Hamiltonian is only one
We are going to simplify our approach and deal only with of this infinite set of operators, th, = H operator. Similar

open strings, but we can easily extend our treatment to inresylts are obtained for closed strings. Please see Ref. 4 for
clude closed strings also. Besides, the formulas we presegktails.

here are quite common and can be fqund elsewhere. So, for The 1, constraint, related to the Hamiltonian, is impor-
open strings the solution to the equations of movement (11§ant since we shall use it to define the condition of criticality.

can be written as First we put
XH(r,0) = a" + 2/ p*r
1 R
1 ; = - 2 — . = o' p*
+ Z\/@Z —ale ™" cos(no).  (12) Lo 2 + 2(2) Z:l O On = QP P

n#£0 n "
The coefficientsy* can be interpreted as the amplitude os- Y apran=—a M+ o pon,  (17)
cillations of each harmonic when the string oscillates. If the n=1 n=1
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whereM? is the squared mass of the string. Requirlngto Let us now focus on the spectrum of the system and
be zero gives us an expression for the mass operator: study the one-excitation state. This state is defined as the
- action of one creation operator over the vacuant), where
M2 = i/ ZO‘—" . (18) k* is the momen.tum_ of th&€M of the string We need
o = to specify a polarization vectat*. We denote this state as
le; kY = (- a—q1)|0; K').

2.4. Quantization of the string Observe that
The central subject of this paper appears when we try to quan- (e:k|e; k') = (03 k|e* - are - av_1]0; kr)
tize the string. The approach we follow in this case is sim-
ply to write the commutators of the canonical conjugate vari- = ¢,6,(0; k[[af, a”1]0; &)

ables, which in this case goes as follows: - 6(277)1)51)% vy 23)

X,U/ , , HV ) / — y6 _ !/ ; ] ) .
(X (r,0), 1(7, 0)] = i b0 = o) So we could have in general negative norm stateghostsf
[X*(7,0), X" (1,0")] =0, the polarization vectors are timelike. The constraint over this
y ) state produces the result
[z, p"] = iy (19)

Remember that” andp” appear in the solution of the string
Eqg. (12) and survive even if the string modes are zero. Some-
times they are wrongly referred &enter of Mass (CMpo- 19 s l1—a
sition and momentum of the string, but we know that CM is a k" +1l=a or M"=—7

misleading, relativistic concept and the reader surely under-
stand why. The commutation relation Eq. (19) leads to

(Lo — a)|e; k) = 0 which gives

(24)

Critical strings are defined precisely for the case 1,
which means thab/? = 0. For this class of stings, the mo-
[aZ,, 0] = Mbpmin.on™ . (20)  mentumk must be null, since we are dealing with a massless
state. Since the polarization vector is orthogonal to momen-
Notice that in analogy with the harmonic oscillator oper-tum, we have another constraiat = 0. So we remove two
ators (1)/(v/m)a’,, behaves like a creation operator and polarization degrees of freedom. This gives
1/(y/m)at, as an annihilation operator. We shall use this

feature to construct the spectrum of states of the string. But -

. =—(1/2)(D -2 , 25
now we have an ordering problem.rf + n # 0, the opera- “ (1/2)( ); " (25)
torsa, of the string commute. But this is not the casd.if -

and as a result we have an ambiguity in the definition of thevhich implies the well known result that D=26 dimensions.
energy of the string: We have now reviewed the central points in the physics
- related to the sumy_,~ ;. n; we want now to study this sum
1 . . . . .
Lo = 5048 + Z a_, - o, + constant (21) in the next section from the mathematical point of view.
n=1

This infinite sum is given by the commutator Eq. (20). Each3. The Riemann((s) in the complex plane

time we reverse a couple of hon-commuting operators, we q dth . ¢ . .
have a contribution of the form (1/2) 3~ , n for each di- In order to extend the Riemarfunction, we are going to

mension of the string. But how to interpret this infinite sum?"€/ate it o thel'(s) function and in turn take advantage of the
The solution is given by the work of mathematicians who re-analytic continuation of(s) function to extend the func-

alize that it is possible to give a meaning to this sum, as wallon to the complex plane. To that end we are now going to
anticipated in the introduction. What we are going to do i

gProve two results.
to define this sum as the generalization to -1 of the Riemann L€t US start with the definition
zeta function(s = —1), (Ref. 2).

Let us now give a further insight into this entire subject. o0
In the quantum case the constraints are implemented as a con- ((s) = Z n * secC,
dition over the stateg) > generated by the amplitude oscil- n=1
lation operatorsyt; appearing in Eq. (12). But foky we s=o+itwitho > 1. (26)
cannot do that because of the order ambiguity that implies a
constant (Eq. 21), so instead we impose This function is a Dirichlet seriegg. of the form
Lo —a)|¢ >=0, 22 s
( 0 )|¢ ( ) Z(an/ns)7
wherea is the constant that appears in Eq. (21). n=1
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and is convergent fos > 1, at least. In fact, it converges

uniformly in the region defined by > 1 + 6§, 6 > 0. This 2nni @
defines((s) as an analytic and regular functiorvif> 1.
On the other hand we know that the Euler-Gamma func- ®
tion is defined as
2t @
00 C -
Do) = [ v e v, (27) | Sy .
0 -
. . . 27 @
wheres = o + it with ¢ > 1. We want to relate it to the
Riemann((s) function. If in Eq. (27) we replacg = nx
withn € N, n > 1, we obtain ®
-2nti @

L(s)n™° = /xsflefmdsc. (28)
0

Summing both sides of this last equation fram= 1 to oo,
we easily obtain that

s—1

I'(s)¢(s) = 7&73_1 f: e "dr = 7; —

0 n=1 0

Cdv. (29)

Now, we shall prove another result which, combined with
this one, will give us a new expression that will prove to be
suitable for the desired analytic continuation we are looking

for.

Theorem 1 Foro > 1,

(30)

e? —

R 8
c

where (—z)*~! is defined in the real axis a1 1os(~2)
with —7 < Imlog(—z) < .

Proof

Let us consider the integral

s—1
I(S):/;_ldz’

C

(1)

where the contou€ starts inco, goes up to the origin, sur-
rounds it, and then returns along the line= pe®™, going up
to coe?™ and surrounds the cut line that goes from GHso,
as is shown in Fig. 1.

FIGURE 1. Integration contou€.

We now split the contour integral into three parts, one
over the real axis going the opposite direction, frenx to
the origin, the second over a small cirélg of radiusR sur-
rounding the origin. The third part goes from the origin to
infinity below the cut line. Taking the limit wheR — 0, we

obtain
0 oo N s—1
Zsfl xsfl (.1‘627”’)
I(s) = = d
(s) /62_1(12 /em_ldx—i-/ w1 &
Co [e) 0
[ a! 2mi(s—1) [ oast
——/emildx—i—e /6171daz.
0 0
Combining this last result with (29), we easily get
I(1—s) [(—2)!
=— 2
(o= [ @

C

which is what we wanted to prove

Notice the importance of this last result. The integral in
Eg. (31) is an entire function af wheread (1 — s) is mero-
morphic with poles ins = 1,2--- . But we know that((s)
is analytic foro > 1, so the poles fon = 2,3--- should
cancel out with the zeros of the integral. To proceed we also
need the following result due to Ahlfors [8].

Theorem 2 The function((s) satisfies the functional
equation

¢(s) = 2°7°Lsin (%5) I(1—s)C(1—s) (33)
for any value ofs except fors = 1.
Please notice the similarity of this result with

the well known identity for
[(s)['(1 —s) = 7/ sinws.

the gamma function

Rev. Mex. . 56 (1) (2010) 75-82
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where L is the length (or perimeter) af’,. In our case the

2nmi @ C length ofC,, grows linearly withn, so if s = o + it, then
27 < a7 e ore®) < e
°
t But as the termil /(e* — 1)| is bounded by 1 alz| grows, we
] have
2ni @ Zs—l
C < Mn°t
= 62 J—
{ . )
e +00 for some constant/ independent ofi. We finally conclude
= that
-21i @ s—1
2 o—1 o
\ /Zildz < Mn° n=DMn°.
° n
Now let us take the case < 0 and taken to infinity.
-2n7i @ Sinceo < 0, the integral ovet”,, goes to zero when — oo
- because.” — 0. So Eq. (34) gives
FIGURE 2. ContourC,, — C. 2! ds — Adrie™ si (E) i @mm)*~t.  (37)
s — 1 Z = 4Tie S1n D) Z mm .
Proof ¢ a
First, let us consider the integral Using theorem 1 we finally obtain
= =257 Lgin (2) D(1 — 8)¢(1 — 38
I(s) = iz, (34) C(s)=2°n"""sin (o ) (1 = 5)¢(1 = s), (38)
% —
Cn—C

which is what we wanted to prove

where the contou€,, is a square formed by the horizontal The final calculation is simple. From theorem 2 we easily
line that passes a little bit over the poihtr for the upper find
line of the square, a little bit below2nx for the lower side

] 92—s 1-s
of the square. To complete the square, we just put two other C(1—s)= W—C(SM
vertical lines placed in such a way as to form a perfect square, P(1 = s)sin (%)
as can be seen in Fig. 2. I—s —s T8
=2 =) ,
The contourC,, — C has winding number one about " cos( 2 JT(s)C(5)

the points+2mm, m = 1,2---. At these points, the

X 1 . . . where we use the well known relation
function (—z)*~'/(e* — 1) has simple poles with residues

(F2mmi)*~1, so we must have L(s)I'(s — 1) = 7/ sin(s).
(=2)°! R o s—1 And we are done. We need only to put2m, m=1,2,---

dz =2 2mir)® . : . ’ e

/ 1% o Zl [( mir) in the above relation to obtain that

Cn—C m=
+(~2mim)*] = 4mi Y (2mm)*~ sin %‘9 (35) C(1 = 2m) = 217227 cog(mr)
" T(2m)¢(2m) = — D2m 39
Let us now focus on the integral x T(2m)¢(2m) = — 2m (39)
Hs—1 where we use the well known relation for the Bernoulli num-

/ L (36)  bers 1)/,

—1)"/42n!
Cn B, =—~——""((n). 40
G o) (40)

On the contouC,,, this integral is clearly bounded. In gen-

eral, if a function| f(z)| < M is bounded we can put We sketch a simple proof of this result in the appendix. To ob-

tain the result we are looking for, we need only to put= 1,
knowing thatB; = 1/6

/f(z)dz <ML,
8 ((-1)=—-F=—-=. (41)
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4. Concluding remarks

Critical strings become a central subject matter in string the-
ory for many reasons. One of them is that tenformal
anomaly,as is called, is canceled out. As a consequence,
critical strings retain their conformal properties even after
the quantization procedure is performed (Ref. 12). The no-
ghost theorem foP < 26, that is, the non-existence of neg-
ative norm states if the dimension of the space defined by
thepy = 0,1,---, is less than or equal to 26 dimensions
is another important property of critical strings frequently
guoted. Also, if Lorentz invariance is to hold, the commutator
[Ji~, J9~] should vanish, where th&'~ are obtained from
the Lorentz generatorg"” asJ'~ = 1/y/2(J% — JiP~1).
This happens to be the case precisely ¥ 1 andD = 26
(Ref. 3t0 7).

So we know critical strings are important, but why are Ficure 3. ContourC,, — C.
they so strange? After all, we should look for no conformal

anomaly, no-ghost theorem, Lorentz invarianaeonly four But, as it_ turns out, the present treatment of this point in
dimensions. This means thatin Eq. (25), if we insist on livingstandard string theory courses is unsatisfactory (Ref. 13). In
in four dimensions, then, certainly many cases, results dealing with the analytic continuation of

the Riemanr(s) function are simply quoted. In other, fewer
0 cases, the reader is invited to solve some non-rigorous exer-
Z n=-1 cise in problems given in the final chapter. But we wanted
n=1 to study a more rigorous approach. What we discover is
The point is, this result is not true. If we believe in the '[heorythat the mathematical basis of this problem IS within reach
' ) of any advanced undergraduate physics student and the back-

of mgrom(_)rphlc, entire functions "_ind |n_the theory (_)f analytlcground mathematical basis deserves to be more known than
functions in the complex plane, including the residue theo-

; . “the present status we have in this area.

rem, we must conclude the strange result that strings live in a
space of dimension greater than four. This fact has extremely
deep and profound consequences in the theory as it unveilsAcknowledgments
new world of far reaching consequences in our understandin
of nature. At least if we believe (or not!) in strings.

This issue is precisely one of the motivations for this pa-
per, since analytic continuation of

‘Cllhis work has been partially supported by a PAPIIT-UNAM
(grant IN108309-3). We acknowledge with thanks the help
of Dr. L. Patiio.

Bl Appendix
S 1ne pp
n=0 A. Bernoulli numbers
for s = —1 implies the result -1/12. So a deep understandBernoulli numbersB,, are defined by the following expan-

ing of the mathematical arguments leading to the existencgjon in the complex plang:

of extra hidden dimensions is extremely useful here. It is my -

experience that students feel much more comfortable when 2 Z By n (A1)
they understand well the mathematical background of a phys- e —1 n!

ical subject. When they have both approaches, the physical . . ) o )
intuitive approach and the rigorous mathematical one, they NS iS @ Taylor series that we can easily invert using the
feel more confident and usually return to the more intuitive'€Sidue theorem

physical formulation, understanding better its benefits. For- B — nl z  dz (A2)
tunately, it turns out that the mathematical insight needed to " omi J e —1ntl] '
understand the regularization process in this case is not very co

complicated nor involves a profound knowledge of advancedvhere the contout’, surrounds the origin in the positive
mathematical techniques. This point can be contrasted witeense, but we take care to gut < 27 to avoid the poles
the situation present in Quantum Field Theory, where thet +27i.

renormalization procedure is in fact much more complicated Forn = 0 we have a simple pole with residue 1. So we
and upset the students that begin to study this field. conclude tha3y = 1. Forn = 1 the pole becomes a second

n=1
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order pole. Following standard methods, for instance serieQmim)~". We then have fon > 2 that
expansion of the exponential followed by a binomial expan-
sion, we _flnd thatB,; 1/2. We use this result in the main z 2 o Z . . (A.3)
text of this paper. o e —1ntl = (2mim)™

But for n > 2 this method becomes cumbersome and weNote that whem: is odd, the residue from = 27im can-
resort to a different and much more interesting approach. Letels out that fromz = —2mim and Bz, = 0, that is
us deform the contou€, to obtain the new contouf’ as  Bs, Bs,--- = 0. Forn even the residues add, instead, giving
shown in Fig. 3. The new contour still encircles the origin Eq. (40):
but it also encircles in the negative direction an infinite series - /2
of singular points along the imaginary axis,zat +2mi. B, — o, S 1 (=1)"*2n!

— (2mim)" - (27i)"

We are going now to consider the limit whéth — oo. - " )
The lines that go above and below the real axis cancel out. o Z L (- 2”!C( ) (A4)
At z = 2mim we have a simple pole only with residue
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