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In this paper we study a simple analytic continuation of the Riemannζ function, using Bernoulli numbers and an analytic continuation of the
Γ function in the complex plane. We use our results to study the critical condition in bosonic string theory. The approach is simple and gives
the student an alternative point of view of the subject. We also show that the mathematical basis needed to understand the critical condition is
based on well known properties of the Dirichlet series and the theory of entire functions, and is within reach of the average graduate student.
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En este trabajo estudiamos una continuación anaĺıtica simple de la funciónζ de Riemann, usando los números de Bernoulli y una continuación
anaĺıtica de la funcíonΓ en el plano complejo. Utilizamos nuestros resultados para estudiar la condición cŕıtica en teoŕıa bosonica de cuerdas.
El desarrollo es simple y da a estudiante un punto de vista alternativo del tema. También demostramos que la base matemática necesaria para
entender la condición cŕıtica est́a basada en las caracterı́sticas bien conocidas de la serie de Dirichlet y de la teorı́a de funciones enteras, lo
cual est́a al alcance de un estudiante de posgrado.
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1. Introduction

String theory is one of the most fascinating developments in
Physics in the last twenty years, and one of its most inter-
esting proposals is the existence of hidden extra dimensions
in space time. To arrive at this conclusion, string theory fo-
cuses on the properties of the Hamiltonian deduced from the
theory and analyzes the vacuum energy of the set of creation
operators arranged in what is callednormal order. As is well
known, this order is defined in such a way as to obtain pre-
cisely a zero contribution to the energy from the vacuum of
the theory. When this procedure is carried out in string the-
ory, the following sum must be evaluated:

∞∑
n=1

n. (1)

Of course, this sum diverges clearly, but following the
regularization process that we present here, we shall see that
we can assign to this sum a finite value, and what is even
stranger, a negative one: -1/12.

Mathematicians have studied such sums in the past
(Ref. 1). In the 18th century, Leonhard Euler discovered a
relationship that was so curious that he called it paradoxical:
1 - 2 + 3 - 4 + 5 -· · · = 1/4. One way to study this relationship
informally is the following: let us define

s = 1− 2 + 3− 4 + 5− · · · ,

so we must have that

s = 1− 2 + 3− · · · = (1− 1 + 1− 1 + · · · )
− (1− 2 + 3− · · · ) = h− s,

whereh, calledGrandi’s Series,is the sum of the series

h = 1− 1 + 1− 1 + · · ·
= 1− (1− 1 + 1− 1 + · · · ) = 1− h.

Solving these equations we have:h = 1 − h ands = h− s.
We obtain h = 1/2 and thens = 1/4. The series
1 -2 + 3 -4· · · is in fact a divergent series, but Euler realized
that assigning the value 1/2 was a natural choice. Grandi sent
a copy of the 1703 work to Leibniz, who had already con-
sidered the divergent alternating series 1 - 2 + 4 - 8 + 16 -· · ·
several years before, in 1673. In 1675, as a result of his work,
Leibniz formulated the first convergence test in the history of
mathematics, the alternating series test. At the end of his life
Leibniz granted the value of 1/2 to Grandi’s Series, because
one could obtain 0 or 1 depending on how we manipulate
the series, so that argued Leibnitz, the law of justice dictates
that the value of this series should be an intermediate one:
1/2. Strange as it may seem, modern treatments give justice
to this result. Later Jacob Bernoulli, and Jacopo Ricatti made
some contributions in this area, but it was Leonhard Euler
and Riemann who finally found a modern, rigorous treatment
to this type of alternating series (Ref. 2).



76 R.P. MART́INEZ-Y-ROMERO AND MACBETH BARUCH RANGEL ORDŨNA

We can use Grandi’s series to calculate the value of
Eq. (1) as follows. Let us put

(1− 4)
∞∑

n=1

n = (1 + 2 + 3 + 4 + 5 + 6 + · · · )

− (4 + 8 + 12 + 16 + · · · )
= 1− 2 + 3− 4 + 5− 6 + · · ·

=
∞∑

n=1

n(−1)n−1,

but the last step is precisely Grandi’s series

∞∑
n=1

n(−1)n−1 =
1
4
,

which in turn means that
∞∑

n=1

n =
−1
12

.

In modern mathematical language the sum [1] is the Rie-
mannζ(s) function defined as

ζ(s) =
∞∑

n=1

n−s, s ∈ C,

s = σ + it with σ > 1, (2)

analytically continued to the value ofs = −1.
In this paper we study the analytical continuation of Rie-

mannζ function in a simple, accessible way. We show that
critical strings are closely related to the analyticity proper-
ties of meromorphic functions and represent a natural choice
among all possible string theories available. This point is im-
portant since the choice of central charge in critical strings is
dictated by two physical considerations. First, to avoid the
existence of terms that could violate Lorentz invariance, and
second, to minimize the existence of negative norm states or
ghosts in the spectrum. But here we see that there is a third
point related to the behavior of the analytic continuation of
the Riemannζ function. This last point is somewhat obscured
in standard treatments, frequently giving the impression of
being too technical to the average reader, which it is not, as
we discuss here.

This paper is divided in two parts: the first one tries to
remind the reader of the physical basis of the problem, fo-
cused mainly on open string theory, since this system illus-
trates very well the physical background and is simpler to
present. The second part consists of the mathematical analyt-
ical extension of theζ function to negative values.

2. Bosonic string theory

We discuss only the bosonic case, which is sufficient for our
purposes. Let us callγab(σ, τ) the auxiliary metric on the

world sheet, wherea, b = 1, 2. 0 6 σ 6 π andτ plays the
role of a parametric time; we putXµ(σ, τ) for the string am-
plitudes, whereµ = 0, 1, 2, · · · , D − 1. We start with the
Polyakov action

S = − 1
4πα′

∫
dτdσ

√−γγab∂aXµ∂bX
νηµν

= − 1
4πα′

∫
d2σ

√−γγabhab. (3)

Hereγ = det(γab) is the determinant of the metric,

hab ≡ ∂aXµ∂bX
νηµν

andd2σ = dτdσ. Also

ηµν = diag(−1, +1, · · · ).

The universal Regge slopeis the constantα′ and is related to
the intrinsic lengthof the stringl2s = α′, (Ref. 4).

2.1. Symmetries

To proceed further we need to study the symmetries present
in action (3). First of all we have the global space-
time Lorentz-Poincaré symmetry. Under a Lorentz trans-
formation, action (3) remains unchanged. Second, the ac-
tion (3) is also covariant in the world-sheet indicesa = 1, 2
so, under an infinitesimal world-sheet reparametrization
σa → σ′a = σa + εa(σ, τ), the action remains unchanged.
That is the reason we have introduced the world-sheet volume
invariant elementd2σ

√−γ. ForδXµ, we get (rememberXµ

doesn’t have world-sheet indexes):

δXµ = εa∂aXµ (4)

for the string amplitudes, and for the metric tensor itself we
must add the tensorial contribution of the reparametrization
changes

δγab = εc∂cγ
ab − ∂cε

aγcb − ∂cε
bγac. (5)

But the string action has still more symmetries, which we
shall use to simplify it. In particular, we have what is called
Weyl invariance

γab → γ′ab = e2ωγab, (6)

whereω(τ, σ) is an arbitrary function ofτ andσ (but well be-
haved). So we can rescale the metric and still end up with the
same theory. We notice then that there are as many parame-
ters needed to specify the local symmetries (three parameters)
as there are independent components of the symmetric world-
sheet metric. We shall use this fact to simplify the action in a
moment.
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2.2. String equations of motion

We are now going to vary the action with respect to the
Xµ(σ, τ) or, more precisely with respect to their derivative:

δS =
1

2πα′

∫
dτdσ∂a

[√−γγab∂aXµ∂bX
ν
]
δXµηµν

− 1
2πα′

∫
dτ
√−γ ∂σXµδXµ

∣∣∣
σ=π

σ=0
. (7)

The last term in the above equation defines the boundary con-
dition and we can use it to define different types of strings.
We put Neumann boundary conditions to defineopen strings

X ′µ(τ, 0) = 0

X ′µ(τ, π) = 0, (8)

or periodic boundary conditions to defineclosed strings

X ′µ(τ, 0) = X ′µ(τ, π)

Xµ(τ, π) = Xµ(τ, π)

γab(τ, 0) = γab(τ, π). (9)

We can now take advantage of the symmetries of the the-
ory. First of all, recall that we have the reparametrization in-
variance symmetry, Eqs. (4, 5). This means that we have two
gauge symmetries, the two 2-dimensional reparametrization
σ, τ → σ̃(σ, τ), τ̃(σ, τ). On the other hand, the 2- dimen-
sional symmetric metric tensor has three arbitrary functions,
so we can use these two gauge degrees of freedom to fix the
metric to what is called aconformal flat spacewhich is of the
form

γab = ηabe
φ =

( −1 0
0 1

)
eφ(σ,τ). (10)

That is, we have a flat space multiplied by a positive func-
tion called theconformal factor. Hereφ is a well behaved
function ofσ andτ. In this conformal gauge the equations of
motion are simply

(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ(σ, τ) = 0. (11)

We are going to simplify our approach and deal only with
open strings, but we can easily extend our treatment to in-
clude closed strings also. Besides, the formulas we present
here are quite common and can be found elsewhere. So, for
open strings the solution to the equations of movement (11)
can be written as

Xµ(τ, σ) = xµ + 2α′pµτ

+ i
√

2α′
∑

n6=0

1
n

αµ
ne−inτ cos(nσ). (12)

The coefficientsαµ can be interpreted as the amplitude os-
cillations of each harmonic when the string oscillates. If the

oscillations in the string become zero, we still have a non-
null contribution toXµ, and we can then identifypµ with
the zero mode of the expansion asαµ

0 =
√

2α′pµ. We can
see already the resemblance of the last expression (12) with
Quantum Field Theory and the mode expansion of a vecto-
rial field. In fact, these amplitude coefficients are promoted
to creation and annihilation operator in the quantized version
of string theory.

2.3. Hamiltonian dynamics

The Lagrangian density in the conformal flat gauge becomes
simply

L = − 1
4πα′

(∂σXµ∂σXµ − ∂τXµ∂τXµ) , (13)

from which we can derive the canonical conjugate momen-
tum

Πµ =
δL

δ(∂τXµ)
=

1
2πα′

Ẋµ, (14)

where the point means derivative with respect to timeτ. From
this last expression we can now construct as usual, the Hamil-
tonian density

H=ẊµΠµ−L=
1

4πα′
(∂σXµ∂σXµ + ∂τXµ∂τXµ) , (15)

from which we can construct in turn the HamiltonianH by
integrating overσ from 0 toπ:

H =

π∫

0

dσH(σ) =
1
2

∞∑
n=−∞

α−n · αn, (16)

whereα−n · αn = αµ
−nαµ n. Now, we point out that we are

dealing with an invariant reparametrization theory (Eqs. 4-5),
so we know that in this case the Hamiltonian must be zero
(or, more correctly, weakly zero). We can easily verify this
point by explicitly calculating the classical Hamiltonian from
Eq. (3), but remember that we are dealing now with flat
space. The consequence of the reparametrization invariance
is in fact a much richer condition, because it is possible to
define an infinite set of operatorsLm, calledVirasoro oper-
ators, that satisfy the so-called Virasoro algebra (Ref. 3) as
a result of this symmetry. Here, the Hamiltonian is only one
of this infinite set of operators, theL0 = H operator. Similar
results are obtained for closed strings. Please see Ref. 4 for
details.

TheL0 constraint, related to the Hamiltonian, is impor-
tant since we shall use it to define the condition of criticality.
First we put

L0 =
1
2
α2 + 2(

1
2
)
∞∑

n=1

α−n · αn = α′pµpµ

+
∞∑

n=1

α−n · αn = −α′M2 +
∞∑

n=1

α−n · αn, (17)
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whereM2 is the squared mass of the string. RequiringL0 to
be zero gives us an expression for the mass operator:

M2 =
1
α′

∞∑
n=1

α−n · αn. (18)

2.4. Quantization of the string

The central subject of this paper appears when we try to quan-
tize the string. The approach we follow in this case is sim-
ply to write the commutators of the canonical conjugate vari-
ables, which in this case goes as follows:

[Xµ(τ, σ),Πν(τ, σ′)] = iηµνδ(σ − σ′),

[Xµ(τ, σ), Xν(τ, σ′)] = 0,

[xν , pµ] = iηνµ. (19)

Remember thatxµ andpν appear in the solution of the string
Eq. (12) and survive even if the string modes are zero. Some-
times they are wrongly referred asCenter of Mass (CM)po-
sition and momentum of the string, but we know that CM is a
misleading, relativistic concept and the reader surely under-
stand why. The commutation relation Eq. (19) leads to

[αν
m, αν

n] = mδm+n,0η
µν . (20)

Notice that in analogy with the harmonic oscillator oper-
ators (1)/(

√
m)αµ

−m behaves like a creation operator and
1/(
√

m)αµ
m as an annihilation operator. We shall use this

feature to construct the spectrum of states of the string. But
now we have an ordering problem. Ifm + n 6= 0, the opera-
torsαµ

m of the string commute. But this is not the case inL0,
and as a result we have an ambiguity in the definition of the
energy of the string:

L0 =
1
2
α2

0 +
∞∑

n=1

α−n · αn + constant. (21)

This infinite sum is given by the commutator Eq. (20). Each
time we reverse a couple of non-commuting operators, we
have a contribution of the form−(1/2)

∑∞
n=1 n for each di-

mension of the string. But how to interpret this infinite sum?
The solution is given by the work of mathematicians who re-
alize that it is possible to give a meaning to this sum, as was
anticipated in the introduction. What we are going to do is
to define this sum as the generalization to -1 of the Riemann
zeta functionζ(s = −1), (Ref. 2).

Let us now give a further insight into this entire subject.
In the quantum case the constraints are implemented as a con-
dition over the states|φ > generated by the amplitude oscil-
lation operatorsαµ

m appearing in Eq. (12). But forL0 we
cannot do that because of the order ambiguity that implies a
constant (Eq. 21), so instead we impose

(L0 − a)|φ >= 0, (22)

wherea is the constant that appears in Eq. (21).

Let us now focus on the spectrum of the system and
study the one-excitation state. This state is defined as the
action of one creation operator over the vacuum|0; k〉, where
kµ is the momentum of theCM of the string. We need
to specify a polarization vectorεµ. We denote this state as
|ε; k〉 ≡ (ε · α−1)|0; k′〉.

Observe that

〈ε; k|ε; k′〉 = 〈0; k|ε∗ · α1ε · α−1|0; k′〉
= ε∗µεν〈0; k|[αµ

1 , αν
−1]0; k′〉

= ε∗ · ε(2π)DδD(k − k′). (23)

So we could have in general negative norm states orghostsif
the polarization vectors are timelike. The constraint over this
state produces the result

(L0 − a)|ε; k〉 = 0 which gives

α′k2 + 1 = a or M2 =
1− a

α′
. (24)

Critical strings are defined precisely for the casea = 1,
which means thatM2 = 0. For this class of stings, the mo-
mentumk must be null, since we are dealing with a massless
state. Since the polarization vector is orthogonal to momen-
tum, we have another constraint,ε ·k = 0. So we remove two
polarization degrees of freedom. This gives

a = −(1/2)(D − 2)
∞∑

n=1

n, (25)

which implies the well known result that D=26 dimensions.
We have now reviewed the central points in the physics

related to the sum
∑∞

n=0, n; we want now to study this sum
in the next section from the mathematical point of view.

3. The Riemannζ(s) in the complex plane

In order to extend the Riemannζ function, we are going to
relate it to theΓ(s) function and in turn take advantage of the
analytic continuation ofΓ(s) function to extend theζ func-
tion to the complex plane. To that end we are now going to
prove two results.

Let us start with the definition

ζ(s) =
∞∑

n=1

n−s, s ∈ C,

s = σ + it with σ > 1. (26)

This function is a Dirichlet series,i.e. of the form

∞∑
n=1

(an/ns),
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and is convergent forσ > 1, at least. In fact, it converges
uniformly in the region defined byσ > 1 + δ, δ > 0. This
definesζ(s) as an analytic and regular function ifσ > 1.

On the other hand we know that the Euler-Gamma func-
tion is defined as

Γ(s) =

∞∫

0

ys−1e−yds, (27)

wheres = σ + it with σ > 1. We want to relate it to the
Riemannζ(s) function. If in Eq. (27) we replacey = nx
with n ∈ N, n > 1, we obtain

Γ(s)n−s =

∞∫

0

xs−1e−nxdx. (28)

Summing both sides of this last equation fromn = 1 to∞,
we easily obtain that

Γ(s)ζ(s) =

∞∫

0

xs−1
∞∑

n=1

e−nxdx =

∞∫

0

xs−1

ex − 1
dx. (29)

Now, we shall prove another result which, combined with
this one, will give us a new expression that will prove to be
suitable for the desired analytic continuation we are looking
for.

Theorem 1For σ > 1,

ζ(s) = −Γ(1− s)
2πi

∫

C

(−z)s−1

ez − 1
dz, (30)

where(−z)s−1 is defined in the real axis ase(s−1) log(−z)

with−π < Im log(−z) < π.

Proof

Let us consider the integral

I(s) =
∫

C

zs−1

ez − 1
dz, (31)

where the contourC starts in∞, goes up to the origin, sur-
rounds it, and then returns along the linez = ρe2πi, going up
to∞e2πi and surrounds the cut line that goes from 0 to+∞,
as is shown in Fig. 1.

FIGURE 1. Integration contourC.

We now split the contour integral into three parts, one
over the real axis going the opposite direction, from+∞ to
the origin, the second over a small circleC0 of radiusR sur-
rounding the origin. The third part goes from the origin to
infinity below the cut line. Taking the limit whenR → 0, we
obtain

I(s) =
∫

C0

zs−1

ez − 1
dz =

0∫

∞

xs−1

ex − 1
dx +

∞∫

0

(
xe2πi

)s−1

ex − 1
dx

= −
∞∫

0

xs−1

ex − 1
dx + e2πi(s−1)

∞∫

0

xs−1

ex − 1
dx.

Combining this last result with (29), we easily get

ζ(s) = −Γ(1− s)
2πi

∫

C

(−z)s−1

ez − 1
dz, (32)

which is what we wanted to prove
Notice the importance of this last result. The integral in

Eq. (31) is an entire function ofs, whereasΓ(1− s) is mero-
morphic with poles ins = 1, 2 · · · . But we know thatζ(s)
is analytic forσ > 1, so the poles forn = 2, 3 · · · should
cancel out with the zeros of the integral. To proceed we also
need the following result due to Ahlfors [8].

Theorem 2 The functionζ(s) satisfies the functional
equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (33)

for any value ofs except fors = 1.
Please notice the similarity of this result with

the well known identity for the gamma function
Γ(s)Γ(1− s) = π/ sin πs.
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FIGURE 2. ContourCn − C.

Proof
First, let us consider the integral

I(s) =
∫

Cn−C

zs−1

ez − 1
dz, (34)

where the contourCn is a square formed by the horizontal
line that passes a little bit over the point2nπ for the upper
line of the square, a little bit below−2nπ for the lower side
of the square. To complete the square, we just put two other
vertical lines placed in such a way as to form a perfect square,
as can be seen in Fig. 2.

The contourCn − C has winding number one about
the points±2mπ, m = 1, 2 · · · . At these points, the
function (−z)s−1/(ez − 1) has simple poles with residues
(∓2mπi)s−1, so we must have

∫

Cn−C

(−z)s−1

ez − 1
dz = 2iπ

n∑
m=1

[
(2miπ)s−1

+(−2miπ)s−1
]

= 4πi

n∑
m=1

(2mπ)s−1 sin
πs

2
. (35)

Let us now focus on the integral

∫

Cn

zs−1

ez − 1
dz. (36)

On the contourCn, this integral is clearly bounded. In gen-
eral, if a function|f(z)| ≤ M is bounded we can put

∣∣∣∣∣∣

∫

Cn

f(z)dz

∣∣∣∣∣∣
≤ ML,

whereL is the length (or perimeter) ofCn. In our case the
length ofCn grows linearly withn, so if s = σ + it, then

∣∣zs−1
∣∣ ≤ |z|σ−1

e|t| arg(z) ≤ |z|σ−1
.

But as the term|1/(ez − 1)| is bounded by 1 as|z| grows, we
have ∣∣∣∣

zs−1

ez − 1

∣∣∣∣ ≤ Mnσ−1

for some constantM independent ofn. We finally conclude
that

∣∣∣∣∣∣

∫

Cn

zs−1

ez − 1
dz

∣∣∣∣∣∣
≤ Mnσ−1n = Mnσ.

Now let us take the caseσ < 0 and taken to infinity.
Sinceσ < 0, the integral overCn goes to zero whenn →∞
becausenσ → 0. So Eq. (34) gives

∫

C

zs−1

ez − 1
dz = 4πieπsi sin

(πs

2

) ∞∑
m=1

(2mπ)s−1. (37)

Using theorem 1 we finally obtain

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (38)

which is what we wanted to prove
The final calculation is simple. From theorem 2 we easily

find

ζ(1− s) =
2−sπ1−sζ(s)

Γ(1− s) sin
(

πs
2

)

= 21−sπ−s cos(
πs

2
)Γ(s)ζ(s),

where we use the well known relation

Γ(s)Γ(s− 1) = π/ sin(πs).

And we are done. We need only to puts=2m, m=1, 2, · · · ,
in the above relation to obtain that

ζ(1− 2m) = 21−2mπ−2m cos(mπ)

× Γ(2m)ζ(2m) = −B2m

2m
, (39)

where we use the well known relation for the Bernoulli num-
bers

Bn = − (−1)n/22n!
(2π)n

ζ(n). (40)

We sketch a simple proof of this result in the appendix. To ob-
tain the result we are looking for, we need only to putm = 1,
knowing thatB2 = 1/6

ζ(−1) = −B2

2
= − 1

12
. (41)
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4. Concluding remarks

Critical strings become a central subject matter in string the-
ory for many reasons. One of them is that theconformal
anomaly,as is called, is canceled out. As a consequence,
critical strings retain their conformal properties even after
the quantization procedure is performed (Ref. 12). The no-
ghost theorem forD 6 26, that is, the non-existence of neg-
ative norm states if the dimension of the space defined by
the µ = 0, 1, · · · , is less than or equal to 26 dimensions
is another important property of critical strings frequently
quoted. Also, if Lorentz invariance is to hold, the commutator[
J i−, Jj−]

should vanish, where theJ i− are obtained from
the Lorentz generatorsJµν asJ i− = 1/

√
2(J i0 − J iD−1).

This happens to be the case precisely ifa = 1 andD = 26
(Ref. 3 to 7).

So we know critical strings are important, but why are
they so strange? After all, we should look for no conformal
anomaly, no-ghost theorem, Lorentz invarianceandonly four
dimensions. This means that in Eq. (25), if we insist on living
in four dimensions, then, certainly

∞∑
n=1

n = −1.

The point is, this result is not true. If we believe in the theory
of meromorphic, entire functions and in the theory of analytic
functions in the complex plane, including the residue theo-
rem, we must conclude the strange result that strings live in a
space of dimension greater than four. This fact has extremely
deep and profound consequences in the theory as it unveils a
new world of far reaching consequences in our understanding
of nature. At least if we believe (or not!) in strings.

This issue is precisely one of the motivations for this pa-
per, since analytic continuation of

∞∑
n=0

1/ns

for s = −1 implies the result -1/12. So a deep understand-
ing of the mathematical arguments leading to the existence
of extra hidden dimensions is extremely useful here. It is my
experience that students feel much more comfortable when
they understand well the mathematical background of a phys-
ical subject. When they have both approaches, the physical
intuitive approach and the rigorous mathematical one, they
feel more confident and usually return to the more intuitive
physical formulation, understanding better its benefits. For-
tunately, it turns out that the mathematical insight needed to
understand the regularization process in this case is not very
complicated nor involves a profound knowledge of advanced
mathematical techniques. This point can be contrasted with
the situation present in Quantum Field Theory, where the
renormalization procedure is in fact much more complicated
and upset the students that begin to study this field.

FIGURE 3. ContourCn − C.

But, as it turns out, the present treatment of this point in
standard string theory courses is unsatisfactory (Ref. 13). In
many cases, results dealing with the analytic continuation of
the Riemannζ(s) function are simply quoted. In other, fewer
cases, the reader is invited to solve some non-rigorous exer-
cise in problems given in the final chapter. But we wanted
to study a more rigorous approach. What we discover is
that the mathematical basis of this problem is within reach
of any advanced undergraduate physics student and the back-
ground mathematical basis deserves to be more known than
the present status we have in this area.
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Appendix

A. Bernoulli numbers

Bernoulli numbersBn are defined by the following expan-
sion in the complex planeC:

z

ez − 1
=

∞∑
n=1

Bn

n!
zn. (A.1)

This is a Taylor series that we can easily invert using the
residue theorem

Bn =
n!
2πi

∮

c0

z

ez − 1
dz

zn+1
, (A.2)

where the contourC0 surrounds the origin in the positive
sense, but we take care to put|z| < 2π to avoid the poles
at±2πi.

For n = 0 we have a simple pole with residue 1. So we
conclude thatB0 = 1. Forn = 1 the pole becomes a second
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order pole. Following standard methods, for instance series
expansion of the exponential followed by a binomial expan-
sion, we find thatB1 = −1/2. We use this result in the main
text of this paper.

But for n > 2 this method becomes cumbersome and we
resort to a different and much more interesting approach. Let
us deform the contourC0 to obtain the new contourC as
shown in Fig. 3. The new contour still encircles the origin
but it also encircles in the negative direction an infinite series
of singular points along the imaginary axis, atz = ±2mπi.

We are going now to consider the limit whenR → ∞.
The lines that go above and below the real axis cancel out.
At z = 2πim we have a simple pole only with residue

(2πim)−n. We then have forn > 2 that

∮

C

z

ez − 1
dz

zn+1
= −2πi

∞∑
m=1

1
(2πim)n

. (A.3)

Note that whenn is odd, the residue fromz = 2πim can-
cels out that fromz = −2πim and B2n+1 = 0, that is
B3, B5, · · · = 0. Forn even the residues add, instead, giving
Eq. (40):

Bn =
n!
−2πi

2
∞∑

m=1

1
(2πim)n

= − (−1)n/22n!
(2πi)n

×
∞∑

m=1

1
(m)n

= − (−1)n/22n!
(2πi)n

ζ(n). (A.4)
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