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The experiments proposed and the equipment built for the 2009 International Physics Olympiad are described in this article. A list of the
items used with details of the constructed elements, as well as an exhaustive discussion of both experiments, including the questions and the
step by step solutions, are given.
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En este artı́culo se describen los experimentos propuestos y el equipo construido para la Olimpiada International de fı́sica 2009. Se da
una lista de los aparatos usados y detalles de su construcción, aśı como una discusión exhaustiva de ambos experimentos, incluyendo las
preguntas y las soluciones paso a paso.
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1. Introduction

The 40 International Physics Olympiad (IPhO40) was held
in Mérida, Ḿexico, in July 11-19, 2009. This competition
consisted of two examinations, one theoretical and one ex-
perimental. This article is a description of the experimen-
tal part. The Physics Olympiads allow participant countries
to develop strategies not only to prepare international com-
petitive contestants but also to become aware of the level of
knowledge of their high school students in this scientific dis-
cipline, in order to motivate their improvement. With this in
mind,the Organizing Committee was especially concerned to
prepare an experimental exam that was capable not only to
test the technical abilities of the contestants, but also to eval-
uate their creativity, qualities not satisfied by a simple guided
laboratory practice.

The experimental exam consisted of two problems, the
aim of the first one being the measurement of the wavelength
of a diode laser and the goal of the second one the determina-
tion of the birefringence of a mica crystal. All the contestants
were given a kit with all the necessary elements that allowed
them to carry out the measurements asked in the test. The
competitors had to design and set up their experiment, align
and calibrate the instruments by themselves.The actual exam-
inations with solutions may be found at the official website of
the International Physics Olympiads, http://www.jyu.fi/ipho/

The philosophy of the experiment consisted in giving the
students the opportunity to develop their own experimental
setup with given elements, rather than offering them the ap-
paratus ready for doing the measurements. The financial lim-

itations dictated minimal use of special laboratory equipment.
Since both experiments were in the field of optics, they were
performed on a very simple optical table made out of wood
with a series of holes to fix elements on posts with screws
and nuts. Common to both experiments were the wood op-
tical table; a diode laser setup, including a diode laser with
its power supply, a support post, and an ”S” clamp (Fig. 1,
LABEL A in Fig. 3); and, a first surface mirror mounted
on a movable mount with two adjusting knobs for fine align-
ment and support posts, (Label B), see Fig. 2. This setup
allows the laser beam to be somewhat expanded by propagat-
ing freely through a distance of approximately 70 cm. The
purpose of the movable mirror is to allow for alignment of
the laser beam.

FIGURE 1. Diode laser, support post, “S” clamp and power supply
box (LABEL A).
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FIGURE 2. Mirror on a movable movable mount with two adjusting
knobs and support post (LABEL B).

FIGURE 3. Mounting the laser and the mirror on the wooden opti-
cal table.

The source of the coherent light, namely, the diode
laser,was a common inexpensive presentation laser pointer,
red, with nominal wavelength 650nm, and with less than
1mW of output power. This information was not given to the
contestants, of course. For the mirror holder we used a good
quality mount (Thorlabs KMS); this was one of the most ex-
pensive parts of the kit. The mirrors were made at INAOE
by evaporation of aluminum onto regular microscope slides.
The mirrors were glued to the mounts. The power supply for
the laser was designed and made at UNAM. It worked with 3
AA batteries, including a switch and a connector, and it was
sufficient for the stable work of the laser during the 5 hours
of the exam.

FIGURE 4. Typical fringes observed on the screen (LABEL E),
produced by the interference of the beam passing through the focus
of a lens and the diffraction caused by the sharp edge of a razor
blade, see below.

2. First question: Determination of the wave-
length of a laser diode

The students were asked to determine the wavelength of a
diode laser without high precision micrometer range instru-
ments, such as calibrated diffractive gratings. All the neces-
sary measurements of the experiment had to be made with
rulers and calipers, at most, at the scale of fractions of a mil-
limeter. The wavelength had to be determined using light
diffraction on a sharp edge of a razor blade.

Although the contestants had to design their own experi-
mental setup, it was nevertheless explained that the basic phe-
nomenon is obtained by placing the laser on an extreme of the
optical table and directing the beam to a mirror, see Fig. 6.
Once the laser beam (A) is reflected on the mirror (B), it must
be made to pass through the center of a lens (C), which has
a focal length ofa few centimeters. It can now be assumed
that the focus is a light point source from which a spherical
wave is emitted. After the lens, and along its path, the laser
beam hits a sharp razor blade edge as an obstacle. This can
be considered to be a light source from which a cylindrical
wave is emitted. These two waves interfere in the forward di-
rection, creating a diffraction pattern that can be observed on
a screen. See Fig. 4 with a photograph of a typical pattern.

One possible setup is given in Fig. 5. After the lens, a
sliding rail supports a razor blade that has to move along a
parallel line to the optical axis. For the rail we used a com-
mercial kitchen drawer rail. The razor blade was mounted in
a slide holder, which in turn was an acrylic support and fas-
tened to the rail by means of a drilled plate to permit adjust-
ments of the distance, see Fig. 7. To measure the diffraction
pattern fringes comfortably, a special device was designed
at UNAM, consisting of a translucent sliding screen with a
caliper scale, in such a way, that it was easy to adjust the
origin and to measure relative fringe positions, see Fig. 4.
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FIGURE 5. Photograph of a typical setup for determining the wave-
length of a laser diode.

FIGURE 6. Scheme of the setup for determining the wave wave-
length of a laser diode.

FIGURE 7. Razor blade in a slide holder, placed in an acrylic sup-
port (LABEL D1) and mounted on a sliding rail (LABEL D2).

FIGURE 8. Case (I). The razor blade isbeforethe focus of the lens.
Figure is not to scale.

Thus, the experiment consists of an interference pattern
produced by a beam emerging from the focus of the lens, con-
sidered as a point light source, and by the diffracted part of
the laser beam caused by the razor blade in its path. Formally,
the fringes are commonly explained in terms of diffraction
theory in the Fresnel regime [1]. However, a more or less
rigorous treatment in this case goes far beyond the math-
ematical level required for Olympiad problems. Neverthe-
less, it is possible to develop a simplified approach which
allows for a good approximation and remains within the el-
ementary mathematics and basic concepts of physics. The
key idea here is the fact that the interference of two waves,
with the same wavelength, depends on the optical paths dif-
ference. The complicated aspect is that there exist additional
non-trivial phase differences, but these ones were given as
explained below. As we discuss now, the experiment requires
measuring the diffraction patterns produced in two different
positions: first placing the razor blade between the lens and
its focus and second placing it after the focus.

Referring to Figs. 8 and 9 above, there are five basic
lengths:

L0: distance from the focus to the screen.

Lb: distance from the razor blade to the screen,
Case I.

La: distance from the razor blade to the screen,
Case II.

LR(n): position of then-th dark fringe for
Case I.

LL(n): position of then-th dark fringe for
Case II.

The first dark fringe, for both Cases I and II, is the broad-
est one and corresponds ton = 0.

The experimental setup must be such thatLR(n)¿L0,
Lb for Case I andLL(n)¿L0, La for Case II.

The phenomenon of wave interference is due to the differ-
ence in optical paths of a wave starting at the same point. De-
pending on their phase difference, the waves may cancel each
other (destructive interference) giving rise to dark fringes; or
the waves may add (constructive interference) yielding bright
fringes.

A detailed analysis of the interference of these waves
gives rise to the following condition to obtain adark fringe,
for Case I:

∆I(n) =
(

n +
5
8

)
λ with n = 0, 1, 2, . . . (1)

and for Case II:

∆II(n) =
(

n +
7
8

)
λ with n = 0, 1, 2, . . . (2)
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FIGURE 9. Case (II).The razor blade isafter the focus of the lens.
Figure is not to scale.

whereλ is the wavelength of the laser beam. The condition
for dark fringes, we recall, is that the optical path difference is
a semi-integer multiple of the wavelength. However, a careful
analysis [1] shows that additional phases are acquired. That
is, by passing by the focus of the lens, a phase ofπ is added,
while diffracting by a metallic edge, a phase of5π/4 is ac-
quired. Fig. 10 indicates how these give rise to the phase
differences of equations (1) and (2).

The difference in optical paths for Case I above is,

∆I(n) = (BF + FP )−BP with n = 0, 1, 2, . . . .

while for Case II is,

∆II(n) = (FB + BP )− FP with n = 0, 1, 2, . . . .

With this information, the students had to derive approxi-
mated expressions for the above optical paths differences.
One may proceed as follows,

Case I:

∆I(n) = (BF + FP )−BP

= (Lb − L0) +
√

L2
0 + L2

R(n)−
√

L2
b + L2

R(n)

= (Lb − L0) + L0

√
1 +

L2
R(n)
L2

0

− Lb

√
1 +

L2
R(n)
L2

b

using
√

1 + x ≈ 1 + x/2 yields

∆I(n) ≈ 1
2
L2

R(n)
(

1
L0

− 1
Lb

)

Case II:

∆II(n) = (FB + BP )− FP

= (L0 − La) +
√

L2
a + L2

L(n)−
√

L2
0 + L2

L(n)

≈ (L0 − La) + La

√
1 +

L2
L(n)
L2

a

− L0

√
1 +

L2
L(n)
L2

0

gives

∆II(n) ≈ 1
2
L2

L(n)
(

1
La

− 1
L0

)

with n = 0, 1, 2 . . .

In both cases, the dark fringe condition is approximate,
and one can expect that the first dark fringe, withn = 0 has the
biggest deviation in position. The measurement consists in
taking the coordinates of consecutive dark fringes. However,
it is not straightforward to measureL0, LR(n) andLL(n)
accurately. The first one because it is not easy to find the
position of the focus of the lens, and the other two because
the origin from which those lengths are defined may be very
hard to find due to misalignments of the optical devices. The
following is a suggestion that works very well.

To solve the difficulties withLR(n) and LL(n) first
choose the zero (0) of the scale of the screen (LABEL E) as
the origin for all the measurements of the fringes. Denote as
and the (unknown) positions from whichLR(n) andLL(m)
are actually defined. And now, calllR(n) andlL(n) the po-
sitions of the fringes as measured from the chosen origin (0).
We then have,

LR(n) = lR(n)− l0R and LL(n) = lL(n)− l0L (3)

The point is that with these considerations one can devise
a strategy to arrange the experimental data for a linear regres-
sion analysis - the students had to arrive to this conclusion. A
possible solution is as follows.

From the condition of dark fringes, we have

1
2
L2

R(n)
(

1
L0

− 1
Lb

)
=

(
n +

5
8

)
λ

and

1
2
L2

L(n)
(

1
La

− 1
L0

)
=

(
n +

7
8

)
λ.

Using (3), LR(n)=lR(n)−l0R and LL(n)=lL(n)−l0L

we can rewrite

1
2

(lR(n)− l0R)2
(

1
L0

− 1
Lb

)
=

(
n +

5
8

)
λ

⇒ lR(n) =
√

2LbL0

Lb − L0
λ

√
n +

5
8

+ l0R

and

1
2

(lL(n)− l0L)2
(

1
La

− 1
L0

)
=

(
n +

7
8

)
λ

⇒ lL(n) =
√

2LaL0

L0 − La
λ

√
n +

7
8

+ l0L

These can be cast as equations of a straight line,
y=mx+b.

Case I:

yR = lRxR =

√
n +

5
8
mR =

√
2LbL0

Lb − L0
λbR = l0R
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Case II:

yL = lLxL =

√
n +

7
8
mL =

√
2LaL0

L0 − La
λbL = l0L

Thus, by combining the equations for the slopes of the
straight lines one obtains the lengthL0 and the wavelength,

L0 = LaLb
m2

R + m2
L

Lam2
R + Lbm2

L

λ =
Lb − La

2LaLb

m2
Rm2

L

m2
R + m2

L

Therefore, in order to determine the wavelength, one
must measure the distances from the blade to the screenLb

andLa, and the dark fringes positions to obtain the slopes
mR andmL. As we shall see below, one obtains a signif-
icant improvement on the uncertainty of the wavelength by
also measuring directly the differenceLb−La with a caliper.

The students were given a set of tasks to guide them and
to obtain good quality results. These included the following
steps.

1. First, the students needed to install correctly all ele-
ments and align the beam. For this, it was necessary to
place the laser spot on the mirror at the height of the
lens center, about 5 cm from the optical table surface,
and along the direction defined by a line of holes in the
projection on the optical table plane.

2. After this, the approximate direction was given to the
beam by rotating the mirror post. The fine adjustment
of the beam direction was performed with the screws
on the mirror mount.

3. The correct alignment of the blade was a nontrivial pro-
cedure, and proved difficult even for some of the team
leaders who tried it at the demonstration the day before
the exam. It is necessary that the blade remains within
the narrow beam for two positions of the holder, thus,
the rail direction has to be parallel to the beam path
within small error limits. The rail alignment can be
done either by blind trial and error procedure, which
can easily take 20 minutes or more, or by a coordi-
nated adjustment of the rail and blade holder, which is
much faster.

The measurement of the positions of the fringes is quite
straightforward once the setup is well aligned. The best re-
sults are obtained by observing the fringes from the back side
of the screen with a magnifying glass.

The following results, Table I and graphical analysis,
Figs. 11 and 12, are the result of a typical run of the ex-
periment.

Positions of the blade and their difference with higher
precision:

Lb ± ∆Lb(653 ± 1) × 10−3 m with the mea-
suring tape.

La ± ∆La(628 ± 1) × 10−3 m with the mea-
suring tape.

d = Lb − La = (24.6 ± 0.1) × 10−3 m with
the caliper.

TABLE I.

xR =

√
n +

5

8
xL =

√
n +

7

8

n (lR(n)± 0.1)× 10−3 m (lL(n)± 0.1)× 10−3 m xR XL

0 -7.5 1.1 0.791 0.935

1 -10.1 3.7 1.275 1.369

2 -12.4 6.4 1.620 1.696

3 -14.0 8.2 1.903 1.968

4 -15.6 10.0 2.151 2.208

5 -17.2 11.4 2.372 2.424

6 -18.4 12.2 2.574 2.622

7 -19.7 2.761

8 -20.7 2.937

9 -22.0 3.102

10 -23.0 3.260

11 -24.1 3.410
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FIGURE 10. Scheme to indicate the additional phases acquired in
its path by the laser beam as it crosses the focus of the length, phase
π, and as it is diffracted by the razor blade, phase5π/4.

As in any experiment, and those of the Olympiad are no
exception, a statistical analysis is required. It is expected
that the contestants are familiar with the technique of least
squares data analysis and with common error propagation to
determine the uncertainty of their results. For the above set
of data the results obtained with least square analysis are

mR ±∆mR = (−6.39± 0.07)× 10−3 m

mL ±∆mL = (6.83± 0.19)× 10−3 m

and (values ofl0R andl0L)

l0R ±∆l0R = bR ±∆bR = (−2.06± 0.17)× 10−3 m

l0L ±∆l0L = bL ±∆bL = (−5.32± 0.36)× 10−3 m

Finally, to obtain the wavelength and its error, using the
suggestion to replaced = Lb − La, one gets

λ =
d

2LaLb

m2
Rm2

L

m2
R + m2

L

resulting

λ±∆λ = (663± 25)× 10−9 m

The emission wavelength of several laser diodes used
at the Olympiad were measured with a professional ap-
paratus (ACTON SP2150i) and the value obtained was
λ ± ∆λ = (655 ± 1) × 10−9 m. The result is therefore
excellent, and one can appreciate the smallness of the error,
4 to 5 %, given the simple measuring instruments.

The calculation of the uncertainty may be obtained from
the exact formula,

∆λ =

√(
∂λ
∂d

)2
∆d2 +

(
∂λ

∂La

)2

∆L2
a +

(
∂λ
∂Lb

)2

∆m2
R +

(
∂λ

∂mL

)2

∆m2
L

with

∂λ

∂d
=

λ

d
,

∂λ

∂Lb
=

λ

Lb
,

∂λ

∂Lb
=

λ

La
,

∂λ

∂mR
=

2m2
L

mR

λ

m2
L + m2

R

and analogously for the other slope.
However, one may note that the errors due toLa, Lb and

d are negligible, the latter due to the measurement with the
caliper. Moreover,m2

R ≈ m2
L andLa ≈ Lb . This implies,

∂λ

∂mR
≈ λ

mR
≈ ∂λ

∂mL
.

Thus,

∆λ ≈
√

2
λ

mL
∆mL ≈

(
25× 10−9

)
m

3. Second question: Birefringence of mica

For the second question the students were required to mea-
sure the birefringence of optical grade Muscovite mica. The

idea was to use the same basic setup of the laser beam and the
movable mirror, as a source of coherent light to be made nor-
mally incident on a thin plate of mica, after polarizing such
a beam. By measuring appropriate transmitted intensities of
the light by a simple detector, an analysis can be carried out
to infer the difference of indexes of refraction of the material,
namely, the birefringence of the crystal. The measurement of
this quantity is the goal of this problem. Together with polar-
izers, birefringent materials are useful for the control of light
polarization states.

Birefringence is, by no means, a simple phenomenon. A
material that shows such a property is typically an anisotropic
crystal in which the velocity of propagation of electromag-
netic waves depends on the direction that the wave electric
field vector makes with respect to a preferred direction in
the crystal [3], called the optical axis. Thus, in general, po-
larized light incident on a slab made out of this material,
will be transmitted elliptically polarized. This is in con-
trast with common transparent materials, such as window
glass, which transmit polarized light in the same direction as
the incident one, because its index of refraction does not
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FIGURE 11. Graphical analysis of Case I.
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FIGURE 12. Graphical analysis of Case II.
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FIGURE 13. Unpolarized light normally incident on a polarizer.
Transmitted light is polarized in the (+) direction of the polarizer.

FIGURE 14. Thin slab of mica with its two optical axes, Axis 1 and
Axis 2.

FIGURE 15. Axis 1 is parallel to polarization of incident wave.
Refractive index isn1.

FIGURE 16. Axis 2 is parallel to polarization of incident wave.
Refractive index isn2.

depend on the direction and/or polarization of the incident
wave. The analysis of arbitrary propagation in a birefringent
crystal is quite complicated [4], but the basic phenomenon
can be understood in terms of a polarized beam normally in-
cident on a thin plate.

To guide the students to prepare their experiment, and
partly because birefringence is not part of the official syllabus
of the Physics Olympiads, we first gave a brief explanation of
the use of a polarizing film as follows: A polarizing film, or
simply, a polarizer, is a material with a privileged axis parallel
to its surface, such that, transmitted light emerges polarized
along the axis of the polarizer. Call (+) the privileged axis
and (-) the perpendicular one.

Then, a slab of birefringent material properly cut or
cleaved as we specify below, may be seen as having two
characteristic orthogonal axes, which we will call Axis 1 and
Axis 2. As a matter of fact, one of the axes is the so-called
optical axis but this experiment neither distinguishes it needs
to be specified.

One can then analyze two simple cases to exemplify the
birefringence. Assume that a wavepolarized in the vertical
direction is normally incident on one of the surfaces of the
thin slab of mica.

Case 1) Axis 1 or Axis 2 is parallel to the po-
larization of the incident wave. The transmitted wave
passes without changing its polarization state, but the
propagation is characterized as if the material had ei-
ther a refractive indexn1 or n2. See Figs. 15 and 16.

Case 2) Axis 1 makes an angleθ with the di-
rection of polarization of the incident wave. See Fig.
17. The transmitted light has a more complicated po-
larization state. This wave, however, can be seen as the
superpositionof two waves, one that has polarization
parallel to the polarization of the incident wave (i.e.
”vertical”) and another that has polarizationperpen-
dicular to the polarization of the incident wave (i.e.
”horizontal”).

For purposes of the analysis, we defineIP as theinten-
sityof the wave transmittedparallel to the polarization of the
incident wave, andIO as theintensityof the wave transmit-
tedperpendicularto polarization of the incident wave. These
intensities depend on the angleθ, on the wavelengthλ of
the light source, on the thicknessL of the thin plate, and on
the absolute value of the difference of the refractive indices,
|n1 − n2|. This last quantity is called thebirefringenceof the
material. The measurement of the intensity of the light had
to be done with a photodetector and a multimeter that we de-
scribe below, and it is important to recall that such measure-
ments are independent of the polarization of the light incident
on the detector.

Before presenting the theory necessary to analyze the in-
tensitiesIP andIO as a function of the angleθ, we describe
the parts that the contestants had to use to devise an appropri-
ate experimental setup.

Rev. Mex. F́ıs. E56 (1) (2010) 144–158
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FIGURE 17. Axis 1 makes and angleθ with polarization of incident
wave.

FIGURE 18. Polarizer mounted in slide holder with acrylic support
(LABEL J).

The students were given a) two polarizing films (Rainbow
Symphony Inc.) mounted in slide holders, each with an addi-
tional acrylic support (LABEL J), see Fig. 18; b) A thin mica
plate mounted in a plastic cylinder with a scale with no num-
bers; acrylic support for the cylinder (LABEL K). The mica
is mounted so that its axis can be rotated with respect to the
polarization direction of the incoming beam, see Fig. 19. We
used squares of mica of about 12.5 mm per side and thick-
ness ranging from 35 to 160±1 microns (they were mea-
sured by Mitutoyo digital mircometer). The fabrication of
the acrylic supports and mounts, as well as the cleavage of
the mica plates and its micrometric thickness measurement,
were made at the Instituto de Fisica, UNAM. We used optical
grade Muscovite mica (VENDOR).

FIGURE 19. Thin mica plate mounted in cylinder with a scale with
no numbers, and acrylic support (LABEL K).

FIGURE 20. Light detector and multimeter.

The polarizer and the cylinder mount all had threaded
holes at the bottom so that they could be fixed to the optical
table with standard 1/4 - 20 screws. The heights were also
chosen to have the centers of the polarizers and the cylinder
axis all aligned with the laser beam. In our design all centers
were 5 cm above the surface of the optical table.

The light detector, see Fig. 20, was a simple biased pho-
todiode (Vishay BPV10) with a low-pass RC filter and a load
resistor. The circuit used is shown in Fig. 21 where we also
indicate typical values used for the components. A 1 mW
laser beam saturates this circuit so a simple filter made of a
black plastic trash bag was put in front of the photodiode. The
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resistor value and/or the filter thickness could be adjusted ac-
cording to the laser intensity. Care must be taken so that at
the maximum measured intensity the detector does not satu-
rate. The circuit was feed with a regular 9 V battery and was
built inside a standard electronic box with a hole on the side
at the height of the laser beam (in our case 5 cm). The light
intensity is linearly proportional to the voltage drop across
the load resistor. Any laboratory voltmeter can be used to
measure this voltage.

The experiment then consisted in making a polarized
beam of laser light impinge on the thin mica plate and mea-
sure its transmitted intensity both parallel and perpendicular
to the incident polarization, as a function of the angle setting
of the mica plate. The polarized light was obtained by placing
a polarizer before the mica plate, and for the measurement of
the transmitted beam, another polarizer had to be placed after

FIGURE 21. Circuit for the light detector.

FIGURE 22. Experimental setup forIP .

FIGURE 23. Experimental setup forIO.

it. Thus, if the polarizers were parallel, the parallel transmit-
ted intensity could be measured, and for crossed polarizers,
the perpendicular intensity was obtained. A typical setup is
shown in Figs. 22 and 23. Care had to be taken to ensure
a good polarized incident beam due to the fact that the laser
beam is already partially polarized. Thus, the first polarizer
had to be place with either its (+) or (–) axes vertically in
such a way to obtain the maximum transmitted intensity in
the absence of any other optical device.

A delicate problem has to be solved to find the actual po-
sition of the optical axis of the mica. This is because the
regular graduation outside the cylinder holding the mica plate
was arbitrarily put, and there was no insurance that the one of
the settings coincided with the axis. Thus, it was suggested
to find the closest setting to the axis and use it as a provi-
sional origin for the measured angles. Since there were 100
lines on the cylinder, the interval between two consecutive
lines corresponded to 3.6 degrees. We suggested to callθ̄ the
angles measured from the provisional origin and later to cor-
rect for the actual angle. The next step was to make as many
measurements of the parallel and perpendicular intensities,
IP andIO, as a function of the anglēθ, and collect them in a
table, as shown below. The students had to realize that it was
enough to measure an interval around 90 degrees due to the
periodicity of the intensities.

Now the students has to correct for the actual zero of the
angles. It turned out that the optical axis 1 can be identified
as that in which the perpendicular transmitted intensity was
a minimum. Theoretically, it had to be zero, but the back-
ground light put it around 0.2 to 0.4 mV. In Table II one can
see that the minimum is between 0.2 and 0.6 mV correspond-
ing to the settings̄θ equal to 0 and 3.6 degrees, respectively.
Therefore, the actual location of the optical axis was between
those settings, for this particular experiment. The students
were left free to find the zero. Two possibilities are to make a
graphical analysis of few points around the zero and another
was to to fit a parabola to three points in the neighborhood of
the zero. Thus, one should find a shiftδθ̄, such that the actual
angle isθ = θ̄ + δθ̄. In the example given, from Table II, we
can choose the first three points ofθ̄ andIO(θ̄) (intensities in
millivolts)

(x1, y1)= (−3.6, 1.1) , (x2, y2)= (0, 0.2) ,

(x3, y3)= (3.6, 0.6)

We want to fity = ax2 + bx + c. This gives three equa-
tions:

1.1 = a(3.6)2 − b(3.6) + c

0.2 = c

0.6 = a(3.6)2 + b(3.6) + c

whose solution is the location of the minimum of the
parabola,
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TABLE II.

θ̄ (degrees) (IP ± 1)× 10−3 V (IO ± 1)× 10−3 V

-3.6 46.4 1.1

0 48.1 0.2

3.6 47.0 0.6

7.2 46.0 2.0

10.8 42.3 4.9

14.4 38.2 9.0

18.0 33.9 12.5

21.6 27.7 17.9

25.2 23.4 22.0

28.8 17.8 27.0

32.4 12.5 31.7

36.0 8.8 34.8

39.6 5.2 38.0

43.2 3.6 39.4

46.8 3.2 39.6

50.4 4.5 38.7

54.0 6.9 36.6

57.6 10.3 33.6

61.2 14.7 29.4

64.8 20.1 24.7

68.4 25.4 19.7

72.0 30.5 14.7

75.6 36.6 10.2

79.2 40.7 6.1

82.8 44.3 3.2

86.4 46.9 1.0

90.0 47.8 0.2

93.6 47.0 0.4

97.2 45.7 2.0

θ̄min = − b

2a
≈ 0.7 degrees

and , therefore,δθ̄ = −0.7 degrees.
To analyze the data, the students were given a little bit of

theoretical considerations. For normal polarized incidence,
and assuming that the system is truly birefringent with no
absorption at all, one can find out exact expressions for the
transmitted intensities in terms of the incident intensity [4].
As it turns out, those expressions are quite formidable and, in
addition, there are absorption effects as well as other techni-
cal complications that prevent a simple direct analysis. Nev-
ertheless, we found out if the one considers normalized in-
tensities, angle by angle, defined as

ĪP (θ) =
IP (θ)

IP (θ) + IO(θ)
and ĪO(θ) =

IO(θ)
IP (θ) + IO(θ)

simple approximated expressions can be obtained, and these
are,

ĪP (θ) = 1− 1
2

(1− cos∆φ) sin2(2θ) (4)

and

ĪO(θ) =
1
2

(1− cos∆φ) sin2(2θ) (5)

where∆φ is the difference of phases of the parallel and per-
pendicular transmitted waves. This quantity is given by,

∆φ =
2πL

λ
|n1 − n2|

whereL is the thickness of the thin plate of mica,λ the wave-
length of the incident radiation and|n1 − n2| the birefrin-
gence. Thus, the problem reduces to determine the phase dif-
ference∆φ, and if the thickness of the plate is known, as well
as the light wavelength, the birefringence is obtained. As we

FIGURE 24. Experimental setup for measurement of birefringence
of mica.

TABLE III.

θ̄(degrees) x = sin2(2θ) y = ĪO ± 0.018

2.9 0.010 0.013

6.5 0.051 0.042

10.1 0.119 0.104

13.7 0.212 0.191

17.3 0.322 0.269

20.9 0.444 0.392

24.5 0.569 0.484

28.1 0.690 0.603

31.7 0.799 0.717

35.3 0.890 0.798

38.9 0.955 0.880

42.5 0.992 0.916
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FIGURE 25. Plot of the normalized perpendicular intensityĪO versussin2 2θ.
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FIGURE 26. The phase angleθ as a function ofcos θ, to show that
it is a multiple valued function.

FIGURE 27. Comparison of experimental data for the normal-
ized intensities̄IP andĪO, see Table III, with fitting equations (4)
and (5) using the calculated value of the phase difference∆φ.

shall see below, the fitting of the data by those formulas, once
one has found the phase difference∆φ, is remarkably good.

Thus, the problem reduces to find the phase difference
∆φ first. The contestants were free to choose the appropri-
ate variable to make their statistical analysis, but it appears
as a simple solution to cast the perpendicular intensity, see
equation (4), as a straight liney = mx + b, with

y = ĪO(θ), x = sin2(2θ) and m =
1
2

(1− cos∆φ)

from which the phase may be obtained. One may notice at
this point that, actually, only anglesθ from 0 to 45 degrees
are needed. Table III shows the data needed for the analysis
and Fig. 24 shows a plot of the corresponding values.

A least squares analysis yields the following results for
the slope and they-intercept,

m±∆m = 0.913± 0.012

b±∆b = −0.010± 0.008

As shown above, one needs the thickness of
the slab, which for this particular experiment was
L ± ∆L = (100 ± 1) × 10−6 m and the wavelength of
the laser beam. We use the value found in the first Question,
λ ± ∆λ = (663 ± 25) × 10−9 m. A direct calculation of
the phase∆φ in radians in the interval[0, π] yields, from the
slopem = 1/2 (1− cos∆φ),

∆φ±∆(∆φ) = 2.54± 0.04,

whose uncertainty was calculated from

∆m =
∣∣∣∣

∂m

∂∆φ

∣∣∣∣ ∆(∆φ) =
1
2

sin(∆φ)∆(∆φ),

and therefore,

∆(∆φ) =
2∆m

sin(∆φ)
.

Here, there is an additional consideration. One notes that
adding2Nπ to the phase∆φ, with N any integer, or chang-
ing the sign of the phase, the values of the intensities and the
slopem are unchanged. However, the value of the birefrin-
gence|n1 − n2|would change, but this cannot be so. In other
words, the phase is multivalued for a given value ofcos∆φ,
as shown in Fig. 26.

As we carefully measured, and we discuss this below,
the value of the birefringence for the particular mica we
used was|n1 − n2| between 0.003 and 0.005, and we con-
sidered as its nominal value|n1 − n2| = 0.004. Therefore,
the phase difference became∆φ = π for a plate thickness
L ≈ 82× 10−6m. Therefore, we can conclude that

∆φ =
2πL

λ
|n1 − n2| if L < 82× 10−6 m

or

2π −∆φ =
2πL

λ
|n1 − n2|

if 82× 10−6 m ≤ L < 164× 10−6 m.

Thus, for our sampleL±∆L = (100±1)×10−6 m, and
we used the second expression above, yielding a value for the
birefringence,

|n1 − n2| ±∆ |n1 − n2| = (3.94± 0.16)× 10−3.

The error was calculated using,
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∆ |n1 − n2| =
√(

∂|n1−n2|
∂λ

)2

∆λ2 +
(

∂|n1−n2|
∂L

)2

∆L2 +
(

∂|n1−n2|
∂∆φ

)2

∆(∆φ)2

and thus,

∆ |n1 − n2| =
√( |n1 − n2|

λ

)2

∆λ2 +
( |n1 − n2|

L

)2

∆L2 +
(

λ

2πL

)2

∆(∆φ)2.

As mentioned above, this experiment is fairly good to de-
termine the phase difference∆φ, as can be seen in Fig. 27,
where we plot the actual data for the normalized intensities
ĪP andĪO versusθ, and the corresponding calculated values
given by equations (4) and (5) using the phase∆φ = 2.54.
The agreement is quite remarkable given the simplicity of the
experimental apparatus.

To conclude the discussion of this second question, we
want to point out that we determined quite carefully the bire-
fringence of the Muscovite mica we used. For this, we actu-
ally measured all the samples given to the students and much
more, that is, of the order of 400 samples. The main dif-
ference was that the samples were obtained from cleaving
thick pieces of mica as delivered by S&J Trading Inc, NY.
These pieces had thickness of the order of one millimeter and
we cleaved them to thickness ranging from 4 to several hun-
dred micrometers. We gave the students samples with less
than 150 micrometers, so the above formulas could be used.
From all these measurements we arrived to our nominal value
|n1 − n2| = (4 ± 1) × 10−3. We were surprised to find out
that this measurement is actually very good in comparison
with reported values in the literature.

4. Final comments

The experimental exam of IPhO40 was well accepted by the
leaders of the teams that participated in the Olympiad. In

opinion of some, see Ref. 5 for instance, “The exam was fan-
tastic. . . They had to think.”, and this is certainly a reason for
joy and pride for the committee that prepared the problems.
We believe the examination was actually hard and demanding
for the students. Certainly only a handful of participants were
able to tackle both problems satisfactorily, but many of them
were capable of solving at least one of them in the five hours
allowed. One must remember that the Physics Olympiads are
a competition to find out the best among the best, and the ex-
ams are expected to be very difficult. We certainly believe
that most of the participants, given enough time, would have
been able to solve both problems.

But in addition to have provided a good and acceptable
set of problems for an Olympiad, the committee believes that
this exercise should and could be done as a regular activity
to design interesting and useful experiments to be performed
not only at competitions, such as an Olympiad, but as part of
the regular laboratory classes at high schools.
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