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Numerical calculation of near field scalar diffraction using angular spectrum of
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Recibido el 14 de agosto de 2009; aceptado el 29 de julio de 2010

It is a known fact that near field diffraction or Fresnel diffraction calculations are difficult to perform exactly. It is in general necessary to
make some approximations in order to obtain a more suitable form. In this work, a numerical implementation based on angular spectrum
theory for near field diffraction is presented. The method uses Fast Fourier Transforms (FFT), and it turns out to be accurate and fast. In order
to show the capabilities of the method, diffraction near field for a circular aperture and a spiral slit are studied. Numerical and experimental
results are shown. This method could be useful to implement pc based physical optics learning.
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Se sabe que los cálculos de difraccíon de campo cercano o de Fresnel son difı́ciles de realizar de manera exacta. En general, es necesario
realizar aproximaciones a fin de obtener expresiones con formas más manejables. En el presente trabajo se presenta una implementación
numérica del ćalculo del campo cercano usando la teorı́a del espectro angular. El método emplea la transformada rápida de Fourier (FFT) lo
que le permite ser rápido y preciso. Con el propósito de mostrar la eficiencia del método, se presenta el estudio de la difracción producida
por una abertura circular y por una rendija espiral. Se muestran los resultados numéricos y experimentales. Creemos que el presente método
puede seŕutil en la ensẽnanza de láoptica f́ısica en cursos soportados en el uso de pc.

Descriptores:Difracción de Fresnel; difracción de ondas escalares; difracción de campo cercano; FFT; ecuación de Helmholtz.

PACS: 42.25.Bs; 42.25.Fx

1. Introduction

As an optics student and as teacher, one can easily real-
ize that near field diffraction integrals are very difficult to
perform, even when numerical methods are used. From a
mathematical point of view, scalar wave diffraction in op-
tics is a partial differential equation, known as Helmholtz
equation and a boundary condition or transmittance function.
If the observation plane is rather close to the transmittance
function under free propagation, then Fresnel diffraction ap-
pears, and as it occurs in most cases, it cannot be calculated
without introducing some kind of approximations for phase
terms. Roughly, there are two descriptions that allow solv-
ing this problem. One is the Kirchhoff-Fresnel theory in
which by using Green theorem an exact solution can be ob-
tained by adding two Helmholtz equation solutions. One of
both represents the transmittance function and the other rep-
resents the optical field, usually, it is free space Green func-
tion exp(ikr)/r. These boundary conditions are over spec-
ified and are mathematically inconsistent [1], because the
diffracted field and its derivative have to be zero in some part
of the integration trajectory. One way to solve such problem
is by using the Rayleigh-Sommerfeld diffraction theory, in
which the derivative function on the boundary does not have
to be specified [2] because a new kind of Green functions that
vanish at the transmittance plane are introduced.

A second major problem arises when this diffraction the-
ory is applied to plane transmittance functions in near field
diffraction. In this case, as the distance between the trans-
mittance function and observation plane tends towards zero,
high frequency oscillations appear which make it impossible
to evaluate the Huygens-Fresnel diffraction integral because
it has a pole at the origin and neither Fresnel approximation is
fulfilled. Some authors have treated this problem by introduc-
ing some kind of approximations mainly for quadratic phase
terms [3]. Nevertheless, these solutions continue to have
problems when evaluated for distances close to the transmit-
tance function.

An alternative theory is known as angular spectrum of
plane waves (ASPW) [2,4], in this case the boundary condi-
tion, which is the transmittance function, has to be Fourier
transformed and it gives the associated amplitudes for plane
waves traveling in all possible directions in space. By con-
struction, the solution is well defined at the origin. This
means that the diffracted field can be calculated at arbitrary
close observation distances.

For practical reasons, it is preferred to perform a numer-
ical simulation before the experiment. In diffraction the-
ory, numerical methods based on convolution [2], quadratic
phase terms approximations [3] or in terms of Lommel func-
tions expansions, are known [5]. Although they correctly
predict diffraction for some regions, they all fail at regions
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near to the transmittance function. Recently [6], a numeri-
cal method for Rayleigh-Sommerfeld diffraction integral has
been reported as compared to ASPW. Nevertheless, only ho-
mogeneus modes are considered which cause some differ-
ences with exact results [7]. The effects of this are: a) so-
lutions do not fulfill Sommerfeld radiation condition,i.e.,
diffracted field never decays asz → ∞; b) edge effects are
excluded. Besides, ASPW recovers the Rayleigh diffraction
intergal by using Weyl representation for spherical waves [4].

In the present work, a simple numerical method based on
ASPW is introduced in order to perform near field diffraction
calculation. The method uses two Fast Fourier Transforms
(FFT), which are relatively easy to implement in most pro-
gramming environments given that many FFT routines and
source codes are freely available [8,9]. Commercially avail-
able software might also be a solution for less skilled pro-
grammers because most of them include their own FFT im-
plementations in 1D or 2D. In order to illustrate this interest-
ing feature two cases are studied. First, near field diffraction
for a circular aperture is obtained for arbitrary small obser-
vation distances in which other known to the author methods
fail. As a second example, near field diffraction for a single
arm Euclidean spiral slit is presented. A third example is a
project in which digital Fresnel Holography is studied. In our
experience, this technique has proven useful to teach diffrac-
tion theory to undergraduate physics students exploring more
complex projects.

2. Angular spectrum theory

The objective is to find exact solutions to the Helmholtz equa-
tion

∇2φ + k2φ = 0 (1)

with boundary condition at transmittance function position
z = 0 given by

φ(x, y, z = 0) = t(x, y). (2)

In particular, one asks for a solution written as an infinite and
continuous superposition of plane waves

φ(~r) =

∞∫

−∞
A(~k) exp(i~k · ~r)d~k (3)

where~r = xî + yĵ + zk̂ is the vector position and

~k =
2π

λ
êk (4)

the wave vector. The functionA(~k) defines the amplitude for
each plane wave in each direction given by the unit vector
êk = cos αî+cos βĵ +cos γk̂. In order to simplify notation,
parameters are defined

u =
cosα

λ
; v =

cos β

λ
; p =

cos γ

λ
(5)

FIGURE 1. Coordinate system and notation. A)αsβsγ angles defi-
nitions in the x,y,z reference frame. B) Spherical geometry of u,v,p
parameters. C) Transmittance function t(x,y) and diffracted field
φ(x,y,z) in the x,y,z space. PW incident plane wave; ASPW angu-
lar spectrum of plane waves.

and the geometry is shown in Fig. 1. In this case, the dot
product takes the form~k ·~r = 2π(xu + yv + zp) and Eq. (3)
can be written as

φ(x, y, z) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
A(u, v, p)

× exp[i2π(xu + yv + zp)]dudvdp. (6)

Using Eq. (6) as a solution to Eq. (1) leads to the condi-
tion

1
λ2

= (u2 + v2 + p2) (7)

This expression allows us to reduce Eq. (6) to only two inte-
grals

φ(x, y, z) =

∞∫

−∞

∞∫

−∞
A(u, v)

× exp[i2π(xu + yv + zp)]dudv. (8)

Equation (7) defines a sphere in theu, v, p space, as shown in
Fig. 1 insert, and one can expressp = p(u, v) in the form

p(u, v)=





√
1
λ2−u2−v2 if 1

λ2 > u2+v2

i
√

u2+v2− 1
λ2 if u2+v2 > 1

λ2

(9(a,b))

Equation (9a) gives rise to homogeneous or propagating
waves, which have a major contribution to the far field whilst
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Eq. (9b) represents evanescent waves. Applying the bound-
ary condition defined by (2) to Eq. (8), leads us to the angular
spectrum

A(u, v) =

∞∫

−∞

∞∫

−∞
t(x, y) exp[i2π(xu + yv)]dxdy (10)

which gives the amplitudes for every propagation direction.
Rewriting Eq. (8) in the form

φ(x, y, z) =

∞∫

−∞

∞∫

−∞
A(u, v) exp[i2πzp(u, v)]

× exp[i2π(xu + yv)]dudv (11)

allows us to recognize the Fourier transform for the convo-
lution betweent(x, y) function and the Fourier transform of
exp[i2πzp(u, v)], which behaves as a propagation function
because it only depends on coordinatez and it also defines
diffracted field as a summation of modes. Atz = 0, Eq. (11)
remains defined and recovers the transmittance function as
expected. Any value aroundz = 0 is also defined and
permits the evaluation of Eq. (11) for arbitrary small ob-
servations distances. It is also remarkable that we can ob-
tain the diffracted field after only two Fourier transforms.
Other methods based on the Huygens-Fresnel integral re-
quire about 3 Fourier transforms [2]. Symmetry based meth-
ods [10] that calculate spherical waves emerging from every
point in the transmittance function have to deal with an enor-
mous number of distances calculations. In this case, distance
calculations performed in other methods are replaced by the
simplerz coordinate, which represents the distance form the
origin to the observation plane.

Equation (9) implies that two kinds of contributions are
possible. Propagating modes as in

p(u, v) =
√

1/λ2 − u2 − v2

and evanescent ones when

p(u, v) = i
√

u2 + v2 − 1/λ2.

Both cases depend on how1/λ2 is as compared to theu2+v2

term. In traditional Fresnel diffraction theory it is assumed
that the transmittance function dimensions are much bigger
than the wavelength because edge effects are neglected. In
the ASPW case, edge effects are at the high frequencies of
the Fourier transformed transmittance function, as can be
seen in Eq. (10). In other words, edge effects appear in the
limu,v→∞A(u, v). This can be better understood if we con-
sider writing Eq. (11) in the form

φ(x, y, z) =
∫

1
λ2 >u2+v2

∫
A(u, v) exp[i2πzp(u, v)]

× exp[i2π(xu + yv)]dudv

+
∫

1
λ2 <u2+v2

∫
A(u, v) exp[−2πzp(u, v)]

× exp[i2π(xu + yv)]dudv (12)

in which the first integral term represents propagating modes
and the second corresponds to evanescent ones. In order to
find physically valid solutions, both contributions most be
considered. If only propagating solutions are accounted for,
then one would obtain diffracted fields propagating untilz
with very large values and the Sommerfeld radiation condi-
tion would be violated. In the other hand, when both con-
tributions are considered, then one would obtain fields with
decreasing intensity asz becomes large.

In the other hand, it can be shown [4] that in the far field
ASPW recovers Fraunhofer diffraction as expected, as shown
in Eq. (12).

φ(x, y, z) ≈ (−2πi/k) (z/r)A(x/r, y/r) exp [ikr] /r (13)

So far, we have seen that ASPW provides us with an exact
solution to the Helmhlotz equation; it also allows the cal-
culation of the diffracted field at arbitrarily small distances;
edge effects are considered; the solution comprises evanes-
cent and propagating contributions; and at the far field it re-
covers Fraunhofer diffraction.

Another problem arises when specific problems need to
be studied. For instance, let us consider the diffraction from
an annular slit of radius D, given by a Dirac Delta function in
polar coordinates [11]

t(r, θ) =
δ(r −D)

rπ
. (14)

In this case, after writing Eqs. (8) and (10) in cylindrical co-
ordinates, we get the spectrumA(ρ) = 2J0(2πDρ), and the
near field is of the form

φ(r, z) = 4π

∞∫

0

J0(2πDρ)J0(2πrρ)

× exp[i2πz(1/λ2 − ρ2)1/2]ρdρ. (15)

Equation (15) is very difficult to integrate analytically and nu-
merically. In the first case, the exponential term has a radical
in its argument which makes it very hard to integrate if no ap-
proximation is made. In the numerical case, Bessel functions
need to be expressed as infinite series expansions or need to
be written by using polynomials approximations [12]. Either
way, numerical calculation becomes very complex and com-
putationally slow because of numerical integration and/or se-
ries convergence, which in this case is worse because the
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FIGURE 2. Flow chart showing how to implement the algorithm.
For a single calculation, solid lines show the involved steps while
for an iterative calculation dotted lines show corresponding flow.
For the first case only two FFT are calculated. In the second case,
N+1 FFT are calculated, where N is the total number of different z
values.

FIGURE 3. Numerical simulation for a circular aperture. a) Binary
image representing transmittance function. b) and c) Calculated
diffracted field for two different distances. The method reproduces
Fresnel zones and Poisson spot.

number of terms considered in the Bessel series has to be
much bigger than the Bessel function argument. One way to
overcome the problem is to device a method of calculation
that employs FFT algorithms in order to increase computa-
tional speed.

3. Numerical implementation based on 2D
FFT

For the numerical solution, it is necessary to transcribe the
problem in discrete form. The transmittance function is now
represented by means of an × m matrix in the form, or a
bitmap image:

Tm,n = t(m,n), (16)

wherem, n are integers and we also consider that in such ma-
trix there is an object (a slit, for instance) of “radius” or size
R, in pixels. In practical terms, the transmittanceTm,n is an
image file, in this case formed byn ×m pixels. Then stan-
dard 2D fast Fourier transform (FFT) is calculated and the
resulting matrix is re-centered to correct low and high fre-
quencies misplacement that is a consequence of the discrete
FFT algorithm. In this way, one obtainsA(u, v) in discrete
form or

Adiscrete= FFT {T} . (17)

Then, aG matrix is defined as

G(z)m,n = exp[i2πzp(m,n)]. (18)

FIGURE 4. Propagation for different values ofz. An ensemble of
diffraction patterns are calculated for different values ofz. At z =0
the field is defined. CA represents circular aperture position.

FIGURE 5. Axial intensity distribution obtained by numerical inte-
gration of Eq. (11) (solid) as compared to results reported in Ref. 3
(dot) for a circular aperture of radiusa.

Equation (9) of functionp(x, y) defines propagation direc-
tion for all the superposed plane waves. In the present case,
we have noticed that values of the formλ = 1/(Rq), where
R is the object radius estimated in pixels,q ≥ 2, z < 10,
work well to obtain near field diffraction because in this way
evanescent and propagating contributions are reasonably in-
cluded. In order to simplify calculations we consider squared
images of200 × 200 pixels, but increasing the size would
increase computer time proportionally to a couple FFT cal-
culations of such size.

The product element by element between Eq. (17) and
Eq. (18) is made, leading us to

Hm,n = Am,nG(z)m,n, (19)

matrix H being an intermediate step. Then, inverse fast
Fourier transform is performed,

Φ = FFT−1(H), (20)

which give usΦ, the matrix representing the calculated
diffracted field. Finally, a logarithmic transformation for
pixel intensities is made in order to obtain a clearer image.
A flowchart of this algorithm is shown in Fig. (3). It is worth
noticing that this method needs only two FFT operations.
Moreover, no approximation at all has been made (apart of
those inherent to FFT algorithm and the discrete representa-
tion of the field), which implies that the present method is
accurate and faster than standard methods [Goodman] based
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FIGURE 6. Example of students digital holography project. (a) Ob-
ject, (b) hologram (see text) and (c) reconstruction. Hologram
recording and reconstruction are made by using this method.

FIGURE 7. Spiral slit diffraction. (a) Euclidean spiral slit, (b,c)
numerical results for two different z values. Characteristic 3 and 5
lobes are predicted, (d,e) corresponding experimental results.

on convolution theorem for Huygens-Fresnel diffraction in
which three FFT are required and phase approximations are
made.

4. Examples

4.1. Circular aperture

In Fig. (3) numerical implementation of Eq. (4) is shown for
differentz values for a circular aperture. In Fig. 3a a circular
transmittance function appears. In Fig. 3b to 3c diffraction
patterns are shown for different propagation values, where
characteristic features as Fresnel Zones and Poisson spot can
be observed. The method is relatively simple to program and
to evaluate for a given distancez, and it is natural to im-
plement a program that iteratively calculates the diffracted
field for an interval ofz distances starting at zero. In each
distance only the axial intensities are retained and all these
vectors are stacked forming an image of the diffracted field
as if viewed perpendicularly to the propagation direction, as
shown in Fig. (4). In Fig. (5) an axial intensity plot of re-
sults obtained in Fig. (4) is presented. It is clear that the
diffracted field can be obtained even for distances very near
to the aperture without undesired high frequency oscillations.
Axial intensity distribution is calculated in order to compare
to other reported methods [3,13], shown in Fig. (5) insert.

4.2. Spiral slit

When the transmittance function is a slit, focusing regions
are related to geometry; in particular to evolutes which are
centers of curvature [14]. A spiral slit has interesting cur-
vature features. Besides, the diffracted field for spiral slits
has been studied [15] only for the far field case. Euclidean
single arm spiral is considered, as shown in Fig. 6a. The
corresponding calculated diffracted fields for differentz val-
ues are shown in Fig. 6(b,c) and the experimental results in
Fig. 6(d,e). It is observed in simulation and in experiment
that lobular structures appear. The leaf number decreases as
z coordinate augments. Detailed study for spiral slits will
be presented elsewhere. It is remarkable how accurate this
numerical calculation is as compared to experiment. Further
study is needed to understand all features of these fields.

4.3. Other projects

This technique, in our personal teaching experience, has
proven useful to study other physical optics phenomena. One
of our interests is generation of non diffracting beams, par-
ticularly J0 Bessel beams [16] which are easily produced by
considering an annular slit. Intensity profiles for different
propagation distance can be plotted rapidly with very little
effort. Besides, a projection of diffracted field, viewed per-
pendicularly to propagation direction can be plotted by cal-
culating a number of the diffracted fields for different propa-
gation distance values; then, only axial transversal intensities
are retained and stacked to form an image. An example for a
circular aperture is shown in Fig 7.

Computer generated Fresnel Holograms [17] can be stud-
ied recursively in this context as shown in Fig. 7. First,
one has to calculate the diffracted field to a fixed propaga-
tion distance added to a plane wave. The resulting field, the
hologram, is saved. Then, this hologram can be numerically
reconstructed by using it as a transmittance function. In the
other hand, if the calculated hologram is photographed, it can
be reconstructed in the laboratory by using a plane wave form
any laser source.

5. Conclusion

A numerical method for evaluating near field diffraction has
been introduced by using angular spectrum of plane waves.
The major advantage is that high frequency phase oscillations
near transmittance function have been removed and the solu-
tion only depends in coordinate propagationz. This method
can be very useful in areas as computer generated holograms,
diffraction free-beams, phase singularity optics or for educa-
tional purposes as an interactive and accurate tool for study-
ing scalar diffraction phenomena.
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