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Some classical properties of the non-abelian Yang-Mills theories
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We present some classical properties for non-abelian Yang-Mills theories that we extract directly from the Maxwell’'s equations of the theory.
We write the equations of motion for th€U(3) Yang-Mills theory using the language of Maxwell’s equations in both differential and
integral forms. We show that vectorial gauge fields in this theory are non-fermionic sources for non-abelian electric and magnetic fields.
These vectorial gauge fields are also responsible for the existence of magnetic monopoles. We build the continuity equation and the energy-
momentum tensor for the non-abelian case.
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En este aitulo se presentan algunas propiedadésichs de las tetars de Yang-Mills no abelianas, que se extraen directamente de las
ecuaciones de Maxwell de la téar Obtenemos las ecuaciones de movimiento para uria @®iYang-Mills del grup&U(3) en su forma
diferencial e integral, utilizando el lenguaje de las ecuaciones de Maxwell. Mostramos que los campos gauge eraesia faentes

no fermibnicas para camposégtricos y magaticos no abelianos. Estos campos de gauge son responsables de la existencia de monopolos
magreticos. Finalmente, se construyen la ecaaale continuidad y el tensor en@agmpulso para el caso no abeliano.

Descriptores:Teoiias de Yang-Mills; ecuaciones de Maxwell; forma diferencia e integral; monopolosatiags

PACS: 03.50.-z; 03.50.Kk

1. Introduction for Maxwell's equations of Classical Electrodynamics. We
restrict our interest to the case of t8€/(3) Yang-Mills the-

In the context of the relativistic quantum theory of electro-gry however the analysis is the same for any gréG(N).

magnetism, the interaction among two electrically chargedye show that non-abelian electric and magnetic fields can be

particles is mediated through the exchange of virtual phogenerated by vectorial gauge fields. These vectorial gauge

tons. Photons are the quantum excitations of the electromagiz|ds are also responsible for the existence of magnetic

netic field, which is a vectorial gauge field invariant undermonopoles. Finally, we build the continuity equation and the

U(1) abelian transformations. Similarly, the strong and weakonergy-momentum tensor for the non-abelian case.

interactions are described by means of non-abelian vecto-

rial gauge fields. Field theories describing the behavior of . , .

pure vectorial gauge fields are known as Yang-Mills theories<- Non-abelian Maxwell's equations

Symmetries and properties of Yang-Mills theories are basin\I

ingredients for the theoretical treatment of the fundamenta{he abelian ones, as for instance the existence of a multiplicity

Interactions betvx_/een eIeme_nFar_y particles. The_ study of Fh8f gauge fields, self-interactions, and gauge transformations
classical properties of Relativistic Electrodynamics, a partic-

| f abelian Y Mills th is 4 topi I that involve the gauge fields [11]. Particularly these differ-
Ear case tﬁ e:. te |a}[n arllg—z ! OS tﬁoryihls ah opd|c t\r/]ery Iwe .ences are clearly observed if we contrast #i&(3) Yang-
nown in the iterature [1, 2]. On the other hand, the classi, ills theory, including color charge sources, with the Rel-

lcal pr?pg_rtlde_s c{{‘;‘n?'%b;:'an Y?Fg-l;/hlls tge?r_lte_s S a S.ltj)?]etc tivistic Classical Electrodynamics including electric charge
ess studiedin the e cory iterature. bUut iL1S possbIe 104\ caq. TheSU(3) Yang-Mills theory is described by the
find some books which perform a treatment about this SUbfoIIowing Lagrangian density:
ject [3-6]. These books give a similar emphasis to the pre- '

on-abelian gauge theories have some differences respect to

sentation of Yang-Mills equations as functions of gauge po- I T i Aa
tentials, however the introduction of these equations in terms L= _ZFWF“ +97a Al“ @)
of non-abelian electric and magnetic fields is practically ab-
where
sent [6-9].
The main goal of this paper is to present some classical Fo, = 8,A% — 9,A% + 9C&AZA5, @)

properties for non-abelian Yang-Mills theories. We can ex-

tract these properties writing the equation of motion for non-is the non-abelian field strength tensds; the gluon fields,
abelian Yang-Mills theories using the language of electricJ# the colour charge sourceS¢, the structure constants of
and magnetic fields. We write these non-abelian Maxwell'she Lie algebra associated to t§&/(3) gauge groupg the
equations in both differential and integral forms as is usuaflunning coupling constant and b, ¢ = 1,2, ...,8. The first
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term of Eq. (1) describes the kinetic energy of the eight gluorwhere we have used the fact that the color charge source can
fields and their respective auto-interactions. The seconbe written as/;; = (p*, —J) and Ay, = (A%, —A%). Ac-

term describes the interactions of the gluon fields with thecordingly the magnetic color field can be written as

fermionic fields. Applying the variational method of Classi-

cal Field Theory, we obtain that the equations of motion of B — _lgjik a
the SU(3) Yang-Mills theory with color charge sources are 2 '

_ aj 1 itk ha
OuFY” + gCLASFIY = gJ¢ = gy \ob,  (3) €ipaBY = = 5€ipee” " Fiy,
where )\, are the Gell-Mann matrices angd the fermionic €jpgBY = _1(5;55 _ 5552) a
fields. The equations of motion given by Eq. (3) represent a 2
system of non-linear equations. —€jpg BY = Fp = FP, (12)

The electric £) and magneticl(?) fields, in Classical
Electrodynamics, are defined as the components of the elethen, the second Maxwell’s equation is given by
tromagnetic field strength tensof (), in the following

form: OHFS= — gCL Abm FS 49,
= e = =8 = = @ 0 B +0' Fy=—gCi, AV B —gCf, A" i .17
B,, = _lf:-m,jFij7 (5) aOE](‘l_aiglijBal:—gCgcAbOE;
i +gC,‘chbis“de+ng@7 (13)

beingn,i,j = 1,2,3. Starting from the Lagrangian den- .
sity of the electromagnetic field with sources it is possible 0" E{+e;40' B*=—gCy. AV ES
to obtain the Yang-Mills equations using the Euler-Lagrange o abi ol “
equations. From these equations it is possible to obtain the +9Ch A" eju B 977, (14)
homogeneous Maxwell's equations. . ._which in vectorial notation can be written as [6]

In an analogous way, we consider the non-abelian
Maxwell's equations for thesU(3) Yang-Mills theory with v % Bo S Ta a b Pe a 1b o Be

2 VxB*—0,E* =gJ CLAJEC —gCp A x B°. (15

color charge sources. The non-abelian field strength tensor is ¢ 977+ 90 9%be (15)
given by Eg. (2), where the covariant non-abelian gauge fiel
is written asAf, = (A%, —A*). The electric and magnetic
color fields are defined respectively as

q‘he other two Maxwell's equations are obtained from the
definitions of the electric color fields, given by Eqg. (6); and
the magnetic color field, given by Eq. (7). These Maxwell's

Ef = Fiy = 0idf — A7 + gCpalAf, (@) eavatonsare (ol

- 1 I
Boi . _%Ew« a VB = —2gCpV - (A" x A1) (16)

1 .
= —5& (0,47 — AT + gCpALAL) () AN

- o S 1 oo
beingn,i,j = 1,2,3. In vectorial notation, the electric and V X B+ 0,B% = —59C;.0 (Ab X AC)
magnetic color fields are [7] . .
L. ) ) + 90 [V (45A9)]. @D
E* = —VAS — 0, A% 4 gCp. A A°, (8)
I H We observe that Maxwell's equations for th&/(3)
B =V x A" = 590y, (A x A ) : (9 Yang-Mills theory with color charge sources, which are given
. L ) by Egs. (11), (15), (16) and (17), do not only dependisn
In contrast with the magnetic field of Electrodynamics, thegq 53¢ put also ond® andAg. Itis clear that for the abelian

magnetic color field for th&'U(3) Yang-Mills theory can be  yng.Mills theory case, these equations do not have the de-
written as the sum of a rotor term and a non-rotor term. pendence observed before. If we piit = (p°, —Jo) =0

Using the definition of Eq. (6) in Eq. (3), we obtain that i, gqs. (11) and (15), we observe the presence of sources of
the first Maxwell’'s equation for the SU(3) Yang-Mills theory gjeciric and magnetic color fields whose origin are the gluon
with color charge sources is given by [6-9] fields. It is possible to see that the bosonic fields are charged
(10) and simultaneously are source of magnetic field, the

B¢ o Ay ES = gp® — . .
OB} + 9ChcAnEr = 90", gluonic fields have color charge.Additionally, as the diver-

or in vectorial notation gence of B non vanishing then there exist color magnetic
L o monopoles and the sources are the gluons but not the quarks.
V.-E*=gCe A" E° + gp°, (11) Itis also possible to see that the electric and magnetic color
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fields are not gauge invariant and therefore they do not have Now we present bellow the integral form of non-abelian

physical meaning. Maxwell's equations. We first integrate Egs. (11) and (16)
So as classical electrodynamics predicts the existence @iver the volume of a three-dimensional dom&irenclosed

electromagnetic waves, th€U(3) Yang-Mills theory pre- by a surfacéV, and we apply the Gauss-Ostrogradski theo-

dicts the existence of non-abelian waves associated to them. We obtain that the integral form for the equations (11)

strong interaction. These waves are the solutions of the foland (16), that are [7, 8]

lowing wave equations that can be obtained from Maxwell's

equations (see appendix): B 4§ = gCe /
AAL = g AL (8, A%, — 20, A% — gC&, AT AT).  (18) o v

mn‘tu

A Eeqv + / gpdV, (27)
14

The obtained Maxwell's equations can be extended di-and

rectly for any non-abelian Yang-Mills theory, taking in ac- S = 1 . - -
count that for aSU(N) gauge group there ar&/? — 1 ngB ~dS = _§9Cbc?{ (A" x A%)-dS. (28)
generators, beingVv the dimension group. For this rea-
son, Maxwell's equations for a non-abelian Yang-Mills the-  We consider a two-dimensional surface which is
ory are given by Egs. (11), (15), (16) and (17), takingbounded by a loog.. We calculate the flux of the vector
ab,c=1,2,...,(N?—1). For the case in which® andA® are  Egs. (15) and (17) throughi and apply Stokes theorem. We
independent fields and if there exist particular boundary conebtain the integral form for Egs. (15) and (17), that are
ditions in the problem, the solutions of the Maxwell’'s equa-
tions for a non-abel|an_Yang-M|II§ theory are unique [10]. %B‘a dl - ﬂ/ E®.dS = g/ Je.dg

In a similar way as in the abelian Yang-Mills theory case, /L dt Js s
it is required that the non-abelian gauge fields transform as

+ g0y, / AVE° . dS — gCp. / A" x B°-dS, (29)
Al(@) = U@)(Ay —ig ' 0,)U  (2),  (19) ) *Js

whereU (z) = e~#92X"(®)_ The transformation of the non- and
abelian field strength tensor has the form

§ Bedie 4 [ Bas = —jg0p
F! (2) = Ulz)F, U™ (). (20) : dt Js T gy

nv

If. we now consider an infinitesimal gauge transformation X/ ([17’ o A'C> -d§ + gC2 ?{(Agﬁ) dil . (30)
given by s ‘Ui

Ulz) ~ I —ighax® (@), (21)  Equations (27), (28), (29) and (30) represent the integral form

it is easy to prove that the non-abelian field strength tenso@f non-abelian Maxwell’s equations.
transforms as One of the most remarkable results in theoretical physics
‘o " 0 b is provided by Noether’s theorem, which establishes a rela-
Fui(x) = Fi, + 90 F, - (22) tionship among symmetries of a given action and conserved

This tensor is only invariant for the abelian case. Startingluantities of the system described by the action [12]. This
from Eq. (22), it is possible to find that the electric and mag-theorem is very important for classifying the general phys-

netic color field can be written as ical characteristics of the quantum field theories. cambiar
, , " 0 b por This theorem is very important for classifying the gen-

L= Fip = Ei + 9Cp X" E7, (23)  eral physical characteristics of quantum field theories [11]. In

, 1 1is " 0 boe electromagnetism there are only positive and negative electri-

By, = —genig I = By + 90X By, (24) cal charges that label the different kinds of matter that re-

obviously the electric and magnetic color elds are not gaugépond tq trljeteltac;rclnmagtpelrtlc f'ﬁl.d'h More k(;ntdstr?f chalrge
invariant. For this reason, these field do not have any physffElre required to 1abel particles which respond fo the nuciear
forces. With more kinds of charge, there are many more pos-

cal meaning. In similar way as the scalar and vectorial poten bilities f tion than th btained f th
tials are auxiliary constructions in electrodynamics, the elecSIPlIUES Tor conservation than the one obtained from the sum

tric and magnetic color fields do not represent measurabl8f all positive and negative electric charges [3]. This fact

quantities in the non-abelian Yang-Mills theory. For thesean be examined by the continuity equation which is obtained

theories, it is possible to identify two scalar invariant quanti-from the non-abelian Maxwell's equations. Taking the diver-

ties, which can be written down using the physical fields inge€nce of the Eq. (15) and the time derivation of Eq. (11),
(3 + 1) dimensions. These quantities are then by summing we can obtain the following expression

FS,F* =2(B* — E?), (25) Op* + V- J* = —CL[0, (A - E°)
eePpe Fo =B - E. (26) — V- (A5E°) + V- (A x B%)].  (31)
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Finally we can write the energy-momentum tensor for thethe bosonic field is charged and is alson simultaneously is

Yang-Mills fields as [3, 5,13, 14] source of magnetic field,e. the gluonic fields have color
1 . charge. Additionally, as the divergenceléf non vanishing
O = 1 (FaijaM + % gﬁFgﬂ) . (32) then there exist color magnetic monopoles and the sources
are the gluons but not the quarks. As happens with the gauge
Let us now give the physical meaning of the various compopotential in Electrodynamics, we have also found that the
nents of®,,,,. The componen®y given by [7-9] electric and magnetic color field are not gauge invariant. For
1. L L this reason, these field do not have any physical meaning.
Og = 3 (E“ -E,+ B*- Ba) , (33) In addition, we have presented the integral formulation

of non-abelian Maxwell's equations by using the Gauss-
is interpreted as the energy density. The comporépt  Ostrogradski and Stokes theorems. For these, we have first
given by built the continuity equation and then we have introduced the
1. = energy-momentum tensor as a function of electric and mag-
O, = 1 (E“ X Ba) , (34) netic color fields. The energy-momentum tensor has the same
interpretation as in electrodynamics.
is the momentum density for the non-abelian field. Finally,
the componen®;; given b
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(B B.+ B ga)) . @)
is the jth component of the momentum flow in the non- Appendix:
ab_elian field through a unit surface perpendicular to;zthg Wave equations

axis. We observe that the energy-momentum tensor in the

non-abelian case has the same interpretation as in electrodysing theSU(3)-Yang-Mills equations Eq. (3) and the def-
namics [1, 3, 5]. inition of the non-Abelian gauge field tensor Eq. (2), it is
possible to obtain:

3. Conclusions

o'Fg,
In this paper we have obtained the equations of motion for ., a a a Ab gcy _ . va gbp
the SU(3) Yang-Mills theory including color charge sources O (Ou Ay = O A+ 9C1ALAL) = —9CicA
in an analogue way as the Maxwell's equations are obtained x(Ou Ay, — 0, A7, + gCr,, AT AY),
for electrodynamics including electric charge sources. These u " by re o b
non-abelian Maxwell’s equations have been obtained for the Ay — 0" A + 9Ch0"(A;,) A7 = —gCp A
SU(3) Yang-Mills theory, but they are directly extendable for (20, A% — 8, A° + gCc,_A™A™). (36)
a SU(N) Yang-Mills theory. We have found that Maxwell's m . e
equations do not only depend @&t and B¢, but also onA*  Using the gauge of Lorentz (fixing the gauge), we obtain a
and A§. From the divergences di“ and B¢, it is possible  wave equation given by
to conclude that there exist sources of electric and magnetic
color fields which are not fermions. It is possible to see that AA{ = gC,;‘CAZ(&,A; —20,4;, — gCy,

mn

—gCp A Fi,

AAY). (37)
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