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Some classical properties of the non-abelian Yang-Mills theories
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We present some classical properties for non-abelian Yang-Mills theories that we extract directly from the Maxwell’s equations of the theory.
We write the equations of motion for theSU(3) Yang-Mills theory using the language of Maxwell’s equations in both differential and
integral forms. We show that vectorial gauge fields in this theory are non-fermionic sources for non-abelian electric and magnetic fields.
These vectorial gauge fields are also responsible for the existence of magnetic monopoles. We build the continuity equation and the energy-
momentum tensor for the non-abelian case.
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En este artı́culo se presentan algunas propiedades clásicas de las teorı́as de Yang-Mills no abelianas, que se extraen directamente de las
ecuaciones de Maxwell de la teorı́a. Obtenemos las ecuaciones de movimiento para una teorı́a de Yang-Mills del grupoSU(3) en su forma
diferencial e integral, utilizando el lenguaje de las ecuaciones de Maxwell. Mostramos que los campos gauge en esta teorı́a son fuentes
no fermíonicas para campos eléctricos y magńeticos no abelianos. Estos campos de gauge son responsables de la existencia de monopolos
magńeticos. Finalmente, se construyen la ecuación de continuidad y el tensor energı́a-impulso para el caso no abeliano.

Descriptores:Teoŕıas de Yang-Mills; ecuaciones de Maxwell; forma diferencia e integral; monopolos magnéticos.
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1. Introduction

In the context of the relativistic quantum theory of electro-
magnetism, the interaction among two electrically charged
particles is mediated through the exchange of virtual pho-
tons. Photons are the quantum excitations of the electromag-
netic field, which is a vectorial gauge field invariant under
U (1) abelian transformations. Similarly, the strong and weak
interactions are described by means of non-abelian vecto-
rial gauge fields. Field theories describing the behavior of
pure vectorial gauge fields are known as Yang-Mills theories.
Symmetries and properties of Yang-Mills theories are basic
ingredients for the theoretical treatment of the fundamental
interactions between elementary particles. The study of the
classical properties of Relativistic Electrodynamics, a partic-
ular case of abelian Yang-Mills theory, is a topic very well
known in the literature [1, 2]. On the other hand, the classi-
cal properties of non-abelian Yang-Mills theories is a subject
less studied in the field theory literature. But it is possible to
find some books which perform a treatment about this sub-
ject [3-6]. These books give a similar emphasis to the pre-
sentation of Yang-Mills equations as functions of gauge po-
tentials, however the introduction of these equations in terms
of non-abelian electric and magnetic fields is practically ab-
sent [6–9].

The main goal of this paper is to present some classical
properties for non-abelian Yang-Mills theories. We can ex-
tract these properties writing the equation of motion for non-
abelian Yang-Mills theories using the language of electric
and magnetic fields. We write these non-abelian Maxwell’s
equations in both differential and integral forms as is usual

for Maxwell’s equations of Classical Electrodynamics. We
restrict our interest to the case of theSU (3) Yang-Mills the-
ory, however the analysis is the same for any groupSU (N ).
We show that non-abelian electric and magnetic fields can be
generated by vectorial gauge fields. These vectorial gauge
fields are also responsible for the existence of magnetic
monopoles. Finally, we build the continuity equation and the
energy-momentum tensor for the non-abelian case.

2. Non-abelian Maxwell’s equations

Non-abelian gauge theories have some differences respect to
the abelian ones, as for instance the existence of a multiplicity
of gauge fields, self-interactions, and gauge transformations
that involve the gauge fields [11]. Particularly these differ-
ences are clearly observed if we contrast theSU (3) Yang-
Mills theory, including color charge sources, with the Rel-
ativistic Classical Electrodynamics including electric charge
sources. TheSU (3) Yang-Mills theory is described by the
following Lagrangian density:

L = −1
4
F a

µρF
µρ
a + gJµ

a Aa
µ, (1)

where

F a
µν = ∂µAa

ν − ∂νAa
µ + gCa

bcA
b
µAc

ν , (2)

is the non-abelian field strength tensor,Aa
µ the gluon fields,

Jµ
a the colour charge sources,Ca

bc the structure constants of
the Lie algebra associated to theSU (3) gauge group,g the
running coupling constant anda, b, c = 1, 2, ..., 8. The first
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term of Eq. (1) describes the kinetic energy of the eight gluon
fields and their respective auto-interactions. The second
term describes the interactions of the gluon fields with the
fermionic fields. Applying the variational method of Classi-
cal Field Theory, we obtain that the equations of motion of
theSU (3) Yang-Mills theory with color charge sources are

∂µFµν
b + gCa

bcA
c
µFµν

a = gJν
b = gψ̄γνλbψ, (3)

whereλb are the Gell-Mann matrices andψ the fermionic
fields. The equations of motion given by Eq. (3) represent a
system of non-linear equations.

The electric (~E) and magnetic (~B) fields, in Classical
Electrodynamics, are defined as the components of the elec-
tromagnetic field strength tensor (Fµν), in the following
form:

Ei := F0i = −F 0i = −Fi0, (4)

Bn := −1
2
εnijF

ij , (5)

being n, i, j = 1, 2, 3. Starting from the Lagrangian den-
sity of the electromagnetic field with sources it is possible
to obtain the Yang-Mills equations using the Euler-Lagrange
equations. From these equations it is possible to obtain the
homogeneous Maxwell’s equations.

In an analogous way, we consider the non-abelian
Maxwell’s equations for theSU (3) Yang-Mills theory with
color charge sources. The non-abelian field strength tensor is
given by Eq. (2), where the covariant non-abelian gauge field
is written asAa

µ = (A0a,− ~Aa). The electric and magnetic
color fields are defined respectively as

Ea
i := F a

i0 = ∂iA
a
0 − ∂0A

a
i + gCa

bcA
b
iA

c
0, (6)

Baj := −1
2
εjikF a

ik

= −1
2
εjik

(
∂iA

a
k − ∂kAa

i + gCa
bcA

b
iA

c
k

)
, (7)

beingn, i, j = 1, 2, 3. In vectorial notation, the electric and
magnetic color fields are [7]

~Ea = −~∇Aa
0 − ∂t

~Aa + gCa
bcA

b
0
~Ac, (8)

~Ba = ~∇× ~Aa − 1
2
gCa

bc

(
~Ab × ~Ac

)
. (9)

In contrast with the magnetic field of Electrodynamics, the
magnetic color field for theSU (3) Yang-Mills theory can be
written as the sum of a rotor term and a non-rotor term.

Using the definition of Eq. (6) in Eq. (3), we obtain that
the first Maxwell’s equation for the SU(3) Yang-Mills theory
with color charge sources is given by [6–9]

∂iE
a
i + gCa

bcAbiE
c
i = gρa, (10)

or in vectorial notation

~∇ · ~Ea = gCa
bc

~Ab · ~Ec + gρa, (11)

where we have used the fact that the color charge source can
be written asJa

µ = (ρa,− ~Ja) andAa
µ = (A0a,− ~Aa). Ac-

cordingly the magnetic color field can be written as

Baj = −1
2
εjikF a

ik,

εjpqB
aj = −1

2
εjpqε

jikF a
ik,

εjpqB
aj = −1

2
(δi

pδ
k
q − δk

pδi
q)F

a
ik,

−εjpqB
aj = F a

pq = F apq, (12)

then, the second Maxwell’s equation is given by

∂µF a
µj=− gCa

bcA
bµF c

µj+gJa
j ,

∂0Ea
j +∂iF a

ij=−gCa
bcA

b0Ec
j−gCa

bcA
biF c

ij+gJa
j ,

∂0Ea
j−∂iεlijB

al=−gCa
bcA

b0Ec
j

+gCa
bcA

biεlijB
cl+gJa

j , (13)

∂0Ea
j +εjil∂

iBal=−gCa
bcA

b0Ec
j

+gCa
bcA

biεjilB
cl+gJa

j , (14)

which in vectorial notation can be written as [6]

~∇× ~Ba−∂t
~Ea = g ~Ja + gCa

bcA
b
0
~Ec− gCa

bc
~Ab× ~Bc. (15)

The other two Maxwell’s equations are obtained from the
definitions of the electric color fields, given by Eq. (6); and
the magnetic color field, given by Eq. (7). These Maxwell’s
equations are [6]:

~∇ · ~Ba = −1
2
gCa

bc∇ · ( ~Ab × ~Ac) (16)

and

~∇× ~Ea + ∂t
~Ba = −1

2
gCa

bc∂t

(
~Ab × ~Ac

)

+ gCa
bc

[
~∇× (Ab

0
~Ac)

]
. (17)

We observe that Maxwell’s equations for theSU (3)
Yang-Mills theory with color charge sources, which are given
by Eqs. (11), (15), (16) and (17), do not only depend on~Ea

and ~Ba but also on~Aa andAa
0 . It is clear that for the abelian

Yang-Mills theory case, these equations do not have the de-
pendence observed before. If we putJa

µ = (ρa,− ~Ja) = 0
in Eqs. (11) and (15), we observe the presence of sources of
electric and magnetic color fields whose origin are the gluon
fields. It is possible to see that the bosonic fields are charged
and simultaneously are source of magnetic field,i e. the
gluonic fields have color charge.Additionally, as the diver-
gence of~Ba non vanishing then there exist color magnetic
monopoles and the sources are the gluons but not the quarks.
It is also possible to see that the electric and magnetic color
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fields are not gauge invariant and therefore they do not have
physical meaning.

So as classical electrodynamics predicts the existence of
electromagnetic waves, theSU (3) Yang-Mills theory pre-
dicts the existence of non-abelian waves associated to the
strong interaction. These waves are the solutions of the fol-
lowing wave equations that can be obtained from Maxwell’s
equations (see appendix):

∆Aa
ν = gCa

bcA
b
µ(∂νAc

µ − 2∂µAc
ν − gCc

mnAm
µ An

ν ). (18)

The obtained Maxwell’s equations can be extended di-
rectly for any non-abelian Yang-Mills theory, taking in ac-
count that for aSU (N ) gauge group there areN2 − 1
generators, beingN the dimension group. For this rea-
son, Maxwell’s equations for a non-abelian Yang-Mills the-
ory are given by Eqs. (11), (15), (16) and (17), taking
ab, c=1, 2, ..., (N2−1). For the case in which~Ea and ~Aa are
independent fields and if there exist particular boundary con-
ditions in the problem, the solutions of the Maxwell’s equa-
tions for a non-abelian Yang-Mills theory are unique [10].

In a similar way as in the abelian Yang-Mills theory case,
it is required that the non-abelian gauge fields transform as

A′µ(x) = U(x)(Aµ − ig−1∂µ)U−1(x), (19)

whereU(x) = e−igλaχa(x). The transformation of the non-
abelian field strength tensor has the form

F ′µν(x) = U(x)FµνU−1(x). (20)

If we now consider an infinitesimal gauge transformation
given by

U(x) ≈ I − igλaχa(x), (21)

it is easy to prove that the non-abelian field strength tensor
transforms as

F ′aµν(x) = F a
µν + gCa

bcχ
bF c

µν . (22)

This tensor is only invariant for the abelian case. Starting
from Eq. (22), it is possible to find that the electric and mag-
netic color field can be written as

E′
i := F ′i0 = Ea

i + gCa
bcχ

bEc
i , (23)

B′
n := −1

2
εnijF

′ij = Ba
n + gCa

bcχ
bBc

n, (24)

obviously the electric and magnetic color elds are not gauge
invariant. For this reason, these field do not have any physi-
cal meaning. In similar way as the scalar and vectorial poten-
tials are auxiliary constructions in electrodynamics, the elec-
tric and magnetic color fields do not represent measurable
quantities in the non-abelian Yang-Mills theory. For these
theories, it is possible to identify two scalar invariant quanti-
ties, which can be written down using the physical fields in
(3 + 1) dimensions. These quantities are

F a
µνF aµν = 2(B2 − E2), (25)

εµναβF a
µνF a

αβ = ~B · ~E. (26)

Now we present bellow the integral form of non-abelian
Maxwell’s equations. We first integrate Eqs. (11) and (16)
over the volume of a three-dimensional domainV enclosed
by a surface∂V , and we apply the Gauss-Ostrogradski theo-
rem. We obtain that the integral form for the equations (11)
and (16), that are [7,8]

∮

∂V

~Ea · d~S = gCa
bc

∫

V

~Ab · ~EcdV +
∫

V

gρadV, (27)

and
∮

∂V

~Ba · d~S = −1
2
gCa

bc

∮

∂V

( ~Ab × ~Ac) · d~S. (28)

We consider a two-dimensional surfaceS which is
bounded by a loopL. We calculate the flux of the vector
Eqs. (15) and (17) throughS and apply Stokes theorem. We
obtain the integral form for Eqs. (15) and (17), that are

∮

L

~Ba · d~l − d

dt

∫

S

~Ea · d~S = g

∫

S

~Ja · d~S

+ gCa
bc

∫

S

Ab
0
~Ec · d~S − gCa

bc

∫

S

~Ab × ~Bc · d~S, (29)

and
∮

L

~Ea · d~l +
d

dt

∫

S

~Ba · d~S = −1
2
gCa

bc

d

dt

×
∫

S

(
~Ab × ~Ac

)
· d~S + gCa

bc

[∮

L

(Ab
0
~Ac) · d~l

]
. (30)

Equations (27), (28), (29) and (30) represent the integral form
of non-abelian Maxwell’s equations.

One of the most remarkable results in theoretical physics
is provided by Noether’s theorem, which establishes a rela-
tionship among symmetries of a given action and conserved
quantities of the system described by the action [12]. This
theorem is very important for classifying the general phys-
ical characteristics of the quantum field theories. cambiar
por This theorem is very important for classifying the gen-
eral physical characteristics of quantum field theories [11]. In
electromagnetism there are only positive and negative electri-
cal charges that label the different kinds of matter that re-
spond to the electromagnetic field. More kinds of charge
are required to label particles which respond to the nuclear
forces. With more kinds of charge, there are many more pos-
sibilities for conservation than the one obtained from the sum
of all positive and negative electric charges [3]. This fact
can be examined by the continuity equation which is obtained
from the non-abelian Maxwell’s equations. Taking the diver-
gence of the Eq. (15) and the time derivation of Eq. (11),
then by summing we can obtain the following expression

∂tρ
a + ~∇ · ~Ja = −Ca

bc[∂t( ~Ab · ~Ec)

− ~∇ · (Ab
0
~Ec) + ~∇ · ( ~Ab × ~Bc)]. (31)
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Finally we can write the energy-momentum tensor for the
Yang-Mills fields as [3,5,13,14]

Θµν =
1
4

(
F α

aµFaαν +
ηµν

4
F a

αβFαβ
a

)
. (32)

Let us now give the physical meaning of the various compo-
nents ofΘµν . The componentΘ00 given by [7–9]

Θ00 =
1
8

(
~Ea · ~Ea + ~Ba · ~Ba

)
, (33)

is interpreted as the energy density. The componentΘi0

given by

Θi0 =
1
4

(
~Ea × ~Ba

)
, (34)

is the momentum density for the non-abelian field. Finally,
the componentΘii given by

Θij =
1
4

(Ea
i Eaj + Ba

i Baj

+
δij

2

(
~Ea · ~Ea + ~Ba · ~Ba

))
, (35)

is the jth component of the momentum flow in the non-
abelian field through a unit surface perpendicular to thexi-
axis. We observe that the energy-momentum tensor in the
non-abelian case has the same interpretation as in electrody-
namics [1,3,5].

3. Conclusions

In this paper we have obtained the equations of motion for
theSU (3) Yang-Mills theory including color charge sources
in an analogue way as the Maxwell’s equations are obtained
for electrodynamics including electric charge sources. These
non-abelian Maxwell’s equations have been obtained for the
SU (3) Yang-Mills theory, but they are directly extendable for
a SU (N ) Yang-Mills theory. We have found that Maxwell’s
equations do not only depend on~Ea and ~Ba, but also on~Aa

andAa
0 . From the divergences of~Ea and ~Ba, it is possible

to conclude that there exist sources of electric and magnetic
color fields which are not fermions. It is possible to see that

the bosonic field is charged and is alson simultaneously is
source of magnetic field,i.e. the gluonic fields have color
charge. Additionally, as the divergence of~Ba non vanishing
then there exist color magnetic monopoles and the sources
are the gluons but not the quarks. As happens with the gauge
potential in Electrodynamics, we have also found that the
electric and magnetic color field are not gauge invariant. For
this reason, these field do not have any physical meaning.

In addition, we have presented the integral formulation
of non-abelian Maxwell’s equations by using the Gauss-
Ostrogradski and Stokes theorems. For these, we have first
built the continuity equation and then we have introduced the
energy-momentum tensor as a function of electric and mag-
netic color fields. The energy-momentum tensor has the same
interpretation as in electrodynamics.
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Appendix:

Wave equations

Using theSU (3)-Yang-Mills equations Eq. (3) and the def-
inition of the non-Abelian gauge field tensor Eq. (2), it is
possible to obtain:

∂µF a
µν = −gCa

bcA
bµF c

µν ,

∂µ(∂µAa
ν − ∂νAa

µ + gCa
bcA

b
µAc

ν) = −gCa
bcA

bµ

×(∂µAc
ν − ∂νAc

µ + gCc
mnAm

µ An
ν ),

∆Aa
ν − ∂ν∂µAa

µ + gCa
bc∂

µ(Ab
µ)Ac

ν = −gCa
bcA

bµ

×(2∂µAc
ν − ∂νAc

µ + gCc
mnAm

µ An
ν ). (36)

Using the gauge of Lorentz (fixing the gauge), we obtain a
wave equation given by

∆Aa
ν = gCa

bcA
b
µ(∂νAc

µ − 2∂µAc
ν − gCc

mnAm
µ An

ν ). (37)
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