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Unveiling the tachyon dynamics in the Carrollian limit
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We briefly study the dynamics at classical level of the Carrollian limit, with vanishing speed of light and no possible propagation of signals,
for a simply effective action in a flat space with an open string tachyon as a scalar field. The canonical analysis of the theory indicates that
the equation of motion is of Dirac type contrary to the non-relativistic case where the equation is of Schrodinger type. The ultimate intention
is to analize the latter case with electromagnetic fluxes to find that in this case the open string tachyon cannot be interpreted as time.
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Estudiaremos brevemente la dinámica del Ĺımite de Carroll a nivel cĺasico de una acción efectiva en un espacio plano y con un campo escalar
del tipo taquíon de cuerda abierta. El análisis cańonico de la teoŕıa indica que la ecuación de movimiento es del tipo Dirac, contrario al caso
no relativista donde la ecuación es del tipo Schrödinger. Finalmente, analizaremos el caso con flujos electromagnéticos y encontraremos que
el taquíon de cuerda abierta no puede ser interpretado como el tiempo.

Descriptores:Teoŕıa de cuerdas; taquión.
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1. Introduction

In past years the role of the tachyon in certain string theories
has been explored and this has resulted in a better understand-
ing of the D-brane decaying process [1,2]. The basic idea is
that the usual open string vacuum is unstable, but there ex-
ists a stable vacuum with zero energy density which is stable,
which a tachyon fieldT (x) naturally moves to. Neverthe-
less, it seems that aspects of this process can be compared
with some simple effective field theory models. In this case,
maybe the simplest model was proposed by Sen [1]. This suc-
cess of effective action methods, together with the difficulties
of other approaches described encourages one to pursue this
further and to attempt an exact description of the cosmology
of tachyon rolling [3].

Moreover, in the case where there are electromagnetic
fluxes, the tachyon field is on the same footing as a transverse
scalar in the Dirac-Born-Infeld action for a brane [4]. In this
case we look for a solution with a constant electromagnetic
field and find that the condensed state atV (T ) → 0 is given
by Ṫ 2+E2 = 1, whereṪ means derivative with respect to the
dimensionless time of tachyon field andE = | ~E|. To under-
stand the dynamics it is convenient to follow the Hamiltonian
formulation of the theory.

The present manuscript is organized as follows. In Sec. 2

we review the role of the open string tachyon in field theory
and how this scalar field takes place in the decaying process.

In Sec. 3 we describe what we have called the Carrol-
lian limit mechanism for open string states. Since this entails
familiarity with Carroll group, I planned to include also the
Galilean group and the differences between them.

In Sec. 4 we discuss some aspects of this theory when is
coupled to gravity.

In Sec. 5 we use the low energy effective action of the
open string tachyon and take the two possible limits: first the
Galileo limit (whenc → ∞), i.e., the contravariant metric
ηµν = (−c−2, 1, 1, 1) is well defined, contrary to the Car-
rollian limit (when c → 0). For this case we obtain, in the
Hamiltonian formulation, a Dirac type equation.

In Sec. 6 we use again the effective action and consider
the case in whichFµν 6= 0 to find that the tachyon is accel-
erated and emits radiation in the direction of the electromag-
netic field.

2. Open string tachyon in field theory

To understand clearly the tachyon dynamics we take into con-
sideration a real scalar fieldφ in a flat space-time. The La-
grangian of this theory is given by
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L = −1
2
(∂φ)2 +

1
2
V (φ) , (1)

whereV (φ) is the scalar field potential. In perturbation the-
ory we usually expand the potential of the form

V (φ) = V0 + λ1φ + λ2φ
2 + λ3φ

3 + . . . , (2)

and assume thatφn becomes small as the system evolves in
time for largen. We also know thatλ2 = m2, i.e., this is a
mass term. In this expansion we have two interesting cases:
a) V ′′ (φ = 0) = λ2 > 0, i.e., m2 > 0, the theory has a
real mass spectrum. In this case, the solutions ofφn decrease
for largen over time and therefore the perturbation theory is
valid. And, b)V ′′ (φ = 0) = λ2 < 0, i.e., m2 < 0, and
the theory has an imaginary mass spectrum,i.e., a tachyon.
In this case, the solutions ofφn grow to infinity for largen
over time and as a consequence the perturbation theory is no
longer valid. The latter case indicates that the theory is un-
stable aroundφ = 0. The usual way to solve this is to find
a critical point (stable)φ = φ0, where the perturbation the-
ory must be valid and a real mass spectrum is obtained. Sen
found a clear way to study the tachyons in certain string the-
ories similar to the previous case [1]. He suggested that at an
effective theory level (low energy) the tachyons indicate the
instability of the system and correspond to decaying system
processes of open string with branes.

If we configure the system to an initial time so that the
tachyon has an initial amplitude inT = 0 we have an unsta-
ble state andV (T = 0) > 0. Any small perturbation would
allow the tachyon potential to descend and reach any of the
two minimum. In theory these two minimum are stable un-
der small perturbations in the fieldφ and its mass spectrum is
real.

On the other hand, as proposed by Sen, Gibbons sug-
gested analyzing the coupling to gravity and considering the
resulting cosmology [3,5]. In this case he found that Sen’s ac-
tion is defined with a covariant metricηµν and then the limit
of the theory is correct whenc → 0, because in this case
there exists a regular metric; this limit is the so-called Car-
rollian limit. Of course, Gibbons took this into consideration
for classical cases at the geometric level (collapse of cones of
light).

3. How does the Carrollian limit work?

The Carroll limit is defined as the limit whenc → 0, where
c, as we know, is the speed of light, which in this context is
seen as a parameter. In this limit, the resulting space is called
Carroll space-time and the symmetries of this space define a
transformation group called the Carroll group. Then, given
a theory that incorporates the speed of light as a parameter
(i.e., a relativistic theory) it is possible to make this limit, also
calledcontraction, and obtain new properties very different
from what we originally had. A well known example of this

contraction is the case of the Poincare group, in which it is
possible to get the Galilean group through the limitc → ∞.
The latter limit is physically interpreted as the unreal limit of
the theory. However, from a geometric point of view, we can
see that given the line element

ds2 = −c2dt2 + dx2
i , (3)

we introduce the covariant metric

ηµν = (−c2, 1, 1, 1), (4)

whereds2 = ηµνdxµdxν . The inverse matrix is just the con-
travariant matrix

ηµν = (−c−2, 1, 1, 1). (5)

The remarkable thing is that in the limitc → ∞, the con-
travariant metric (5) is well defined and the covariant is not,
while in the limitc → 0, the opposite happens. The first case
defines a structure called the Newton-Cartan and the second
defines a Carroll space-time.

4. Coupling to gravity

Follow the common wisdom and assume that the relevant ac-
tion in a flat space is

S =
∫

d4xL, (6)

where the Lagrangian density has the form of Born-Infeld

L = −V (T )
√
− detAµν , Aµν = ηµν + ∂µ∂νT. (7)

With this in mind, the natural way to introduce the gravita-
tional field is by hand,

S = −
∫

d4xV (T )
√−g

√
1 + gµν∂µT∂νT . (8)

The term inside the root is the metric associated to the open
string sector (i.e., only tachyonic matter)

Gµν = gµν + ∂µT∂νT. (9)

For the case when the open string tachyonT depends on time,

Gµν = diag(−1 + Ṫ 2, 1, 1, 1). (10)

As explained before, the tachyon condensate takes place in
the limit when its velocity tends to one, so (10) can be rewrit-
ten as

Gµν → diag(0, 1, 1, 1). (11)

Here the covariant metric is well defined and therefore the
tachyon condensate naturally gives us a Carroll spacetime.
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5. Sen’s action in two limits

The open string tachyon can be described by an effective ac-
tion where the flat space has a Lagrangian given by

L = −V (T )
√
−det(ηµν + ∂µT∂νT ), (12)

whereV (T ) is the tachyon potential and has a positive max-
imum at the origin and a minimum atT = T0. At this point
the potential vanishes. The Ec. (12) reproduces correctly the
asymptotic behaviourT → ±∞ for the energy density and
pressure obtained by Sen, and therefore, it is a good model to
describe the effective theory [3].

For a homogeneous tachyonT = T (t) the Eq. (12) has
the form

L = −cV (T )

√
1− Ṫ 2

c2
. (13)

We known that for the Galileo groupc →∞, so if we expand
the root and take this limit our Lagrangian can be written as

L ∼= −cV (T )

(
1− Ṫ 2

2c2
+ . . .

)
. (14)

On the other hand, if we take the Carrollian limitc → 0
over (13) the expansion of the Lagrangian is now

L ∼= −iV (T )Ṫ + . . . . (15)

Calculating the canonical momentum associated with the
tachyon we get

ΠT ≡ ∂L

∂Ṫ
= −iV (T ). (16)

From here we have the following constraint

ΦT = ΠT + iV (T ) ≈ 0, (17)

where the notation≈means weakly zero in Dirac’s language.
Due to the constraint (17), the canonical Hamiltonian is zero
and therefore the Hamiltonian of the theory (total Hamilto-
nian) is given by the product of an arbitrary function (La-
grange’s multiplier) and the constraint (17). If we impose at
quantum level the total Hamiltonian, and therefore the con-
straint, then we see that the Hamiltonian is not hermitian if
the potential is real. So, the dynamics are defined at quan-
tum level only if the potential is purely imaginary,i.e., when
there exists the creation of tachyons. At the classical level,
the solution for the tachyon is formally given by the tempo-
ral integral of Lagrange’s multiplier. As we can easily see by
calculating Hamilton’s equation using the total Hamiltonian
we can interpret the tachyon as time only if the Lagrange’s
multiplier is a constant.

6. Inclusion of fluxes

We now turn our attention to the case in whichFµν 6= 0.
Gibbons got the following Lagrangian for the tachyon con-
densationV (T ) → 0,

L = −V (T )
√
−det(ηµν + ∂µT∂νT ) + Fµν . (18)

In this last equation we only added to Eq. (12) the electro-
magnetic term. IfE = | ~E| is a constant, theṅT 2 + ~E2 → 1,
whenT → ∞. In the literature we only found the effects
of the electric field~E. In the same line, our intention is to
discuss what happens in the case when the magnetic field~B
exists. The above expresion changes in the following way:
the matrix obtained for this case is

Gµν =



−1 + Ṫ 2

c2 λE1 λE2 λE3

−λE1 1 λcB3 −λcB2

−λE2 −λcB3 1 λcB1

−λB3 λcB2 −λcB1 1


 , (19)

whereλ2 = c−2. After lengthy but otherwise straightforward
calculations, we can write the Lagrangian

L = −V (T )

×

√√√√
1−

Ṫ 2
(
1+c2 ~B2

)

c2
+ ~B2−

~E2 +
(

~E · ~B
)2

c2
. (20)

In the limit of tachyon condensation we have

Ṫ 2
(
1 + ~B2

)
+

(
~E2 − ~B2

)
+

(
~E · ~B

)2

= 1, (21)

where we considerc = 1 for simplicity. In the case proposed
by Gibbons (~B ≈ 0) we note that the tachyon is accelerated
and therefore emits radiation, and the propagation is in the di-
rection of the electric field~E. The allowed range for tachyon
velocity is then

[
0,

√
1− ~E2

]
.

In our case, the propagation of radiation occurs in the
component of the electromagnetic field, but if we consider
~E ≈ 0, it may imply thatṪ → 1; in other words, the conden-
sate is not affected in the presence of magnetic fields. This
suggests that the tachyon does not interact with this field.

It should be remarked, however, that under the presence
of a uniform electromagnetic field, the open string tachyon
cannot be interpreted as time in the sense of a Schrödinger
type equation [6] because as we can see from (21) the tachyon
does not decouple from the electromagnetic field.
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