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Brownian motion, diffusion, entropy and econophysics
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To model wealth distributions there exist models based on the Boltzmann-Gibbs distribution (BGD), which is obtained by simulating binary
economic interactions or exchanges that are similar to particle collisions in physics with conserved energy (or money in econophysics). Also,
BGD can be reproduced by numerical simulations of diffusion for many particles which experience energy fluctuations. This latter case
is analogous to non-interacting pollen particles performing Brownian motion. In order to decrease inequality, we also modify the energy-
conserved diffusion by taxing the richest agent. In all cases, we calculate the corresponding Gini inequality index and the time evolution of
the entropy to show the stability of the statistical distributions.
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1. Introduction total energy of the system. Now let us mention some impor-
tant concepts from physics and economics.

Econophysics is a new discipline that uses the ideas, con-

cepts and methods of physics to contribute to the understand-1. Boltzmann probability distribution and entropy

ing of economic and financial phenomena [1]. Although the

methodology used in this new field of research has genefth physics, if the initial number of particles and the total sys-

ated controversy [2, 3], its results have consolidated it as se€m energy are both conserved, then the Boltzmann-Gibbs

arate and autonomous discipline [4]. For example, the indistribution (BGD) is the most probable distribution corre-

equality in social systems exhibits a few statistical regulari-sponding to the maximum entropy value [13]. In general, for

ties, as in the case of income and wealth distributions ove®ny normalized probability distribution, the system entropy

a wide range of societies and time periods [5, 6]. Likewise/s given by ([13], 151):

Pareto [7] found that in some European countries the wealth n

distribution follows a power-law tail for the richest sections S=- ijLn(pi) 1)

of society. In general, the upper end (the richest) of the in- i

come and wealth distributions is believed to be described b}fvherepi is the probability at théth level of energy, and for

a power-layv, as Pareto [7] argued over 100 years ago. Mo_rg normalized discrete distributid(p), then the entropy equa-

recently, Silva and Yakovenko [8] found that the data analysqi on reads:

of income distribution in the USA reveals coexistence of two n

social classes; the large lower class is characterized by the ex- S==>"fp:)Ln(f(p:). (2)

ponential Boltzmann Gibbs distribution (BGD), and the very ¢

small upper class exhibits the power-law Pareto distributiorh_z_

with characteristic fat tails. A similar result was found in

Mexico [9] as a case of less stable emergent economies, egr 1827, the Scottish biologist R. Brown was the first to ob-

pecially in times of economic crisis. serve the random motion of pollen particles suspended in
At present, the simple model of random exchanges ofvater. Reason why, still without a theory that could ex-

wealth between agents, which generates an exponential diptain that phenomenon, the random movement of particles

tribution [10], and the model in which agents have a sav-suspended in a fluid was baptized as "Brownian motion”.

ing propensity, resulting in gamma-like distributions [11], are Subsequently,in another seemingly unrelated field of knowl-

some of the models that reliably reproduce, in a simple wayedge, the French mathematician Louis Bachelier developed

the main empirical features of the wealth distributions of realin his PhD thesis a mathematical model for the movement of

economic systems [12]. stock prices in the financial markets [14]; the new theory laid
Therefore, this paper analyzes different models that déhe foundations that would allow to understand the unusual

not conserve the total wealth of the system. In this waymovement of suspended particles, but was until 1905 that

we seek to offer another perspective of the phenomenon d&. Einstein published an article explaining how the move-

wealth distribution which involves small fluctuations of the ment that Brown observed was result of individual collisions
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of pollen particles and water molecules. Then, we perform RS e s S s
simulations similar to Brownian motion, where the system
particles or agents modify their amount of energy by small | _( L5

random variations.

1.3. The Gini inequality index

wo | -2
=
In the study of income and wealth distributions, the Gini in- &
dexG is a measure of inequality given by: g ] i
N N = ks
G- > izt Zj:l |wi — ;] 3) ! !
2NM ] L
Herez, andz; are the wealth values of agertsndj, respec-
tively; M is the total system wealth and is the number of TR AT RN TS TN SR
economic agents in the systet, by definition, is a number ° e e

between 0 and 1; where 0 corresponds to the case of perfect o . )
equality, where all agents have the same wealth and the SeEI_GU.RE 2.. Entropy of the wealth Q|str|but|on obtained with eco-
ond corresponds to the case in which one agent has all tHepmic collisions model, as a function of the number of steps.
system wealth [10]. It is known that for the case of exponen- . , , . . :
tial distribution, the Gini index has a value of 0.5 [15]. Wh"e m; andm; are th? final energy after the interaction.
With these equations, since the energy and number of agents
] o are conserved in each step, then the BGD is obtained from
2. Model 1: economic collisions any initial conditions. In Fig. 1 we show the final wealth dis-

tribution of 500 agents interactirig0 x 10* times, with initial

Ther.e IS an :_;lnalogy bet,""ee” statistical physics and ec_oe'nergy of 0.5 unit per agent, averaged over 100 realizations.
nomics in which energy is analogous to money and colli-

: . - 2 . This entropy function shows that the distribution of
sions between particles are similar to economic interactions : ; -
. . : wealth obtained by the economic collisions model reaches
between agents [10]. Then random binary interactions are . .
- . : a stable state with a maximum value of 3.2. For much larger
proposed, in which the total energy or wealth remains con-S stems I > 500) we obtained values of the Gini index
stant in each interaction. Thus, for two randomly chosen y

a0entsi andi. the economic exchange obevs the followin closer to 0.5, which is characteristic of the exponential dis-
egpressions]" 9 y gtribution, but with N = 500 is sufficient for our purposes.

Shaikh [16] and Ragab [17] argue that labor income in USA
= k(m; +m;); follows approximately an exponential BGD, while property

income follows Pareto distribution.
m; = (1 —k)(mj +m;) (4)

wherek is a uniformly distributed random number ity 1],

m; andm; are the initial energy (or wealth), respectively, 3. Model 2: diffusion model

0 1 2 3 4 5 6 In the case of the economic collisions model the energy is
100 e b 100 exactly conserved in each binary interaction as shown in
- L Eqg. 4. Now, if we focus our attention on the system formed
80 | a6 by the pollen patrticles, then each pollen particle can receive

or concede energy from interacting with much smaller fluid

By making use of a symmetric distribution, with respect to
zero,m}, is given by:

E | I molecules. In other words, each pollen particles exhibits a
& =Bl random motion but there is no direct interaction among pollen
5 - particles. That is, each pollen particle receives or gives a
L: L a0 small random value of energy, called energy fluctuation.

2

z

- 20
/ :
m; =m; + J;
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FIGURE 1. Approximation of the exponential distribution with SFnce we want to r?Proquce the exponential diStribUt_ion (see
Gini index close to 0.5, as a result of simulations of the economicFig. 1) with this diffusion model, we have to restrict the
collisions model. values ofm/ to be positive. Therefore, we have to propose a

Rev. Mex. 5. E 65(2019) 1-6



BROWNIAN MOTION, DIFFUSION, ENTROPY AND ECONOPHYSICS 3

s : 3 “ : form distribution with 0.5 units of energy per agent, so after
100 independent realizations, with 500 agents afidk 10°
values of random fluctuationsin each simulation, the aver-
age result is shown in Fig. 3. Since the number of agents is
very small, then the histogram curve is not so smooth, using
for each histogram 100 bins configuration.

This distribution has a Gini index close to 0.5 (0.4969), so
itis similar to an exponential distribution. Figure 4 shows the
corresponding semi-log graph of the distribution with an ad-
justment valuek = 0.9709, confirming that the distribution
is nearly exponential.
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3.1. Approximated conservation of energy and entropy
evolution

[=]

énergy,: ’ ° Unlike the case of binary collisions presented in model 1, the

total energy of the pollen particles changes in the diffusion
process presented in this section. However, the total energy
in this model is almost conserved because the distribution of
the fluctuations) is symmetric. In other words, energy is fi-
mechanism whem; < 0 becausé is negative and has an nally conserved within a small margin of error because after

absolute value greater thar. Ifin a given step this happens, n, steps the total energlj; is modified according to the fol-
then we stop this command and another agenis randomly  |owing expression:

chosen to decrease its value by subtracting the same amount n

|6]. But if it again happens that in one determined step Ein)=N=xe+ Zéi;
this new agent cannot absorb this energy “loss”, then another 3
agent has to be selected, and so on, until an agent can sustain sicl-ed and ic[l n] ©6)
the loss. Therefore, this mechanism generates an indirect in- ¢ ’ B

teraction between the agent whose wealth would be negativehere N is the number of agents,is the initial energy per
and the agent who finally receives the loss, because it is sinagentn is the number of steps argis the modification cor-
ilar to an exchange in which an amoyat of money pass responding to théth step. The normalized total fluctuation
from the wealthier agent to the poorer and the total systens:

wealth is conserved. Finally, notice that in order to not affect S

the overall conservation of energy, this cyclic procedure does Frota = ﬁ, )

not change the value dfin the process. o v
Each simulation or realization is different because agent¥? the limit whenn tends to infinity, o1, converges to
and fluctuations are chosen randomly. We start with a uniZ&ro: which assures that for a considerably large number of
steps, the final energy is very close to the initial energy. We

obtained a value of}.;,; = 1.26 x 10~2 averaged over 100

-

FIGURE 3. Average distribution of energy resulting from the
simulations of the diffusion model whitth.5 x 10° steps,é €
[-0.1,0.1].
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FIGURE 4.Semi-log graph of the average energy distribution cor- FIGURE 5. Average system energy with respect to the number of
responding to the diffusion model. steps obtained from the diffusion model.
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FIGURE 6. Entropy evolution, as function of the number of steps,
resulting from the simulations of the diffusion model.

simulations, thus reinforcing the hypothesis of the almost
perfect final conservation of energy. Figure 5 shows that the
sum of all the fluctuations, and Fig. 5 shows that the system

entropy reaches a maximum value and then remains constar 0.15 4

showing stability.

In next sections we simulate the heating (and cooling) the
fluid in which the particles are immersed by slowly adding
(or subtracting) energy.

4. Model 3: adding energy

Number of agents N

To show the effect of energy conservation through the diffu-
sion model, we can consider asymmetric intervalssfolFor

the cases where energy is added, thaf is, [—¢ + v, €] or

d € [—€,e+7], where0 < v < eis the asymmetry factor, we
obtain that their distribution does not preserve the exponen-
tial form, and the Gini index is different to 0.5 (G=0.3114),
as shown in Fig. 7.
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FIGURE 8. Entropy for the case of addition of energy.= 0.1,
~ = 0.01 and5.0 x 10° steps.

G=0.5084

~0.15

0.1

- 0.05

Energy m

Figure 8 shows that the system entropy keeps indefinitely = 0.1, v = 0.01 and1.5 x 10° steps.

increasing, which means that the steady state is not reached.

0 1 2 3 4

FIGURE 9. Asymmetric case for the subtraction of energy model.
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5. Model 4: subtracting energy

For the cases when energy is subtracted ((—e — v, €] or

0 € [—€,e — 7]), we obtain that the system energy slowly
goes to zero and keeps the exponential form with a Gini in-
dex close to 0.5 (G=0.5084), as can be shown in Fig. 9 and
10 shows the corresponding entropy. Notice that the change
of the entropy is lager in model 3 than in model 4.

6. Model 5: richest agent always helps poorer
agents

We modify the diffusion model for the case wher) is nega-

FIGURE 7. Asymmetric cases for the addition of energy model. tive. Instead of reassigning the fluctuation to random agents,

e=0.1,7=0.01 and5.0 x 10° steps.

now the energy fluctuation is subtracted from the agent with
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FIGURE 10. Entropy for the case of subtraction of energy- 0.1,

v = 0.01 and1.5 x 10° steps.
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FIGURE 11. Average wealth distribution resulting from the
model 5. The symmetric fluctuations have & 0.1.
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FIGURE 12. Entropy of the wealth distribution in which a rich

agent always helps poorer agents.

the greatest energy, so in this model we try to decrease in-
equalities. With this new condition, we simulate a system
with 100 agents which have an initial energy of 0.5 units each
and whose energy is modifigd) x 10° times. The result av-
eraged over 100 realizations is shown in Fig. 11.

The distribution obtained from model 5 is not similar to
that of the diffusion model (see Fig. 3) and has a G value
of 0.3341. We obtained a very compact energy or wealth
distribution, and the distribution is stable since the entropy
function reaches a maximum value which remains constant
as shown in Fig. 12, with higher values of entropy and larger
entropy fluctuation than in all previous models.

It is important to mention that any model involving eco-
nomic taxes (similar to the well-known energy selection pro-
cess known as the Maxwell demon) is not easy to reproduce
in a real physical system, like a particle gas.

7. Discussion and conclusions

We simulated many different processes: binary collisions,
diffusion under symmetric and asymmetric energy fluctua-
tions, and a model in which we avoid negative energy values
by taxing the richest agent. We used the collision model as a
reference model to point out that in a system with fixed num-
ber of agents and total wealth, the final wealth distribution is
the BGD, which is an exponential, and its entropy shows us
the stability of the system. For the analysis of our models, the
Gini index was used to quantitatively compare the similarity
of the distribution obtained with the exponential Boltzmann-
Gibbs distribution whose Gini index has a known value of
0.5. Additionally, the Gini index provides information on the
degree of inequality in wealth distribution. So th&twas a
relevant parameter for the study of our distributions.

The main difference between our models and the widely
known traditional models [10,11] lies in the condition of
wealth conservation. In contrast with the all-step strict energy
conservation in the binary collision model, the interactions in
the diffusion models do not conserve energy; this is because,
at each step, an agent undergoes a small random change (or
fluctuation) in his wealth (or energy) that is not the result of
an exchange with another agent.

The diffusion model is similar to that of pollen particles
suspended in a fluid; however, the total energy of the pollen
particles (or agents) is approximately conserved whes
distributed in a symmetric interval around zei®., when
the expectation value of is zero. On the other hand, to
simulate the heating or cooling of the environment, we em-
ployed asymmetri@ distribution. If the expectation value
of such distribution is positive, the system gains energy, the
entropy grows very fast, and the distribution obtained is not
exponential-like, as shown in Figs. 7 and 9. If this expecta-
tion value is negative, then the system loses energy and the
obtained distribution is exponential-like, but it is not stable,
as shown by the entropy evolution in Figs. 8 and 10.
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Notice that, in all our models, if an agent’s wealth would In summary, the exponential distribution is very robust.
become negative (because the fluctuatios negative and It is obtained even if the total system energy or wealth is
larger than agent energy), we seek for “richer” agents untihot conserved as in the case of subtracting energy. Neverthe-
we found one with an energy larger th&nThen, instead of less, if we reduce the freedom of the interactions by affecting
randomly selecting an agent to reassign the fluctuation, wa specific group of elements or by limiting the exchange of
use a very simple model in which we select the richest agennhoney, then the distribution can change substantially. Some
in that step to help the poorer agent. So, the mechanism usedstrictions on the freedom in economic exchanges produce
for this purpose affects the shape of the distribution obtainednore drastic modifications on the final distributions than oth-
as can be seen when comparing Fig. 3, which shows an exers, but the exponential distribution seems to be pretty robust
ponential distribution, with Fig. 11. in which a more com- to changes due to the fundaments of the theory of probability.
pact distribution of wealth is observed. On the other hand, an We hope that this work may stimulate further research in
increase in the maximum value reached by the entropy is oldiffusion processes, econophysics systems and related phe-
served, which is a consequence of the special consideratiom®mena.
of the model. It is important to emphasize that, in this reas-
signment process, an indirect interaction is created becau%(;knowledgments
the fluctuation is exchanged from one agent to another. Fur-

thermore, this exchange does keep constant the system &= acknowledge the partial financial support provided by
ergy and, therefore, the mechanism is similar to an economigAPA-UNAM, Mexico, through Grant No. IN101817, and
collision. thank A. Shaikh for useful discussions.
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