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Brownian motion, diffusion, entropy and econophysics
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To model wealth distributions there exist models based on the Boltzmann-Gibbs distribution (BGD), which is obtained by simulating binary
economic interactions or exchanges that are similar to particle collisions in physics with conserved energy (or money in econophysics). Also,
BGD can be reproduced by numerical simulations of diffusion for many particles which experience energy fluctuations. This latter case
is analogous to non-interacting pollen particles performing Brownian motion. In order to decrease inequality, we also modify the energy-
conserved diffusion by taxing the richest agent. In all cases, we calculate the corresponding Gini inequality index and the time evolution of
the entropy to show the stability of the statistical distributions.
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1. Introduction

Econophysics is a new discipline that uses the ideas, con-
cepts and methods of physics to contribute to the understand-
ing of economic and financial phenomena [1]. Although the
methodology used in this new field of research has gener-
ated controversy [2,3], its results have consolidated it as sep-
arate and autonomous discipline [4]. For example, the in-
equality in social systems exhibits a few statistical regulari-
ties, as in the case of income and wealth distributions over
a wide range of societies and time periods [5, 6]. Likewise,
Pareto [7] found that in some European countries the wealth
distribution follows a power-law tail for the richest sections
of society. In general, the upper end (the richest) of the in-
come and wealth distributions is believed to be described by
a power-law, as Pareto [7] argued over 100 years ago. More
recently, Silva and Yakovenko [8] found that the data analysis
of income distribution in the USA reveals coexistence of two
social classes; the large lower class is characterized by the ex-
ponential Boltzmann Gibbs distribution (BGD), and the very
small upper class exhibits the power-law Pareto distribution
with characteristic fat tails. A similar result was found in
Mexico [9] as a case of less stable emergent economies, es-
pecially in times of economic crisis.

At present, the simple model of random exchanges of
wealth between agents, which generates an exponential dis-
tribution [10], and the model in which agents have a sav-
ing propensity, resulting in gamma-like distributions [11], are
some of the models that reliably reproduce, in a simple way,
the main empirical features of the wealth distributions of real
economic systems [12].

Therefore, this paper analyzes different models that do
not conserve the total wealth of the system. In this way,
we seek to offer another perspective of the phenomenon of
wealth distribution which involves small fluctuations of the

total energy of the system. Now let us mention some impor-
tant concepts from physics and economics.

1.1. Boltzmann probability distribution and entropy

In physics, if the initial number of particles and the total sys-
tem energy are both conserved, then the Boltzmann-Gibbs
distribution (BGD) is the most probable distribution corre-
sponding to the maximum entropy value [13]. In general, for
any normalized probability distribution, the system entropy
is given by ( [13], 151):

S = −
n∑

i

piLn(pi) (1)

wherepi is the probability at thei-th level of energy, and for
a normalized discrete distributionf(p), then the entropy equa-
tion reads:

S = −
n∑

i

f(pi)Ln(f(pi)). (2)

1.2. Brownian motion

In 1827, the Scottish biologist R. Brown was the first to ob-
serve the random motion of pollen particles suspended in
water. Reason why, still without a theory that could ex-
plain that phenomenon, the random movement of particles
suspended in a fluid was baptized as ”Brownian motion”.
Subsequently,in another seemingly unrelated field of knowl-
edge, the French mathematician Louis Bachelier developed
in his PhD thesis a mathematical model for the movement of
stock prices in the financial markets [14]; the new theory laid
the foundations that would allow to understand the unusual
movement of suspended particles, but was until 1905 that
A. Einstein published an article explaining how the move-
ment that Brown observed was result of individual collisions
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of pollen particles and water molecules. Then, we perform
simulations similar to Brownian motion, where the system
particles or agents modify their amount of energy by small
random variations.

1.3. The Gini inequality index

In the study of income and wealth distributions, the Gini in-
dexG is a measure of inequality given by:

G =

∑N
i=1

∑N
j=1 |xi − xj |

2NM
(3)

Herexi andxj are the wealth values of agentsi andj, respec-
tively; M is the total system wealth andN is the number of
economic agents in the system.G, by definition, is a number
between 0 and 1; where 0 corresponds to the case of perfect
equality, where all agents have the same wealth and the sec-
ond corresponds to the case in which one agent has all the
system wealth [10]. It is known that for the case of exponen-
tial distribution, the Gini index has a value of 0.5 [15].

2. Model 1: economic collisions

There is an analogy between statistical physics and eco-
nomics in which energy is analogous to money and colli-
sions between particles are similar to economic interactions
between agents [10]. Then random binary interactions are
proposed, in which the total energy or wealth remains con-
stant in each interaction. Thus, for two randomly chosen
agentsi and j, the economic exchange obeys the following
expressions:

m′
j = k(mj + mi);

m′
i = (1− k)(mj + mi) (4)

wherek is a uniformly distributed random number in[0, 1],
mi andmj are the initial energy (or wealth), respectively,

FIGURE 1. Approximation of the exponential distribution with
Gini index close to 0.5, as a result of simulations of the economic
collisions model.

FIGURE 2. Entropy of the wealth distribution obtained with eco-
nomic collisions model, as a function of the number of steps.

while m′
i andm′

j are the final energy after the interaction.
With these equations, since the energy and number of agents
are conserved in each step, then the BGD is obtained from
any initial conditions. In Fig. 1 we show the final wealth dis-
tribution of 500 agents interacting5.0×104 times, with initial
energy of 0.5 unit per agent, averaged over 100 realizations.

This entropy function shows that the distribution of
wealth obtained by the economic collisions model reaches
a stable state with a maximum value of 3.2. For much larger
systems (N À 500) we obtained values of the Gini index
closer to 0.5, which is characteristic of the exponential dis-
tribution, but withN = 500 is sufficient for our purposes.
Shaikh [16] and Ragab [17] argue that labor income in USA
follows approximately an exponential BGD, while property
income follows Pareto distribution.

3. Model 2: diffusion model

In the case of the economic collisions model the energy is
exactly conserved in each binary interaction as shown in
Eq. 4. Now, if we focus our attention on the system formed
by the pollen particles, then each pollen particle can receive
or concede energy from interacting with much smaller fluid
molecules. In other words, each pollen particles exhibits a
random motion but there is no direct interaction among pollen
particles. That is, each pollen particle receives or gives a
small random value of energyδ, called energy fluctuation.
By making use of a symmetric distribution, with respect to
zero,m′

i is given by:

m′
i = mi + δ;

δ ∈ [−ε, ε]. (5)

Since we want to reproduce the exponential distribution (see
Fig. 1) with this diffusion model, we have to restrict the
values ofm′

i to be positive. Therefore, we have to propose a
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FIGURE 3. Average distribution of energy resulting from the
simulations of the diffusion model whith1.5 × 105 steps,δ ∈
[−0.1, 0.1].

mechanism whenm′
i < 0 becauseδ is negative and has an

absolute value greater thanmi. If in a given step this happens,
then we stop this command and another agentmj is randomly
chosen to decrease its value by subtracting the same amount
|δ|. But if it again happens that in one determined step
this new agent cannot absorb this energy “loss”, then another
agent has to be selected, and so on, until an agent can sustain
the loss. Therefore, this mechanism generates an indirect in-
teraction between the agent whose wealth would be negative
and the agent who finally receives the loss, because it is sim-
ilar to an exchange in which an amount|δ| of money pass
from the wealthier agent to the poorer and the total system
wealth is conserved. Finally, notice that in order to not affect
the overall conservation of energy, this cyclic procedure does
not change the value ofδ in the process.

Each simulation or realization is different because agents
and fluctuations are chosen randomly. We start with a uni-

FIGURE 4.Semi-log graph of the average energy distribution cor-
responding to the diffusion model.

form distribution with 0.5 units of energy per agent, so after
100 independent realizations, with 500 agents and1.5× 105

values of random fluctuationsδ in each simulation, the aver-
age result is shown in Fig. 3. Since the number of agents is
very small, then the histogram curve is not so smooth, using
for each histogram 100 bins configuration.

This distribution has a Gini index close to 0.5 (0.4969), so
it is similar to an exponential distribution. Figure 4 shows the
corresponding semi-log graph of the distribution with an ad-
justment valueR = 0.9709, confirming that the distribution
is nearly exponential.

3.1. Approximated conservation of energy and entropy
evolution

Unlike the case of binary collisions presented in model 1, the
total energy of the pollen particles changes in the diffusion
process presented in this section. However, the total energy
in this model is almost conserved because the distribution of
the fluctuationsδ is symmetric. In other words, energy is fi-
nally conserved within a small margin of error because after
n steps the total energyEt is modified according to the fol-
lowing expression:

Et(n) = N ∗ e +
n∑

i

δi;

δi ∈ [−ε, ε] and i ∈ [1, . . . , n] (6)

whereN is the number of agents,e is the initial energy per
agent,n is the number of steps andδi is the modification cor-
responding to thei-th step. The normalized total fluctuation
is:

Ftotal =
∑n

i δi∑n
i |δi| ; (7)

In the limit when n tends to infinity,Ftotal converges to
zero, which assures that for a considerably large number of
steps, the final energy is very close to the initial energy. We
obtained a value ofFtotal = 1.26× 10−3 averaged over 100

FIGURE 5. Average system energy with respect to the number of
steps obtained from the diffusion model.
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FIGURE 6. Entropy evolution, as function of the number of steps,
resulting from the simulations of the diffusion model.

simulations, thus reinforcing the hypothesis of the almost
perfect final conservation of energy. Figure 5 shows that the
sum of all the fluctuations, and Fig. 5 shows that the system
entropy reaches a maximum value and then remains constant
showing stability.

In next sections we simulate the heating (and cooling) the
fluid in which the particles are immersed by slowly adding
(or subtracting) energy.

4. Model 3: adding energy

To show the effect of energy conservation through the diffu-
sion model, we can consider asymmetric intervals forδ. For
the cases where energy is added, that is,δ ∈ [−ε + γ, ε] or
δ ∈ [−ε, ε+γ], where0 < γ < ε is the asymmetry factor, we
obtain that their distribution does not preserve the exponen-
tial form, and the Gini index is different to 0.5 (G=0.3114),
as shown in Fig. 7.

Figure 8 shows that the system entropy keeps indefinitely
increasing, which means that the steady state is not reached.

FIGURE 7. Asymmetric cases for the addition of energy model.
ε = 0.1, γ = 0.01 and5.0× 105 steps.

FIGURE 8. Entropy for the case of addition of energy.ε = 0.1,
γ = 0.01 and5.0× 105 steps.

FIGURE 9. Asymmetric case for the subtraction of energy model.
ε = 0.1, γ = 0.01 and1.5× 105 steps.

5. Model 4: subtracting energy

For the cases when energy is subtracted (δ ∈ [−ε − γ, ε] or
δ ∈ [−ε, ε − γ]), we obtain that the system energy slowly
goes to zero and keeps the exponential form with a Gini in-
dex close to 0.5 (G=0.5084), as can be shown in Fig. 9 and
10 shows the corresponding entropy. Notice that the change
of the entropy is lager in model 3 than in model 4.

6. Model 5: richest agent always helps poorer
agents

We modify the diffusion model for the case whenm′
j is nega-

tive. Instead of reassigning the fluctuation to random agents,
now the energy fluctuation is subtracted from the agent with
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FIGURE 10. Entropy for the case of subtraction of energy.ε = 0.1,
γ = 0.01 and1.5× 105 steps.

FIGURE 11. Average wealth distribution resulting from the
model 5. The symmetric fluctuations have ae = 0.1.

FIGURE 12. Entropy of the wealth distribution in which a rich
agent always helps poorer agents.

the greatest energy, so in this model we try to decrease in-
equalities. With this new condition, we simulate a system
with 100 agents which have an initial energy of 0.5 units each
and whose energy is modified5.0×105 times. The result av-
eraged over 100 realizations is shown in Fig. 11.

The distribution obtained from model 5 is not similar to
that of the diffusion model (see Fig. 3) and has a G value
of 0.3341. We obtained a very compact energy or wealth
distribution, and the distribution is stable since the entropy
function reaches a maximum value which remains constant
as shown in Fig. 12, with higher values of entropy and larger
entropy fluctuation than in all previous models.

It is important to mention that any model involving eco-
nomic taxes (similar to the well-known energy selection pro-
cess known as the Maxwell demon) is not easy to reproduce
in a real physical system, like a particle gas.

7. Discussion and conclusions

We simulated many different processes: binary collisions,
diffusion under symmetric and asymmetric energy fluctua-
tions, and a model in which we avoid negative energy values
by taxing the richest agent. We used the collision model as a
reference model to point out that in a system with fixed num-
ber of agents and total wealth, the final wealth distribution is
the BGD, which is an exponential, and its entropy shows us
the stability of the system. For the analysis of our models, the
Gini index was used to quantitatively compare the similarity
of the distribution obtained with the exponential Boltzmann-
Gibbs distribution whose Gini index has a known value of
0.5. Additionally, the Gini index provides information on the
degree of inequality in wealth distribution. So that,G was a
relevant parameter for the study of our distributions.

The main difference between our models and the widely
known traditional models [10,11] lies in the condition of
wealth conservation. In contrast with the all-step strict energy
conservation in the binary collision model, the interactions in
the diffusion models do not conserve energy; this is because,
at each step, an agent undergoes a small random change (or
fluctuation) in his wealth (or energy) that is not the result of
an exchange with another agent.

The diffusion model is similar to that of pollen particles
suspended in a fluid; however, the total energy of the pollen
particles (or agents) is approximately conserved whenδ is
distributed in a symmetric interval around zero,i.e., when
the expectation value ofδ is zero. On the other hand, to
simulate the heating or cooling of the environment, we em-
ployed asymmetricδ distribution. If the expectation value
of such distribution is positive, the system gains energy, the
entropy grows very fast, and the distribution obtained is not
exponential-like, as shown in Figs. 7 and 9. If this expecta-
tion value is negative, then the system loses energy and the
obtained distribution is exponential-like, but it is not stable,
as shown by the entropy evolution in Figs. 8 and 10.
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Notice that, in all our models, if an agent’s wealth would
become negative (because the fluctuationδ is negative and
larger than agent energy), we seek for “richer” agents until
we found one with an energy larger thanδ. Then, instead of
randomly selecting an agent to reassign the fluctuation, we
use a very simple model in which we select the richest agent
in that step to help the poorer agent. So, the mechanism used
for this purpose affects the shape of the distribution obtained,
as can be seen when comparing Fig. 3, which shows an ex-
ponential distribution, with Fig. 11. in which a more com-
pact distribution of wealth is observed. On the other hand, an
increase in the maximum value reached by the entropy is ob-
served, which is a consequence of the special considerations
of the model. It is important to emphasize that, in this reas-
signment process, an indirect interaction is created because
the fluctuation is exchanged from one agent to another. Fur-
thermore, this exchange does keep constant the system en-
ergy and, therefore, the mechanism is similar to an economic
collision.

In summary, the exponential distribution is very robust.
It is obtained even if the total system energy or wealth is
not conserved as in the case of subtracting energy. Neverthe-
less, if we reduce the freedom of the interactions by affecting
a specific group of elements or by limiting the exchange of
money, then the distribution can change substantially. Some
restrictions on the freedom in economic exchanges produce
more drastic modifications on the final distributions than oth-
ers, but the exponential distribution seems to be pretty robust
to changes due to the fundaments of the theory of probability.

We hope that this work may stimulate further research in
diffusion processes, econophysics systems and related phe-
nomena.
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Rodŕıguez, R. Mansilla-Corona,Physica A: Statistical Me-
chanics and its Applications, 465(2017) 403-413.

10. V. M. Yakovenko, A. A. Dragulescu,European Physical Jour-
nal B, 17 (2000) 723-729

11. A. Chakraborti, B. K. Chakrabarti,European Physical Journal,
B, 17 (2000) 167-170

12. B. K. Chakrabartiet al., Econophysics of Income and Wealth
Distributions. (New York, Cambridge University Press, 2013)
pp 3-17.

13. W. Greiner, L. Neise, H. Stocker,Thermodynamics and statisti-
cal mechanics.(Trans: D. Rischke, Springer, corrected second
printing, 1997), Cap. 5, p. 151.
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