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Scattering matrix of elliptically polarized waves

M. Martinez-Mares and E. Casta
Departamento deiBica, Universidad Adtnoma Metropolitana-lztapalapa,
Apartado Postal 55-534, &kico D.F.,, 09340, Mxico.

Recibido el 11 de junio de 2010; aceptado el 3 de septiembre de 2010

We analyze the scattering of elliptically polarized plane waves normally incident at the planar interface between two different materials;
we consider two cases: dielectric-dielectric and dielectric-conductor interfaces. The scefteratgx in both cases is obtained using the
boundary conditions and Poynting’s theorem. In the dielectric-dielectric case weSaritimg two different basis, the usuaj and a rotated

one. For the dielectric-conductor interface, the use of the rotated basis together with an energy balance argument leads us, in a natural wa:
to construct a unitary matrix after recognizing the need to introduce two equivalent parasitic channels due to dissipation in the conductor,
and the transmission coefficient into these parasitic channels measures the absorption strength.

Keywords:Electromagnetic waves; scattering; polarization; absorption.

Analizamos la disperén de ondas electromagticas que inciden normalmente sobre una interfaz plana entre dos diferentes materiales;
consideramos dos casos: interfaz @alico-dieéctrico e interfaz diéctrico-conductor. En ambos casos obtenemos la matriz S al usar las
condiciones de frontera y el teorema de Poynting. En el caseatiilo-dieéctrico escribimos a S usando dos diferentes bases, la usual xy

y una rotada. Para la interfaz dietrico-conductor, el usar la base rotada junto con un argumento de balance d& eoehgva, de manera
natural, a construir un matriz S que es unitaria désple reconocer la necesidad de introducir dos canalestEarsisequivalentes entrg s

que son debidos a la disipacien el conductor, siendo el coeficiente de trangmibiacia estos canales pdta®s la medida de la capacidad

de absordn del conductor mismo.

Descriptores:Ondas electromagticas; disperéin; polarizadbn; absordn.

PACS: 41.20.Jb; 42.25.Bs; 42.25.Fx; 42.25.Gy; 42.25.Ja

1. Introduction when dealing with problems where the flux is not conserved
it then becomes natural to extend tBematrix to a unitary
The scattering of waves has attracted much attention even bene by increasing its dimensions to include dissipation chan-
fore being an object of scientific inquiry since the observatiornels [8,10].
of these phenomena is fascinating and even pleasurable. Take In a previous publication, [10] we addressed the scatter-
for example, the observation of water waves moving on théng of linearly polarized plane waves with normal incidence
surface of a pond, where diffraction and interference effect@t the planar interface of two media for two different cases,
give origin to very interesting patterns. Nowadays, scatteringne with a dielectric-dielectric interface, and another with a
phenomena are used in general to study how a wave and a talielectric-conductor interface. This was done using Poynt-
get are transformed by their mutual interaction; in such a wayng’s theorem at the interface to define &mmatrix; for the
that we extract very useful information about the structure oflissipative case, dielectric-conductor interface, the scattering
the target and the character of the wave itself [1,2]. matrix becomes sub-unitang, since the energy flux is not

In wave phenomena, either classical or quantum, the disconserved. In this last case, we were able to wis part
persion is mainly characterized, in an elegant and compa@' @ unitaryS' matrix by the introduction of a single “para-
way, by the scattering matrix, that describes the transfor- sitic channel” related to the energ_ydlssmatlon m_th_e conduc-
mation of an incoming wave into an outgoing one due to thet_or- However,_ that work on_ly co_nS|dered normal |_nC|dence of
interactions with a particular target [3,4]. This has been usedn€arly polarized waves; in this work, we consider a more
to discover the inner structure of many different objects rang9eneral case: elliptically polarized waves. .
ing from macroscopic crystals, DNA molecules, down to sys- In order to be self contained, in the next section we sum-

tems of atomic and nuclear sizes, and even smaller dimerfDarize the main ideas concerning Poynting’s theorem. In
sions [5,6]. Sec. 3 we employ this theorem and the boundary conditions

at the surface of two dielectrics to define a scattering matrix.
ec. 4 is devoted to the dielectric-conductor interface where

variations, either in time or space, of the dielectric func- . . .
S Co ; . . Poynting’s theorem helps us extend the sub-unitary scattering
tion; [7] if this function is real ther§ is unitary since the en- . .

matrix to a unitary one.

ergy flux is conserved. However, in the presence of an energy
sink the energy is not conserved as it happens in metals due

to dissipation. In this case the dielectric function is complex2. Energy balance equation

and, therefore$ is a sub-unitary matrix. A large majority of

the work on scattering has been done with unitdrgnatri-  Assuming a harmonic time dependence of the electric
ces in problems where the flux is a conserved quantity, ani(r,¢), magneticH(r, ¢t), and density currend(r,¢) com-

In electromagnetic phenomena scattering is produced b
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plex fields, the time-averaged Poynting’s theorem is given by
the real part of the equation [10]

VSp(r) = 530 B (), @ By

where 1 kz
Sp(r) = iE(r) x H*(r) 2

(+)

is the time-averaged Poynting’s vector. The right hand side ’
of Eq. (1) is the negative of the time-averaged work done by EY
the fields, per unit of volume and per unit of time, and repre-

sents the conversion of electromagnetic energy to thermal (or —kz

mechanical) energy. The integral of Eq. (1) over a voldrme i e p

enclosed by a surface gives (only the real part is physically Ey X

relevant) 4 -
¢ =-w, 3 z

FIGURE 1. Elliptically polarized waves normally incident at the

where, planar separation between two dielectrics with indices of refraction
(S j{ Sp(r) -nda, (4) n andn’.
b
is the net flux® of Sp(r) throughX, and where ¢, is the phase difference betweenandy compo-
) nents, beingy and 5 real numbers whose squares add up to
W = f/ J(r) - E*(r)dV, (5) one,
2Jv o’ + 62 =1; ©

is the time-averaged rate of work done by the fields if therey, s the magnitude of the electric field of the incident plane
are dissipative processes in the system. wave forz < 0

2.1. Energy flux conservation Eo.=Fu:x+FEuyy. (10)

When there is no dissipatiod,- E* = 0, and thereforéV is

. Similarly, on the right hand side, > 0, we have that
zero, and the energy flux is conserved:

E'(2) = (Bp%+ E},3) "

$ = 0. (6)
This means that the net flux crossing into the system equals + (FaaX + Byy3) e (1)
the one leaving it. wherek’ = n'w/c and

3. Dielectric-dielectric interface E,, =d'E, and E,, =pE,¢%,  (12)
3.1. Linear zy polarization basis whereg), is the phase difference arig, is the magnitude of
Lets take thery-plane as the surface that separates two di- E,=E, x+E,y, (13)

electrics with indices of refraction andn’, as shown in

Fig. 1. We consider a normally incident plane wave whichanda’ andj’ satisfy an equation equivalent to (9).

is the superposition of two linearly polarized waves, one in  Equations (8) and (12) can be written in a matrix form
the x-direction and the other one in tiyedirection, what we

call z — y basis. ( B ) _D, ( E, )
Therefore, the spatial part of the electric field fok 0 Eiy E,
is given by and
E(2) = (EawX + Ea0y¥) € + (EpoX + Epyy) e, (7) Ea, E,
E/( = DB B , (14)
ay a

wherek = nw/c; the subindex: denotes incoming waves
andb outgoing ones. Since we are using an elliptically polar-ywhere
ized wave we have that

D o—( 0
E,, =akE, and E., = BE, ei¢a7 (8) a = 0 o
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being the2 x 2 scattering matrix for normal incidence of a sin-

gle linearly polarized plane wave (it was nameth Ref. 10).
The scattering,, matrix defined in Eq. (24), is& x 4

unitary and symmetric matrix becausg is itself a2 x 2

(15)

which, in correspondence with Eq. (9) must satisfy the fol-unitary and symmetric matrix [10]. Therefore, flux conser-

lowing condition

D%+ D},Ds = D2 + DsD}; =

What we do next is to find the electric fields of the outgo-

ing waves,
E, =Ep X+ Eyy,
b =Bl X+ Ep, 3,

in terms of the incoming ones.

vation, as well as time inversion invariance, are fulfill&g;,

is block diagonal since it is written in the basis of linear po-
larization, where ther andy components, calledhannels

in the nomenclature of nuclear physics, are decoupled from
each other. However, at this stage it is not completely clear
how to recover the simpler result for a single linearly polar-
ized wave; we remedy this by a change of basis as shown in
the next subsection.

1. (16)

(17)
(18)

3.2. Rotated basis

Imposing the boundary conditions at the interface; 0,

we obtain Fresnel’s equations in a matrix form [10] From Egs. (14) and (24) we have that
Eb“’ Eaz
& &
El/n: _ SF ‘ 02 E(/II I;’I‘ (/1
Ey, o ( 02 \ Sp Ea | (29) & _ SaD,, \ 0, £ @7
Ey E Evy 02 ‘ SaDg &,
by ay Eéy (C/’C/L

where0, is a2 x 2 null matrix andSr is a2 x 2 matrix given

by
te

/
_TF

—rp
tp

se=(7r ).

wherer g (rz) andt g () are the reflection and transmission
Fresnel coefficients for electric field waves incoming from

Now, if a 7 /4-rotation is applied to the basis used up to now,
by means of [13]

the left (right), whose explicit form, in terms of the indices of

refraction, are [7]

!

n-n ,
rep = e =—Tpg
n+n ’
2n 2n/

tF: 7 7tF: 7 .
n' +mn n' +n

Following Ref.
field amplitudes given by

Eim = \/ﬁElmagl/m = \/EEl/m

(Il=a,b; m=ua,y).

Therefore, Eq. (19) can now be rewritten
gbx ga.t
& &
xT _ S:E ax ,
Eby Yl Eay
! !
&y Eay
where "
_ 2 2
Soy = < 02 | S2 ) ’
with
_ (Voo 7
&_<0 vir )or o

10 we introduce renormalized electric

(20)
1 1L, 1,
Ry = — 28
= (BT 28)
Eqg. (27) becomes
(21) En V2E,
/ !/
gbl S/ \/iga , (29)
22) Ep2 0
Ely 0
where we have defined
gbl 1 5by 1 gba:
(&) =5(g)ru(d) o
(23)
gb2 — 1 gby _ 1 5b:v (31)
as &o V2 \ &y V2 &, )
and
(24) ; SaDy | 09 T
S - RO 02 SQDﬁ RO ) (32)
is a new scattering matrix. It is important to realize that
(25) does not have the familiar form of a scattering matrix, as can
be seen from Eq. (29).
In a standard scattering matrix the 11 and 22 blocks relate
the incoming amplitudes on one side to the outgoing ones in
0 the same side; and the 12 and 21 blocks relate the incoming
1 (26) . . ; ;
ey amplitudes on one side to the outgoing ones on the other side.
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Since we want to keep the familiar and very useful interpre-  The reflection and transmission coefficients are now
tation of a scattering matrix we transform (29) by means ofgiven by
the following orthogonal transformation matrix

N2
R—tr(rrf) = n2") 43
1 000 () (n+mn')? (43)
0 0 1 0 /
(n+n')?
0 0 0 1

where we used that(tFFT) = tr(F'F'") = 1, and we note
that rearranges the incoming vector in a way that can be morg, 5+ que to flux conservation

easily interpreted in scattering theory. Therefore, we obtain

that 7 R+T=1. (45)
Enl 28,
Eo 0 Given all this, we can write the electric fields, Eqgs. (30)
& =5 e | B4  and (31), as
Ein 0 V2E & £
E _ a A ikz ©bl A b2 4 —ikz 4
where (2) Vn cret <\/ﬁ et vn e2 )¢ (46)
SoDg 02 T AT ' _\/551/1 A —ik'z <5b1 A b2 . ) ik’
= 35 E'(2)= ee + e, 47
is a scattering matrix whose dimension is twice the numbelVn€re we have introduced a new basis set of vectors
of channels. This scattering matrix can now be directly iden- . Lo . - ..
tified as: €1 \/i(y + X) and €2 \/i(y X)v ( 8)
t/
S = ( : o > , (36)  which plays an equivalent role to the basis used in Ref. 7 to

discuss circular polarization.
wherer (') andt (¢') are immediately identified as the corre- We leave to the reader the analysis necessary to verify that
spondin@ x 2 reflection and transmission matrices, respec-S reduces to the linear polarization case studied in Ref. 10,
tively, for incidence from the left (right); they are explicitly as well as to study the circular polarization case.
given by

n_ "'F t QMF an 4. Dielectric-conductor interface
r=——>Fr, = —r,
n+n' n+n' We now study a different case. Lets assume that the media
. n—n'_, ., 2Vnn' on the right_side of the interfgce isa cpndyctor yvith an elec-
m== T Tt (38)  tric conductivityo, such that its refractive index is complex:
n’ — n’ +1in’, wheren’ andr’ are the optical constants; [14]
where the corresponding wave number is also complex. In last sec-
o 1( B ta B —a ) tion’s treatment we replacédd — £’ + ix’ where
2\ Be%e —a BePe +a )’ ¥ =n'w/c and k' =n'w/c. (49)
P = 1 ( ﬁ/e%% +a ﬁ/e%% —ao ) . (40) On the dielectric side, from Eqgs. (46) and (47) with
fleite —a/  flel%a + o ! = 0 we have that
isfi i 28 ; & & ;
Even thoughs satisfies flux conservation, E(z) = V2 8eh 4 [ la, 4 S2a ) oike (50)
Vn vn \/ﬁ

StS =1, (41)

&l &l
E/ — bl A b2 A —Kk'z zkz 51
0= (oo + )« (51)

By definition, the scattering matrix relates the outgoing

does not possesses a time reversal invariance,

S # 57, (42)  tothe incoming plane wave amplitudes; therefore
where the superscrigf’ denotes transposition. Also, since En1 \ g V2E, (52)
there is no specular symmetry we have tHag r. Ew | ’
We ask the reader to interpret whty, is symmetric
where
while S is not. (Suggestion: see the discussion leading to ~ n—n—iy
the derivation of Stoke’s relations [11,12]) S = i i F (53)
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Note that nowS describes the reflection back to the same sideand the energy flux takes place througland not through the
where the elliptically polarized planes waves are arriving in dateral surface. The energy balance, Eq. (3), is written as
normal direction to the interface; therefore, it i2:a2 matrix

with the following structure Pp1 + P — Py = W, (59)
. P where, based on (2) and (4), [10]
By = — &7 A, j=1,2 60
bj 2/J/OC ‘ b]| ) J 3 4y ( )
1 2
o o, = ]ﬁsa A 61)
- 2/100
From Eq. (5), the rate of work made by the field is then given
by
2, 1 v
(@) ——rmmm g T g 2 2 —Okz
Sp S W=f/7(|5é1| + €] )e Adz, (62)
- . i | 2 12 12
A ‘: s vn'© + n
®) "\ /," ; where we use the fact thdt(z) = oE/(z); integrating we
Sr [T P have that
B cA ;2 ;2
3}’ W= T iR <|5b1| + &5 ) : (63)
% Using Egs. (60), (61) and (63), Eq. (59) gives
F|GURE_2: On the right hand side, > 0, thgre is a_conduc_torwith (‘5b1|2 + |5b2|2) _ 2‘5a|2
conductivityo, and forz < 0 we have a dielectric material. The
HE. H 7 olupC
arrows represent Poynting’s vectors corresponding to the electric - Ho (|gl;1|2 + |5£2|2)7 (64)

fields on the dielectric. 26v/n'? + 12

where nows () is the reflection amplitude when incidence Which on a matrix form is written as

is on the channed; (&), andt (') is the transmission ampli- . 5

tude from channe?, (é;) to channek; (&,). Here, however, ( ﬂg; 0 ) (StS ) ( \foé’a )

€, is the only channel where incidence is possible. Note also

that?’ = £, such that — o THC (grogn) ( 5121 ) . (65)
§ =3, (55) 2/ + 1% Eba

since there is time reversal invariance. Since charinedmd ~ NOW, using Eq. (34) witlf;, = 0 andn’ — n’ +in’ we can
&, are equivalent to each other, there is reflection symmetririte that e N
for which# = 7. Itis very important to realize th&t is not ( 5131 ) =t ( 0 a ) , (66)

unitary, and that according to Eq. (53), can be parametrized
as where [see Egs. (37)]

o 0
S=+vVReF, (56) NN OESTI -
whereR is the reflection coefficient given by n+n' +in

(n—n')? + n,Q Therefore, Eq. (65) is equivalent to
R= — (57)

(n+n"2+n? §T§+t;tp =1, (68)
andd is a measure of the phase shift between incoming anwhere
reflected waves, and satisfies P O loC ¢ (69)
p D) 5
727”7/ 260" + 1/
tan 6 = n2 —n’% g% (58)  which can also be written as
. . — ./ ig
Lets see how an energy balance consideration impose re- ty=1Ipe" I, (70)
strictions onS. Consider a closed surfageconsisting of a where now
semi-infinite cylinder of cross sectiafy, as shown in Fig. 2; T — 4dnn’ (71)
=

in this case, Poynting’s vectors are directed indtgirection (n+n)2+n?
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ando is given by The lack of unitarity ofS is then given by following expres-
o sion
Calculating the trace of Eq. (68) we obtain an expressiowhose trace quantifies ohmic losses throughabgorption
that, in short, is equivalent to energy flux conservation strengthparameter
R+Tp,=1, (73) y=tP=T,, (77)

where R, the reflection coefficient, is the fractional amount

of energy that is turned back into the dielectric, whiletell where it must be emphasized that an ohmic loss takes place

us the amount of energy dissipated or “lost” in the Conduc_through parasitic channels in the language employed in scat-

tor to non propagating modes, what we gadrasitic chan- tering theory. o i
nels[8,10]. Therefore, theS-_matrlx given by Eq. (47) _descrlbes how
the energy losses in the conductor can be interpreted as en-
ergy lost to parasitic channels characterized byt fhmatrix,
where the coupling between the two media is described by the
R material constants of our model; in particular, in this work,
g — ( S > (74) for the ellipticall polarization case. Even though we have two
ty Spp )’ parasitic channels the total absorption is measured by a single
parametery = T, that gives the same result previously ob-
tained in the linear polarization case, which is expected since
S,y = _%Sftp _ _mei(%,g)p (75) each polarization mode contributes just a fraction of the total
P

Hence, Eq. (68) can be seen as the unitarity condition fo
a4 x 4 scatteringS matrix that satisfies flux conservation,
and is given by

where the unitarity of implies that

energy flux.
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