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An alternative approach to the properties of the tautochrone and brachistochrone curves is used to introduce a family of curves complying
with relations where the time of descent is proportional to a fractional power of the height difference. These curves are classified acording
with their symmetries. Further properties of these curves are studied.
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1. Introduction

In 1658 Christiaan Huygens made public his discovery of
the tautochrone, that is: the path which a point-like parti-
cle must follow so that the period of its motion comes out
to be exactly independent of its amplitude. This is in con-
trast with Galileo’s pendulum, where the period is indepen-
dent only in the small amplitude approximation. A thought-
provoking, insightful, description of Huygens’s work can be
found in Ref. 1. For a discussion in simpler terms terms
see [2] and [3].

Some forty years after Huygens’s work, Johann Bernoulli
found the brachistochrone,i.e. the path of quickest descent
from a fixed starting point to a fixed end point. As is well
known, this was later to become one of the seminal problems
in variational calculus. A sketch of Bernoulli’s deduction is
included in Ref. 4, while [5] contains a brief account of the
discovery, as well as pointers for the deduction of the curve
through variational calculus.

Both curves are related, as Bernoulli himself noticed.
Huygens’s tautochrone is the complete cycle of an inverted
cycloid, while a brachistochrone is a segment of an inverted
cycloid, with the initial point at an apex.

As can be deduced from the tautochrone property (i.e.
that for this path the period is independent of the amplitude),
the timeT it takes for a point-like particle to descend along
an inverted cycloid to a minimum of the path is independent
of ∆y, the height difference from the starting point to the
minimum:

T ∝ (∆y)0 (1)

and depends only on the parameters that define the given cy-

cloid. This is in stark contrast with the inclined plane, where
the time of descent is proportional to the square root of the
height difference:

T ∝ (∆y)1/2 (2)

It is then natural to ask for the possible values of an exponent
β such that one can construct a path that complies with

T ∝ (∆y)β (3)

The rest of this article deals with the solution of such ques-
tion, and with its consequences. In this endeavour the
brachistochrone will appear more than once. In order to ad-
dress the question we have just posed, use will be made of a
generalization of Abel’s elegant alternative deduction of the
tautochrone [4], which, as Abel himself commented, can be
cast in the language of fractional integro-differential opera-
tors [6]. Albeit a long and noble history in mathematics (dat-
ing back to Leibniz), [7] fractional analysis has only begun
to be used by physicist in the last thirty years or so. We thus
hope that this article will serve, if nothing more, to call atten-
tion on this exciting subject (some examples of the applica-
tions of fractional analysis in physics may be found in Refs. 6
to 11).

Some recent generalizations of the tautochrone include:
the tautochrone with friction [12], the relativistic tau-
tochrone [13], the tautochrone in rotating frames of Ref. 14
and the tautochrone under an arbitrary potential [15]. Finally,
for other applications of the calculus of variations in classi-
cal mechanics and other branches of physics one may recom-
mend [16] and [17].
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The rest of this article is organized as follows: in Sec. 2
we review the properties of the tautochrone and brachis-
tochrone curves under a new light. In Sec. 3 we intro-
duce a family of curves complying with relation (3) for
−1/2 < β ≤ 1/2, and classify them according to their sym-
metries. In Sec. 4 we study further (probably counterintu-
itive) properties of these paths. Sec. 5 is reserved for conclu-
sions.

2. Tautochrone vs. brachistochrone

Mathematicians carefully distinguish between curves (with a
given parametrization) and paths (which are the images of
curves.) We are interested in obtaining paths along which a
point-like particle would descend, but we will do so by find-
ing curves which have those paths as images. A given curve
describes a unique path, but there are an infinite number of
curves that correspond to a given path. In the present context,
this distinction is quite unimportant: we will make clear each
time that the same path gets two different parametrizations.

Huygens’s tautochrone can be parametrized as follows:

x(θ) = a
2

(
θ − sin θ

)
+ xL − aπ

2
0 ≤ θ ≤ 2π

y(θ) = a
2

(
1 + cos θ

)
+ yL

(4)

thex-axis lying along the horizontal, with the positivey-axis
in the upward direction.

As already said, this describes a family of inverted cy-
cloids, and the presence of parametersyL andxL allows us to
translate the tautochrone’s lowest lying point,(xL, yL), any-
where we want to (one can take a tautochrone from Antwerp
to Paris and it will remain a tautochrone).

Now, parametera > 0 allows us to choose the maximum
difference of height for a given tautochrone, that is: the dif-
ference of heighty(0) − y(π) = a from apex(x(0), y(0))
to the lowest lying point(x(π), y(π)) = (xL, yL). But once
this maximum difference of height is fixed, the total horizon-
tal length of the tautochrone is also fixed, its value given by

x(2π)− x(0) = aπ.

Let us remark: in a tautochrone the total difference of height
and the total horizontal length are not independent.

FIGURE 1. Some examples of brachistochrones. The thick curve is
also a half tautochrone.

On the other side, in a brachistochrone the total horizon-
tal length and the maximum difference of heightmustbe in-
dependent as there is a brachistochrone connecting any two
chosen pointsxi andxf .
The brachistochrone curve between(xi, yi) and(xf , yf ) can
be parametrized as follows:

x(θ) = a
2

(
θ − sin θ

)
+ xi

0 ≤ θ ≤ θf

y(θ) = a
2

(
1 + cos θ

)
+ yi − a

(5)

wherea and0 < θf ≤ 2π are such that

xf = x(θf ) =
a

2
(θf − sin θf ) + xi

and

yf = y(θf ) =
a

2
(cos θf + 1) + yi − a.

Thus, an extra parameter is needed to describe the family
of brachistochrones.

Equation (4) indicates us that we can divide the tau-
tochrone into a left half,(x+(θ), y+(θ)), and its reflection
through the vertical axisx = xf , (x−(θ), y−(θ)), giving rise
to a new parametrization:

x±(θ)=± a
2

(
θ− sin θ

)
+xL ∓ aπ

2
0 ≤ θ ≤ π

y±(θ)=a
2

(
1+ cos θ

)
+yL

(6)

Each one of these halves is a brachistochrone (its fixed
points being an apex and the lowest lying point) of a very
special kind: the ratio of the maximum height difference to
the total horizontal length has a fixed value:

(y±(0)− y±(π))/|x±(0)− x±(π)| = 2
π

, (7)

independent of any parameter (the lowest lying point is com-
mon to both curves, which represents no problem.)

If, on the other hand, on takes a brachistochrone (5) and
joins it with its reflection through thex = xL axis, one sim-
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ply does not get a tautochrone in the general case.
Perhaps a better way of understanding these curves is by

noticing that both the tautochrone and the brachistochrone
properties are invariant under scale transformations of the
type(x, y) → (x′, y′) = (κx, κy) for κ > 0.

Indeed, in the frictionless motion of a particle along any
given pathσ, the conservation of the total mechanical en-
ergy dictates thatT , the time it takes the particle to travel
from the starting pointxi = (xi, yi) ∈ σ to the end point
xf = (xf , yf ) ∈ σ, is given by

Tσ =
1√
2g

∫

σ

ds√
y

(8)

(whereds =
√

(dx)2 + (dy)2 is the differential of arch-
length alongσ) granted that the particle starts its motion with
zero initial velocity and moves under the influence of a grav-
itational fieldg = (0,−g). Consider now a scale transforma-
tion x → x′ = κx κ > 0, that sendsxi to x′i = (x′i, y

′
i)

and sends(xf , yf ) to x′f = (x′f , y′f ). There is a one-to-one
mapping between each curve connectingxi with xf and each
curve connectingx′i with x′f , given by

y(x) → y′(x′) = κy(x) = κy
(
κ−1x′

)

(in symbolic termsσ → σ′ = κσ). According with (8)T ′σ,
the time it will take a particle to travel fromx′i to x′f along
σ′, is related toTσ through:

T ′σ = κ1/2Tσ

so that if a particular curveσ minimizesT , the corresponding
curveσ′ = κσ will minimize T ′, that is:

δT ′σ = κ1/2δTσ = 0.

A similar result is easily proven for the tautochrone.
Thus, if you build a scale model of a brachistochrone (tau-
tochrone), the result will also be a brachistochrone (tau-
tochrone). In the next section we will generalize this results
for a wider family of curves.

Summing up, we have pointed out the differences be-
tween tautochrones and brachistochrones, while making clear
that the tautochrone and brachistocrone properties are both
preserved by scale transformations. From Eqs. (4) and (5)
it is easily proven that (as would be expected) both proper-
ties are also preserved by translations and reflections through
any vertical axis. If this seems a bit trivial, consider that nei-
ther of this properties is preserved by a general rotation in the
x−y plane nor by a general compression or expansion of the
curve (i.e. by transformations of the type(x, y) → (x′, y′) =
(kx, y)). In other words: a tilted tautochrone (brachis-
tochrone) or a compressed tautochrone (brachistochrone) is
no longer a tautochrone (brachistochrone). In Sec. 3 we will
generalize this to a wider family of curves, but before going
on there are a couple of facts regarding the tautochrone that
we need to point out.

First, the period of motion in a given tautochrone is easy
to calculate [2], and the result is:

4T = 4π

√
a

g
, (9)

we will frequently make use of this result.
Finally, consider, for a fixed valueH > 0, and a fixed point
(xL, yL), the uni-parametric family of curves{S+,φ}|0≤φ<π

given by:

x+,φ(θ) = H
1+cos φ

(
θ − sin θ

)
+ xL − πH

1+cos φ

φ ≤ θ ≤ π
y+,φ(θ) = H

1+cos φ

(
1 + cos θ

)
+ yL

(10)

Notice that:

- all this curves start at a same height

yi = y+,φ(φ) = H + yL

and they all end at point(xL, yL) = (xφ(π), yφ(π)).

- The curveS+,φ is a segment of a left half tautochrone
with apex at

(xM,φ, yM,φ) : =(xL− πH

1+ cos φ
,

2H

1 + cos φ
+yL)

FIGURE 2. SomeS+,φ paths forH=1. The thick curve is the
half tautochroneS+,φ=0. Dotted:φ=π/5, dot-dashed:φ=2π/5,
dashed:φ=3π/5, and thin:φ=4π/5.

In so many words{S+,φ}|0≤φ<π is just the family of all
left half tautochrone segments with a fixed total height differ-
enceH, ending at a fixed lowest lying point(xL, yL). (But
they are not segments of the same tautochrone!)

We note in passing that, with the exception ofS+,φ=0,
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none of this segments is a brachistochrone. Indeed, for each
point (x+,φ(θ), y+,φ(θ)) lying in a given segmentS+,φ we
can easily find, from (5), the brachistochrone that connects it
with (xL, yL); and this is not, in general case,S+,φ itself.

More to the point: each one of theS+,φ curves, being a
segment of a tautochrone, has what we will callthe indepen-
dence of height property. That is, if a particle moving along
S+,φ has zero initial velocity at some point(x′, y′) ∈ S+,φ,
then it will reach(xL, yL) in a timeTφ, given by:

Tφ = π

√
H

g(1 + cos φ)

independently of(x′, y′), according with (9). The family of
paths just described can be extended to include the reflections
of theS+,φ, giving us what we will call the{S±,φ}|0<φ≤π

family. These are, up to a translation, the only paths with
the independence of height property with a given total height
differenceH (the unicity of the solution of Abel’s equation,
which we will see later, warrants this). AsTφ is the same for
S−,φ as it is forS+,φ we can then state that:
Of all the paths with the height independence property, with
a total height differenceH, there is one (up to translations
and reflections) with minimum T, given by:

Tφ=0 = π

√
H

2g
(11)

this path isS+,φ=0.
Granted,S+,φ=0 happens to be a brachistochrone, but the
property just stated is logically independent of the brachis-
tochrone property because:

- The family{S±,φ}|0≤φ<π is not a good sample of all
the curves connecting two given points: we have not
presented an alternative proof of the brachistochrone.

- On the other side, we will find other families of curves
with an element that minimizes the time of descentfor
that given family; and this element cannot be, in the
general case, a brachistochrone.

If we consider now the invariance under scale transforma-
tions, we will see that the half tautochrone is really unique (up
to an arbitrary combination of translations, reflections and
scale transformations.) We will generalize this result in the
following sections.

3. A family of curves

Consider a classical, non-relativistic, point-like particle of
massmmoving on thex-y-plane with potential energy

U(x, y) = mgy

for someg ∈ R+.

Suppose, further more, that the particle is constrained to
move, without friction, along a curveσ univocally described
by the function

x = xσ(y) for all y ∈ [yL, yM ] ⊆ R

where function xσ(y) is continuously differentiable in
(yL, yM ), and such that

lim
y→y+

L

xσ(y) = xσ(yL),

lim
y→y−M

xσ(y) = xσ(yM ),

and that the limit

lim
y→y−M

dxσ

dy
(y)

exists.
If the particle has zero initial velocity at an initial “height”

yi ∈ (yL, yM ], then the conservation of the total mechani-
cal energy of the system dictates that the particle will reach
heightyL in a timeTσ(yi) > 0 given by

Tσ(yi) = −
yi∫

yL

dsσ

dy√
2g(yi − y)

1
2
dy (12)

where

dsσ(y) = −
√

1 +
(

dxσ

dy

)2

dy

is the differential of the arch length traveled by the particle
from heightyi to heighty while moving onσ.

Equation (12) can be written in the slightly more concise
form:

Tσ(yi) = −
√

π
2g

(
I

1
2
yL

dsσ

dyi

)
(yi) (13)

with the use of the Riemann-Liouville (right hand) fractional
integral, defined as [6-7,18]:

Iα
a f(t) :=

1
Γ(α)

t∫

a

f(τ)
(t− τ)1−α

dτ (14)

for t > a andα > 0. Here,Γ stands for the gamma function
(the necessary information about the properties of the gamma
function may be found in Ref. 19).

We now examine the implications of imposing on curve
σ a condition of the type

Tσ(yi) = K(yi − yL)β (15)

for all y ∈ (yL, yM ] for a and fixedβ ∈ R and a real constant
K > 0 (it is implicit that σ depends on the values ofβ and
K, and that the admissible values ofK may be restricted by
the value ofβ).
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Let us note in passing that forβ = 0 (15) essentially co-
incides with Abel’s equation for the tautochrone:

d

dy

(
I

1
2
yL

dsσ

dy

)
(y) = 0 (16)

while β = 1/2 corresponds to the trivial case of the friction-
less inclined plane.

To be more precise, forβ = 1/2 and a given final position
(xL, yL), the solutions constitute a uni-parametric family of
straight lines{lθ}|0<θ<π given by

x = xθ(y) = (y − yL) cot θ + xL 0 < θ < π (17)

for in this casedsθ = −(sin θ)−1; and by plugging this last
expression directly in (12) we get, after a straightforward cal-
culation:

T (yi) =
√

2
g

(yi − yL)1/2

sin θ
=

√
2S

g sin θ

whereS is the distance traveled by the particle along the in-
clined planed, in accordance with the well known result.

Turning to the general case, we resort to the well known
fact [6] that Abel’s (general) integral equation:

f(t) = (Iα
0 φ)(t) (t > 0, 0 < α < 1)

has as solution

φ(t) =
d

dt
(I1−α

0 f)(t),

so that for every curveσ complying with (15) we can write

dsσ

dy
(y) = −

√
2g

π
K

d

dy

y−yL∫

0

νβ

(y − yL − ν)1/2
dν (18)

The integral on the r.h.s. of (18) is divergent forβ ≤ −1; and
for β > −1 one can apply the convolution theorem to get

dsσ

dy
(y) = −

√
2g

π

Γ(β + 1)
Γ(β + 3/2)

K
d

dy
(y − yL)β+1/2 (19)

so thatsσ will be finite at yL only if β ≥ −1/2, and the
caseβ = −1/2 has no geometrical (let alone physical) in-
terpretation, as it would imply that the arch length traveled
from (xi, yi) to any given point on the curve would be same,
irrespective of the end point. Thus, physically acceptable
bounded curves exist only forβ > −1/2. With this caveat in
mind, from (19) we may conclude

xσ(y)=xL±
yL∫

y

√(
dsσ

dy′

)2

−1dy′

=xL±
yL∫

y

√(y′ − yL

h

)2β−1

−1dy′, xL ∈ R, (20)

where, by definition:

h :=

(√
2g

π

Γ(β + 1)
Γ(β + 1/2)

K

) 2
1−2β

(21)

In order to retain the physical interpretation of Eq. (20) the
integrand on the r.h.s. must remain real-valued for values of
y arbitrarily close toyL, and so the expression is only valid
for β ≤ 1/2 . Moreover, for any acceptable value ofβ (i.e.
−1/2 < β ≤ 1/2) h must take values in[H,∞) whereH
stands for

H := yM − yL (22)

Now, in expression (20) not all the symmetries present in our
system are explicit. With the use of some algebra, we can
rewrite it as:

xσ(y) = xL ± h

y−yL
h∫

0

√
η2β−1 − 1 dη (23)

Thus, a curveσ is identified by four different parameters:
β and xL, yL,± and h. From now on we shall write
σβ,xL,yL,±,h in order to identify a specific curve. The free-
dom to chosexL andyL means that property (3) is invariant
under translations. In an analogous manner, the freedom to
chose the sign± is the result of invariance under reflections
through a vertical axis. Finally,h is related with the invari-
ance of the property under scale transformations. Indeed, if
one multipliesxL, yL, y andh -all by a same factorκ- then
xσ(y) is also multiplied by this factor. Thus, symbolically:

σβ,κxL,κyL,κh = κσβ,xL,yL,h

and the property is preserved under scale transformations.
Thus, the following lemma has been established:

Lemma 1 There does not exist a continuously differen-
tiable bounded curve in the plane, in which a classical non-
relativistic point-like particle could move under the influence
of a spatially homogeneous time independent gravitational
field g(x, t) = g, starting with zero initial velocity at posi-
tion xi, complying with a condition

∆t ∝ (∆y)β

for values ofβ > 1/2, or β ≤ −1/2 where

∆y : =−g · (xi−xL)

for a fixed positionxL, ∆t being the lapse of time required
for the particle to move fromxi to xL along the curve.

For −1/2 < β ≤ 1/2 the solutions exist, as shown
in (23), and are unique up to an arbitrary combination of
reflections, translations and scale transformations.

This lemma can easily be extended for charged particles
in the presence of spatially homogeneous electrostatic fields,
but the charge-mass quotient would then appear in our equa-
tions.

Let us note, in passing, that arbitrary combinations of
translations, reflections and scale transformations constitute
a group under composition. This is the group that leaves the
tautochrone property unaltered.
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FIGURE 3. SomeσβH paths withH=1. The thick path is a half
tautochrone (β=0). Dot-dashed:β=0.3, dashed:β=0.15, thin:
β=− 0.15, and dotted:β=− 0.24.

4. Further properties

According with definition (21) and the condition established
for the admissible values ofh, Eq. (22), for a givenβ the
physically admissible values ofK are restricted by

K ≥ K∗
β (24)

whereK∗
β stands for

K∗
β :=

√
π

2g

Γ(β + 1/2)
Γ(β + 1)

H1/2−β

Thus, for a fixedβ and a fixed total height differenceH > 0
there is a minimum total time of descent,T ∗βH , compatible
with condition (3), this time is given by:

T ∗βH = H1/2

√
π

2g

Γ(β + 1/2)
Γ(β + 1)

(25)

and it is achieved by a curve (lets call itσβH ) given by the
parametric equation:

xβH(y) = H

y/H∫

0

√
η2β−1 − 1 dη y ∈ (0,H]. (26)

This curve is unique up to translations and reflections.
In other words, if a point-like particle starts its movement

at position
(xβH(H),H) ∈ σβH then it will take a timeT ∗βH , as given
in (25), for the particle to reach the final position(0, 0), but if
it starts at any other point of the path, with heighty ∈ (0,H),

FIGURE 4. The functionΥ(β) := Γ(β + 1/2)/Γ(β + 1) in the
region−1/2 < β ≤ 1/2.

then the particle will reach the origin in a lapse of time
TβH(y), given by:

TβH(y) =
(

H1/2−β

√
π

2g

Γ(β + 1/2)
Γ(β + 1)

)
yβ (27)

and this is (up to translations and reflections) the swiftest path
with a total height differenceH and compatible with condi-
tion (3).

It is then natural to ask: of allσβH paths which one is the
swiftest for a fixed total height differenceH? i.e., which one
will make a particle descend a heightH in a minimum time?

FunctionΓ(β +1/2)/Γ(β +1) is monotonically decreas-
ing in the region of interest (as can be seen in Fig. 4 so that
the minimum is achieved atβ = 1/2, which corresponds to
a segment of lengthH of a vertical straight line (quite obvi-
ous), and asβ approaches the value−1/2, T ∗βH diverges:

lim
β→− 1

2
−

T ∗βH = ∞.

Let us note that there is a fixed ratio between the total height
differenceH and the horizontal lengthxβ,H(H) in a σβH

curve:

R(β) :=
xβH(H)

H
=

1∫

0

√
η2β−1 − 1dη (28)

and this ratio diverges asβ approaches the value−1/2:

lim
β→− 1

2
+

R(β) = ∞ .

And so, we have established a second lemma:
Lemma 2 Each element in a family of paths

{σβH}|−1/2<β<1/2, defined in(26) has a fixed horizontal
length to total height difference ratio, independent ofH,
given in(28). This ratio is a monotonically decreasing func-
tion of β. A particle starting from rest at heightH would de-
scend along a given pathσβH in a timeT ∗βH , given by(25),
which is, for fixedH, also a monotonically decreasing func-
tion of β. Thus, everyσβH with 0 < β ≤ 1/2 is shorter

Rev. Mex. F́ıs. E56 (2) (2010) 227–233



ON A TAUTOCHRONE-RELATED FAMILY OF PATHS 233

and swifter than the half tautochrone, and everyσβH with
−1/2 < β < 0 is longer and slower than the tautochrone.

The path of quickest descent for a given height is a seg-
ment of a vertical straight line. Asβ approaches−1/2 with
fixed height, the total arch-length of the path grows without
limit, as does the total time of descent.

This result can not be held against the brachistochrone:
first, because we are dealing with paths connecting two given
heights; whereas brachistochrones connect two given fixed
points.In second place, the vertical straight line segment can
be considered as a kind of collapsed brachistochrone.

5. Conclusions and outlook

In the framework of classical mechanics, we have generalized
the tautochrone path, generating a family of curves in which
the time of descent is proportional to a fractional power of the
height difference. The material just presented may be used to
complement and enrich any university course exposition of
classical mechanics and/or analytical mechanics at an inter-
mediate or senior level, as it:

- Shows us that there are still interesting things to learn
in classical mechanics at a fairly elementary level.

- Illustrates the use of mathematical tools such as the
Laplace transform and the gamma function in physical
problems.

- Highlights the r̂ole of symmetries, even in well-trodden
branches of physics.

There are some interesting consequences and questions that
we have left aside:

• These curves are independent of the mass of the parti-
cle: m is absent in every expression, starting from (8)
because gravitational mass and inertial mass were can-
celed out even before writing this equation. This is just
a consequence of the equivalence principle.

• The eerily ubiquitous constantΓ(1/2) =
√

π, present
in all our calculations, just begs the question: are there
possible generalizations of our curves in the frame of
strong gravitational fields?

• In one-dimensional physics, the harmonic oscillator
potential is the isochronous potential,i.e., this is the
only potential for which the frequency is strictly inde-
pendent of the amplitude. Can this potential be derived
from the Euler-Lagrange equations of the tautochrone
curve? Can this potential be generalized for some or
all of our curves?
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