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The purpose of this paper is, by one hand, offer to students basics on active filter design by introducing the Butterworth approach as well
as some practical examples not only to show the proposed design flow (DF), but also to show that the design flow’s stages have physical
meaning mainly supported on physical laws. With the help of these laws, further, it is shown how additional filter design specifications can be
translated to the physical design without affect neither the design approach nor DF. On the other hand, because any physical implementation
suffer of the non-idealities of electronic components, the modeling of some of them based on both experimental results and spice simulations
is presented in order to show how unwanted effects may be added to the DF. An advantage of this proposal is that DF preserves the physical
meaning of the design variables. The laboratory-based learning adopted in this work has allowed to students be able to understand physical
concepts, capture and analyze experimental data, and use design tools in a correct way mainly to avoid “trial and error” approaches.

Keywords: Filters; electric circuits; modeling.

El propósito de este artı́culo es, por un lado, ofrecer a los estudiantes fundamentos del diseño de filtros activos usando la aproximación
Butterworth y presentando ejemplos prácticos no śolo para mostrar el flujo de diseño propuesto, sino también para mostrar que las etapas
del disẽno tiene un significado fı́sico que est́a soportado en leyes fı́sicas. Con ayuda de esas leyes se muestra cómo otras especificaciones de
disẽno del filtro pueden ser incorporadas en el diseño f́ısico sin afectar la aproximación de disẽno ni el flujo mismo de disẽno. Por otro lado,
porque toda implementación f́ısica es afectada por las no idealidades de los componentes electrónicos, se presenta el modelado de varios de
ellos soportado en datos de simulación spice y resultados experimentales a manera de mostrar cómo esa información se incorpora al flujo de
disẽno. Una ventaja de esta propuesta es que se conserva el significado fı́sico de toda variable de diseño. El aprendizaje basado en el trabajo
de laboratorio, que es la técnica adoptada en este trabajo, ha permitido a los estudiantes comprender conceptos fı́sicos, capturar y analizar
informacíon experimental, y usar herramientas de diseño de manera correcta para evitar aproximaciones tipo “prueba y error”.

Descriptores: Filtros; circuitos electŕonicos; modelado.

PACS: 84.30.Qi; 84.30.-r; 85.40.Bh

1. Introduction

Engineering subjects can be divided into two basic stages:
analysis and synthesis. In the analysis stage, the circuits de-
signer translatesinput data(also calleddesign specifications)
in a mathematical model in order to study the impact of de-
sign parameters on the response of the circuit under design
(CUD). At this level of abstraction, the design process is sup-
ported in both the experience of the designer and software
facilities. Experience refers to the knowledge on electronics
and related topics as well access to technical data,i.e. books,
reports, application notes, and so on. Software facilities, on
the other hand, include not only free distribution software,
but also professional CAD tools (see Fig. 1).

In the synthesis field the starting point is to translate the
properties of the mathematical model in an electronic circuit
to verify the fulfillment of the design specifications via CAD
tools. Unfortunately, the development of a whole design is
not as simple as theanalysis and synthesismeaning. How-
ever, in order to accelerate the comprehension on the designFIGURE 1. Design flow based on three basic design steps.
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process any physical implementation can be divided in a set
of basic blocks in order to electronically test each one in lab-
oratory; this procedure allows understanding the operation of
electronic devices as well as adding laboratory equipment to
the DF. Next, because the electronic design without exper-
imental results is a vacancy in electrical engineering activi-
ties, in this paper a laboratory-based methodology to design
electronic circuits, in the frequency domain, is presented.

As a study case, the design of a Butterworth low-pass fil-
ter is used as vehicle to show the advantage of a laboratory-
based methodology and also to introduce a formal learn-
ing that enhance the students’ skills in analog design. This
methodology, further, useful for circuits design based on
commercial components, is also applicable to the design of
fully integrated circuits. According to that focus, Sec. 2
presents the analysis stage, where input data are given in or-
der to find a mathematical model that represents design spec-
ifications. In that sense, the analysis of that model, the mean-
ing of each design step, and the discussion of the model’s per-
formance in the frequency domain is also given in the same
section. The synthesis stage is presented in Sec. 3, where
a description based on both Kirchhoff’s current law (KCL)
and Ohm’s law is given in order to analyze a lumped-based
RC-active circuit. In the same section, it is demonstrated how
the design procedure has a direct impact on each electronic
component value without affect the physical meaning of the
design variables. In order to verify the fulfillment of the de-
sign specifications, spice results are also presented. Sec. 4
presents experimental results of several low-pass filters rang-
ing from 30 kHz up to 135 kHz, where test procedures based
on basic laboratory facilities are discussed. At the end of this
paper, Sec. 5, conclusions about the proposed DF are given.

2. Analysis

The most important fact of having design specifications is
that the designer defines what type of circuit has to be de-
signed according to a mathematical model previously de-
fined. For instance, let us suppose the following set of spec-
ifications: Design a second-order Butterworth low-pass filter
with a cutoff frequency of 10.0 kHz.

It is well known that a second-order design is, by
one hand, the simplest model for analyzing a wide vari-
ety of physical systems. From the point-of-view of mod-
eling, a second-order model is actually a transfer func-
tion, H(s)=N(s)/D(s), that includes model’s basic parameters
where quality factor (Q), cutoff frequency (ω0), and low-
frequency gain (A0) are some examples [1]. The function
D(s)=s2+(ω0/Q)s+(ω0)2, with s the Laplace’s variable and
[ω0]=rad/s, is a second-order polynomial, n=2, that defines
the order of H(s). As we shall see, the order of N(s) must sat-
isfy the condition m≤n to sure the model’s stability. Further,
the function N(s) is responsible to define the model’s char-
acteristic in the frequency domain,i.e. N(s)=k2s2+k1s+k0.
For instance, to obtain a low-pass characteristic N(s) can be
rewritten as NLP (s)=k0, where k2=k1=0, and k0 6=0 is the

FIGURE 2. Frequency response of Butterworth low-pass filters (a);
poles location and their meaning in the frequency domain for a
second-order design (b).

TABLE I. Butterworth coefficients.

n a1 a2 a3 a4 a5

2 1.414214

3 2.000000

4 2.613126 3.414214

5 3.236068 5.236068

6 3.863703 7.464102 9.141620

7 4.493959 10.09783 14.59179

8 5.125831 13.13707 21.84615 25.68835

9 5.758770 16.58171 31.16343 41.98638

10 6.392453 20.43172 42.80206 64.88239 74.23342

trivial solution. Therefore, a second order low-pass filter
can be designed with the help of the following mathemati-
cal model

H(s) =
k0

s2 + ω0
Q s + ω2

0

(1)

In an ideal low-pass filter all signals within the band
0≤ ω ≤ ω0 are transmitted without loss, whereas inputs
with frequenciesω > ω0 give zero output (see Fig. 2a).
In practice, such a response is unrealizable with physical el-
ements, and thus it is necessary to approximate it. Let us
introduce the Butterworth approach, which comprises a set
of normalized polynomials. These polynomials are given by
Pn(s)=sn+a1sn−1+a2sn−2+. . . +a2s2+a1s+1, where the coef-
ficients for n up to 10 are shown in Table I. The Butterworth
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TABLE II. Butterworth pole location; these values are call here-
after normalized values.

n Poles a1

2 -0.70711±j0.70711 1.41421

3 -0.50000±j0.86603 1.00000

4 -0.38268±j0.92388 0.76536

-0.92388±j0.38268 1.84776

5 -0.30902±j0.95106 0.61804

-0.80902±j0.58779 1.61804

6 -0.25882±j0.96593 0.51764

-0.70711±j-0.70711 1.41421

-0.96593±j0.25882 1.93186

response for various values of n is plotted in Fig. 2a, where
the magnitude of H(s) is down 3 dB atω = ω0 and is mono-
tonically decreasing. As this figure also shows the larger
the value of n, the more closely the curve approximates the
ideal low-pass response. Unfortunately, a high-order design
is an unpractical one because of its excessive cost; power con-
sumption, number of components, PCB area, etc.

On the other hand, the polynomials shown in Table I can
be represented by product of quadratic forms, s2+a1s+1, for
n even, whereas a linear factor, s+1, must added for n odd.
The advantage of quadratic forms is that the model’s poles
are easily calculated (see Table II). Because the poles are on
a circumference of radii r=1, the Butterworth approach is a
maximally flat approximation within a bandwidth of 1.0 rad/s
(see Fig. 2b). As Table I shows D(s)=P2(s)=s2+1.4142s+1.0,
whereω0=1.0rad/s and Q=0.7071, hence r=1 is adopted by
the independent term in all Butterworth polynomials. So,
what about the cutoff frequency (10.0 kHz) requirement? As
Fig. 2b also shows, the answer is to increase the radii from
1 to 104 by applying a frequency denormalization step via a
constantΩ0. The latest is defined by

Ω0 = (actual frequency)/(normalized frequency)

= 2π(10 kHz)/(1.0 rad/s) = 2π × 104.

The effect ofΩ0 on the second-order model is added as fol-
lows

H(s)|s→ s
Ω0

=
k0(

s
Ω0

)2

+ 1.4142
(

s
Ω0

)
+ 1

=
k0Ω2

0

s2 + 1.4142Ω0s + Ω2
0

(2)

Note that the model’s poles remain in the left-hand s plane
and areΩ0 times their normalized values; the frequency de-
normalization does not affect the frequency response of the
system, it just shift the response up to the actual cutoff fre-
quency (see Fig. 2b). In other words, the band-pass region
presents now an equivalent length than that of the radii r=Ω0.

It is also clear that not only r=Ω0 is a dimensionless param-
eter, but also each term in (2) presents a dimension equal to
(rad/s)2 making to H(s) a dimensionless function.

2.1. Discussion and numerical results

The description of the design methodology given above
presents a twofold purpose: 1) translate input data in a mathe-
matical model based on a review of design requirements and,
2) show the design steps included in theAnalysis and De-
sign stage. In that sense, the model given in (1) is result
of the modeling theory where H(s) has been introduced as
a vehicle for analyzing the CUD. Next, because design re-
quirements represent an ideal characteristic, a Buttherworth
approach was used in order to satisfy low-pass characteristics
according to the capabilities of a second-order design. Fi-
nally, in order to shift the frequency response from 1.0 rad/s
to the actual cutoff frequency, a simple process has been de-
scribed to clarify both the effect ofΩ0 on the model’s poles
and the meaning of the frequency denormalization step. At
this point, the CUD is modeled by (2), where its magnitude
is obtained if s is replaced by jω. Then

|H(jω)| =
∣∣∣∣

k0Ω2
0

(jω)2 + 1.4142Ω0(jω) + Ω2
0

∣∣∣∣

=
k0Ω2

0√
(Ω2

0 − ω2)2 + (1.4142Ω0ω)2
(3)

where j2=-1. Note that at very low frequencies (3) reduces
to k0, while at the frequencyω = Ω0 the magnitude is
|H(Ω0)|=k0(0.7071) that is equivalent to [20log(k0)-3.0] dB;
ω = Ω0 is actually a product given by (1.0 rad/s)Ω0. The
result given above shows the reason by which|H(s) | down
3 dB at the cutoff frequency. If (3) is to be computed, it is
simplified as follows

|H(jω)| = k0√(
1− ω2

Ω2
0

)2

+
(
1.4142 ω

Ω0

)2
(4)

By defining x=ω/Ω0, the response is obtained by evalu-
ating (4) at very specific values,i.e. x={10−4, 10−3, 10−2,
10−1, 100, 101}. There is not a figure-of-merit (FOM) to
establish how many points must be computed, however, few
values lower/higher than x=1.0 gives a suitable estimation of
the model’s performance. Note that the frequency response
has to be printed in a semi-log graph to comprise, in a unique
representation, all the frequency values. Alternatively, the
frequency response may be obtained with the help of free dis-
tribution software [2] not only to compare theoretical values,
but also to graphically analyze the frequency response.

3. Synthesis

The most important fact of having a mathematical model is
that the designer must be able to propose an electronic circuit
that performs the function of that model. One of several
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FIGURE 3. Active RC filter.

electronic circuits performing a second-order characteristic is
shown in Fig. 3, where k is an amplification factor. In order
to obtain the transfer function of the circuit, the following
conditions hold: a) electronic components are lumped ones,
so that each one represent just a physical characteristic that
is unaffected by external/internal effects,i.e. temperature,
noise, stress, and so on; b) the wavelengthλ of signals to be
filtered is higher than the physical dimension of the filter by
itself. As an example, let us suppose a 20.0 kHz sine sig-
nal propagating atν=3.0×105 km/s. The wavelength of that
signal is computed from

λ = ν/f = (3.0× 105 km/s)/(20 kHz) = 15.0 km,

which is a dimension higher than any physical implemen-
tation. Therefore, the filter is a lumped circuit and Kirch-
hoff’s laws can then be used for analyzing it. These laws
are based on the Ohm’s law that is expressed in the Laplace
domain by V(s)=Zeq(s)I(s), where Zeq(s) is the equivalent
impedance of each electronic component,i.e. R, sL, and
(sC)−1 for resistors, inductors, and capacitors, respectively.
In this work, KCL is widely used because the filter synthe-
sis is based on the so-called voltage-mode design; the current
flowing through any electronic component is represented by
the voltage across it over its equivalent impedance. By ap-
plying KCL, it is easy to demonstrate that design equations
are given by

(v1 − vin)
1

R1
+ (v1 − v2)

1
R2

+ (v1 − vout)sC1 = 0 (5)

(v2 − v1)
1

R2
+ v2sC1 = 0 (6)

kv2 = vout (7)

where v1 and v2 represent voltage on internal nodes. The first
one is the node connecting R1, R2, and C1, whereas the sec-
ond one connects R2, C2 and the input of the amplifier. Note
that (7) is not a current equation but a voltage one. Next, sub-
stituting (7) in both (5) and (6), and solving for the transfer
function, becomes

H(s) =
N(s)
D(s)

=
k

C1R1C2R2

s2 + s
[

1
C1R1

(
R1
R2

+ 1
)

+ 1−k
C2R2

]
+ 1

C1R1C2R2

(8)

Note that D(s) is an equivalent mathematically model to
the second-order Butterworth polynomial. To simplify the
analysis it is, therefore, necessary to perform two basic equiv-
alencies: C=C1=C2=1.0 F and R=R1=R2=1 Ω. By substitut-
ing these values in (8), it follows:

H(s) =
k

s2 + s(3− k) + 1
(9)

where (3-k)=1.4142 or equivalently k=1.5859. This re-
sult guaranties not only a maximally flat response within
a bandwidth of 1.0 rad/s, but also it establishes the value
of the amplification factor. By applying the frequency
denormalization step to (9), it follows that both (2) and
(9) are equivalent models; it is obvious that the constant
time τ=RC=(1.0 Ω)(1.0 F)=1.0 s is present in both models.
Then, the effect of the frequency denormalization step must
necessarily modify the value of capacitors. In order to visu-
alize such effect either (2) or (9) can be rewrite as follows:

H(s)|s→ s
Ω0

=
k0

1

1.0
(

1.0
Ω0

)
1.0

(
1.0
Ω0

)

s2 + 1.4142

1.0
(

1.0
Ω0

)s + 1

1.0
(

1.0
Ω0

)
1.0

(
1.0
Ω0

) (10)

where dimension of all variables have been omitted. It is clear
that just capacitors change their value from C=1.0 F to

C′ = C/Ω0 = (1.0 F)/Ω0 ≈ 15.9 µF

as shown in (10) and also illustrated in Fig. 2b; the constant
time is now given byτ ’=RC’=(1/Ω0) s. Since the capac-
itance C’=15.9µF is not a commercial one, an impedance
denormalization step must be performed.

Let us suppose that the capacitance is modified from
C’=15.9 µF to a commercial one, C”=0.1µF. So, the
impedance denormalization process looks for a constantα re-
lating both quantities,i.e. α=C’/C”=15.9 µF/0.1µF=159.1.
Therefore, the newest capacitance value is obtained by us-
ing the formula C”=C’/α, and the newest resistance value is
R′ = αR = 159.1(1.0 Ω) = 159.1 Ω such that the constant
time is not affected byα, τ ’= R’C”=( αR)(C’/α)=RC’. At
this point, the synthesis process ends in the following model
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H(s)|s→ s
Ω0

=
k0

1

α(1.0)
(

1.0
αΩ0

)
α(1.0)

(
1.0

αΩ0

)

s2 + 1.4142

α(1.0)
(

1.0
αΩ0

)s + 1

α(1.0)
(

1.0
αΩ0

)
α(1.0)

(
1.0

αΩ0

) (11)

where the value for each electronic component is clearly in-
dicated. From the mathematical point-of-view (2) and (11)
are equivalent models.

3.1. Discussion and simulation results

Two basic design procedures were presented to show their
effect on the electronic components’ value and illustrate how
these values are fitted to commercial ones. However, to vi-
sualize the advantage of these procedures via simulation, the
design of the amplifier block is still needed.

From the point-of-view of modeling, the simplest lumped
amplifier is a voltage-controlled voltage source (VCVS). If
this circuit is single-ended type and its input includes a dif-
ferential port, the circuit is an operational amplifier called
commonly opamp. The differential port includes high in-
put resistance (Rin), while the output node presents a very
low resistance (Rout). Figure 4a shows the opamp based on
lumped components, where A0 is the open-loop gain; A0 for
commercial opamps rang between 104 and 105, while typical
resistance are Rin=10.0 MΩ and Rout=100 Ω [3,4]. So, the
output voltage of the opamp is modeled by vout=A0vd. Note
that this model does not impose any restriction to input sig-
nals. As an example, let us suppose a 20.0 GHz sine signal
propagating atν=3.0×105 km/s. The wavelength of this sig-
nal isλ = ν/f=(3.0×105 km/s)/(20.0 GHz)=1.5 cm, which is
a dimension lower than any filter implementation. According
to this result the opamp-based filter under design is not a

FIGURE 4. Lumped equivalent circuits of opamps.

lumped circuit but a distributed one [5]. This fact means that
for high frequency analysis the filter would be designed with
the help of Maxwell’s equations instead Kirchhoff’s laws.
However, because of the instrinsic capacitances of the opamp
by itself, other parasite capacitances and additional unwanted
effects limit the bandwidth of the opamp making to the filter a
lumped design. This is the reason why the filter under design
is analyzed via Kirchhoff’s laws.

In practice, commercial opamps present a low frequency
pole ranging between 100 Hz and 1.0 kHz; the pole is the rea-
son by which the opamp is a limited bandwidth circuit. The
effect of the pole on the opamp’s performance is added to
the lumped model by adding a RC network between the input
and output stages as shown in Fig. 4b. The output voltage of
the opamp is then modeled by

vout =
A0

1 + s
ωp

vd (12)

whereωp=1/(RpCp). Note that the proposed lumped circuit
includes a VCVS-based output stage with a gain factor A1=1.

FIGURE 5. Low-pass RC-active filter (a), and the low-pass filter
frequency response.
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FIGURE 6. Netlist showing the opamp design based on a sub-
circuit definition.

In order to model an amplifier with gain k, the circuit shown
in Fig. 5a is proposed. It is not only a simple circuit, but
also it uses few resistive components. From (12) and taken
into account that A0 → ∞ and v+=vin, it is easy to demon-
strate that v−=vin. Then, from KCL a unique node equation
is obtained:

(vin − vout)
1

R4
+

vin

R3
= 0 (13)

or equivalently

vout

vin
= 1 +

R4

R3
(14)

which is a common result reported in literature [6]. Since
the resistive value of both R3 and R4 are under the de-
signer’s control, by proposing R3=10 kΩ and taken into ac-
count k=1.5859 a resistor R4=5.6 kΩ is obtained. Note that
both resistors correspond to commercial components. Fig-
ure 5b shows the filter’s frequency response obtained from
tspice. The latest is a general-purpose circuit simulator that
is easily downloaded by following the procedure described
in Ref. 7. As this figure also shows, the low-frequency gain

corresponds approximately to 20log(1.5859)=4 dB, whereas
the frequency response presents a loss of -3dB at a frequency
9.82 kHz. On the other hand, in Fig. 6 the netlist for
tspice simulation is presented; since 159.1Ω is not a com-
mercial value, resistors were fitted to the closer commercial
one (162Ω). From the point-of-view of error analysis, such
resistance change corresponds to a relative error

ε = (RComm− RIdeal)/RComm = 1.17%.

Consequently, the relative error on the cutoff frequency is of
the order of 2.0%. Note that the change in the resistance value
modifies a little the position of the filter’s poles,i.e. the re-
sponse is actually a quasi-Butterworth one.

4. Simulation

Even when theAnalysis and Synthesisstage includes simula-
tion as part of the design process, there is aSimulationstage
in the DF needed to perform simulation runs in order to eval-
uate the performance of the whole design. As Fig. 1 shows,
this design stage uses technical data given by manufactur-
ers and/or experimental data obtained from laboratory activi-
ties. Technical data includes generally spice-based electrical
models allowing to the designer estimating how parameters
of commercial circuits and devices affect the system’s per-
formance. The same is true for those scenarios where tem-
perature effects, via simulation, give also an important qual-
itative understanding of the system’s performance. On the
other hand, experimental data may refers to take into account
equivalent circuits to model components’ impedance on the
frequency domain, variations of impedances due to temper-
ature effects, or the packaging’s effect on the system perfor-
mance due parasitics. As an example the Fig. 7 shows, at
bottom, the impedance-frequency characteristic of a capaci-
tor of value 0.3µF, where three operation regions are clearly
depicted. Experimental values were capture with the help of
an impedance analyzer (Agilent, 4192 A). The response for
frequencies lower than 4.0 MHz corresponds to capacitive
impedance, while for frequencies higher than 4.0 MHz the
response is that of inductive impedance. The latest is actually
an unwanted effect due to conductive terminals of the capaci-
tor. Note that the figure shows a region on which both capac-
itive and inductive effects cancel each other. Strictly speak-
ing, the frequency at which the impedance is purely ohmic is
called the resonance frequency (fres). From the point-of-view
of modeling, the impedance-frequency characteristic can be
modeled with the help of the lumped LRC circuit shown in
Fig. 7a, where R models the resistance of metallic wires. Ac-
cording to experimental data, R, L, and fresare approximately
0.5Ω, 41 nH, and 4.0 MHz, respectively. The analysis given
above is easily translated to the following model

Zeq(s) = R + sL +
1

sC
= R +

L

s

(
s2 +

1
LC

)
(15)
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FIGURE 7. The capacitor’s equivalent lumped circuit (a), and its
impedance-frequency characteristic (b).

which is obtained by calculating the equivalent impedance
(Zeq) of the LRC circuit. As before, if s is replaced by jω the
magnitude of Zeq is obtained:

|Zeq| =
√

R2 +
(

L

ω

)2 (
1

LC
− ω2

)2

(16)

It is easy verify that the ohmic impedance is found at
the frequencyω0=(LC)−1/2 that is actually the resonance
frequency given byω0=2πfres. The importance of knowing
the resonance frequency value is because it establishes the
frequency range on which the impedance corresponds to the
ideal electrical characteristic of electronic components. For
instance, the capacitor’s performance shown in Fig. 7 indi-
cates that it works correctly as a capacitor from DC to approx-
imately 4.0 MHz, otherwise the impedance-frequency char-
acteristic is due to parasitic effects.

Taking into account unwanted effects, it is possible to per-
form better simulations by including variations on the com-
ponents’ values. The frequency response shown in Fig. 5
corresponds to Monte Carlo analysis where all components
were allowed to vary no more than 5%. Simulation results
show how the filter’s response is not affected by components
variation. Note that, at this simulation level, the components

variations do not correspond to a trial-and-error approach but
a small variation around the value of each electronic com-
ponent. The DF takes advantage of Monte Carlo analysis
because the design variables of the filter are represented by
statistical distributions, which are randomly sampled to pro-
duce the filter’s response. Simulation results shown in Fig. 5
were carried out at room temperature.

Another unwanted effect is that of the output capacitive
load (CLoad). This load is the sum of the intrinsic capacitance
of the physical support (protoboard or PCB), the capacitance
of the output node by itself, and the probe of the measurement
equipment (oscilloscope or spectrum analyzer). Since the fil-
ter under design is of the low-frequency class, CLoad does not
affect the filter’s response. Otherwise, the designer may use
simple procedures to estimate the value of CLoad and evalu-
ate the circuit’s stability [6]. Note that the netlist shown in
Fig. 6 includes a capacitive load of 1.0µF, which is enough
to sure the ideal filter’s performance. So, an advice for de-
signing analog circuits is to take into account data sheets of
both commercial circuits and related components for writing
a netlist as complete as possible representing the physical de-
sign of the CUD. In that sense, Martı́nez-Alvarado in Ref. 2
includes a library based on both commercial opamps and fil-
ters topologies such that by choosing each one, the netlist
includes the opamp’s electrical model as well as the topology
description in spice syntax.

5. Physical design and measurement results

According to the design flow shown in Fig. 1, once the de-
sign specifications are fully satisfied via simulation runs, the
Physical Designis the following design stage. Probably the
most popular opamp is that of the 741 family. It is cheap,
widely used as a basic building block in many books [6,8],
and offer a great variety of applications. In order to verify the
correct operation of the CUD, the non inverting amplifier is
easily tested by all students with the help of the setup shown

FIGURE 8. Setup for measuring the gain factor k=1+R4/R3.
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TABLE III. Resistance values and gain factor. The latest is defined
by (kN-kmeas)/kN

R3(Ω) R4(Ω) kN kmeas ε(%)

560 330 1.58 1.575 0.33

2.2 k 1.2 k 1.54 1.399 9.15

4.7 k 2.7 k 1.57 1.528 2.67

10 k 5.6 k 1.56 - -

TABLE IV. Resistance/Capacitance values for calculating the cut-
off frequency. The relative error is defined by (fN -fmeas)/fN

R1=R2 (Ω) C1=C2 (F) f0 (Hz) fN (Hz) f0,meas(Hz) ε(%)

100 0.1µ 16 k 15.915 k 13.6 k 14.5

12 k 440 n 30 k 30.142 k 32 k 5.8

330 10 n 50 k 48.228 k 47 k 2.61

1.2 k 2.2 n 60 k 60.285 k 59 k 2.17

10 k 240 p 70 k 66.314 k 69 k 2.8

1.2 k 1.0 n 130 k 132.6 k 131 k 1.22

in Fig. 8, where the opamp (LM741, National Semiconduc-
tor) has been biased with a power supply VDD = ±5 V
(1626, BK Precision). The input voltage vin is actually a
function generator (4040A, BK precision), whereas the out-
put voltage is measured with an oscilloscope (TDS-2002B,
Tektronix), therefore the test step is done in the time domain.
Table III lists several values of commercial resistors (R3 and
R4) suitable for generating the gain k.

It is well known that resistors suffer of resistive varia-
tion that is commonly indicated by the tolerance range. In
other words, because the standard resistance color code pro-
vides just the nominal value, a set of measurements is rec-
ommended in order to obtain the actual value of all design
variables. As an example, Table III shows the average gain
factor kmeas for each pair of resistors, where kN represents
the gain factor due the nominal value of resistors, andε is
the magnitude of the relative error. Fig. 9 shows a sine in-
put signal (344 mV, 14 Hz) as well as the amplifier’s output
response; in this example the gain factor is

k = vout/vin = 548 mV/344 mV = 1.59 ≡ 4 dB

at 14 Hz. Note that k can be computed for a wide frequency
range because the circuit under test is purely resistive; take
measurements as much as possible allow to the designer ob-
tain a representative gain factor kmeas. As Table III shows,
the first pair of resistors is the authors’ choice because of the
lowest relative error.

As another example let us suppose the design of a 60 kHz
low pass filter, where fN is approximately 60.28 kHz be-
cause of the nominal value of components (see Table IV).
In this designΩ0=2π(60 kHz)/(1.0 rad/s)=1.2π×105 and
C1=C2=2.6µF at R2=R1=1Ω, or equivalently C1=C2=2.2 nF
at R2=R1=1.2 kΩ. In order to obtain the actual cut-off fre-
quency, the signal generator inputs a low frequency sine wave

FIGURE 9. The oscilloscope allows estimating the gain factor at a
defined frequency.

TABLE V. Magnitude of the relative error for both resistors and
capacitors.

RN (Ω) Rmeas(Ω) εR (%) CN (F) Cmeas(F) εC (%)

10 9.9 1.0 2.2 n 2.3 n 4.54

12 11.8 1.66 10 n 9.97 n 0.3

20 20.4 2.0 0.1µ 0.12 20

24 23.8 0.83 10µ 10.28µ 2.8

100 98 2.0 220µ 221.3µ 0.59

220 216.5 1.59

330 328 0.60

560 561 0.17

10 k 9.5 k 5.0

TABLE VI. Magnitude of the relative error for both resistors and
capacitors.

with amplitude Vpp=344 mV, and offset voltage 0 V (the
reader must remember that the bias is±5 V). A low fre-
quency signal is needed for calculating not only the gain fac-
tor at that frequency, but also to avoid the attenuation ef-
fect of the filter’s pole. Next, for frequencies lower than
fN the amplitude of the output signal is vinkmeas, and at
the cut-off frequency the amplitude is given by 0.7vinkmeas

(=0.7×1.59×344 mV) as was explained before. Therefore,
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FIGURE 10. Illustrative representation of the output response for frecuencies around the filter’s cut-off frequncy.

the actual cut-off frequency is found by varying the input fre-
quency up to obtain an amplitude equal to 382.87mV; in this
example f0,meas≈59 kHz (see Table IV).

Figure 10a shows the gain-frequency characteristic of the
60.0 kHz Butterworth low-pass filter (spice simulation) and
the time domain response at three specific frequencies. As
we can see, the response satisfyingf ¿60 kHz is due to the
gain factor only,i.e. vout=vinkmeasor

vout/vin = 548 mV/344 mV = 1.59

(see Fig. 10b). Next, at the cut-off frequency f=60 kHz
the magnitude of the output voltage is vout=0.7vinkmeas or
vout/vin=364 mV/340 mV (see Fig. 10c). Finally, the re-
sponse for frequencies higher than 60 kHz is attenuated,
vout/vin=92 mV/132 mV (see Fig. 10d), as described by the-
ory.

Note that Fig. 10 is a recommended test option mainly
when a spectrum analyzer is not a facility in laboratory. This
test process could be slow but measuring design variables
as much as possible is the correct way for accuracy. An-
other advantage of this procedure is that students verify by
watching the time response how the output voltage’s ampli-
tude varies as the frequency of the input signal moves along

the frequency range. This fact makes easy the comprehension
of the filtering process.

6. Conclusions

As result of the proposed methodology, students have under-
stood that the filter’s response varies due to the tolerance of
the passive components, which means (11) is a correct de-
sign model. Further, since measurement result is not com-
plete, unless it informs about accuracy, students have mea-
sured the actual value (TX1 Multimeter, Tektronix) and have
also computed the nominal error (see Table V). This fact is re-
sult of the laboratory-based learning and constitutes the base
to give a better answer than that given at the beginning of
the course (see Table VI); the course, Electronics I, is an un-
dergraduate one offered at the 5th semester of the Mechatron-
ics Engineering career at Universidad Panamericana-Campus
Guadalajara.

The proposed methodology allows to the students verify
the usefulness of both Ohm’s law and Kirchhoff current law
in the frequency domain not only to obtain mathematical de-
sign models, but also to understand the physical meaning of
each term and the geometric meaning of the denormalization
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steps as well. An additional goal is the use of basic build-
ing blocks, as the opamp is, for doing the synthesis of second
order systems from which active filters is just an example.
Finally, it is needed to mention that this design methodology,
useful for lumped circuits design, is easily extended to other
frequency responses (high pass, band pass, band reject), to
other design approaches (Chebyshev, Elliptic, etc.), and also
to the synthesis of high order systems.

In this paper basics on active filter design by using the
Butterworth approach have been presented. Complete de-
sign examples for 2nd order low-pass filters were described

by using modeling/measurements of both passive and active
components. In order to illustrate the synthesis process an
active topology with just one opamp was analyzed. Design
consideration and experimental data were presented as vehi-
cle to illustrate how some components deviates from its ideal
response. Since this paper is for educational purpose empha-
sis on spice simulation was done in order to verify design
specifications. A free version of T-spice, which is the soft-
ware used in this paper, can be down loaded at the following
www.tanner.com
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