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Approaching to nanostructures using basic concepts of quantum mechanics
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In this work we discuss some concepts of quantum mechanics showing the result for the ground state energy of the infinite potential well
that, together with elementary thermal physics concepts applied to semiconductors, help us to estimate the size of nanostructures. The energy
value of the infinite potential well is compared with the finite potential well, some results were obtained with numerical calculations using
basic quantum mechanics, particularly we used the BenDaniel-Duke model used for semiconductor junctions to analyze the structure GaAs-
Al1−xGaxAs, the energy levels were obtained of the confined states in the quantum well of the nanostructure in function of Al percentage.
This system is representative of nanostructures quantum devices, currently under study in electronic solid state physics. This presentation
could be very useful to teach in undergraduate applied physics courses.
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En este trabajo discutimos algunos conceptos de mecánica cúantica mostrando el resultado para la energı́a de estado base del pozo de potencial
infinito que conjuntamente con conceptos elementales de fı́sica t́ermica aplicados a semiconductores nos sonútiles para estimar el tamaño de
nanoestructuras. El valor de la energı́a del pozo de potencial infinito es comparado con el pozo de potencial finito, algunos resultados fueron
obtenidos con ćalculos nuḿericos usando mecánica cúantica b́asica, particularmente usamos el modelo de BenDaniel-Duke para analizar la
estructura de GaAs-Al1−xGaxAs, se obtienen los niveles de energı́a de los estados confinados en el pozo cuántico de la nanoestructura en
función del porcentaje de Al. Este sistema es representativo de dispositivos cuánticos nanoestructurados estudiados actualmente en la fı́sica
electŕonica del estado sólido. Esta presentación puede seŕutil para ensẽnanza a nivel licenciatura o posgrado en cursos de fı́sica aplicada.

Descriptores: Fı́sica moderna aplicada; pozos de potencial; dispositivos nanoestructurados.

PACS: 61.43.W; 73.21.b

1. Introduction

From our experience communicating the basic principles of
Quantum Mechanics to the students, we found that the con-
cepts are very well understood, since we depart from the clas-
sical model of the hydrogen atom, describing the movement
of the electron around the proton as particles and using the
conservation of energy principle. Then, we show the wave
equivalence of the electron, taking into account the equiv-
alency of the perimeter of his orbit with the wavelength that
represents it according to De Broglie, and the conservation of
energy principle, that it is implicit in the Schrödinger’s Equa-
tion. This is a new concept to the students, in which they
may be confused at the beginning, because the electron that
was at first considered a particle now shows the behavior of a
wave [1].

When the movements of the electrons in a material are
restricted to a very small region, we say that they are con-
fined, and when the size of such region is equivalent to the De
Broigle wave length, we see behaviors that can’t be explained
through the classical concepts. Such behaviors appear when
the size is given in nanometric dimensions and can be ex-
plained only from a quantum mechanics point of view.

We calculated the energy levels for an electron trapped
in an infinite potential well and showed that the width of the

well is of a nanometric size. This finally allows us to adapt
this focus to the concepts of Nanotechnology, and in the pos-
sibilities of new materials with physical innovative properties
and practical applications as, for example, the semiconduc-
tors. This focus is useful to approach the scientific knowledge
in the matter to students that do not have a strong educational
background in physics.

The approach presented here, give the quantum mechan-
ics result for an infinite potential well, which allows handling
the calculation of a nanostructure if it is used as a starting
point. This is valuable in the classroom to introduce, for the
first time, simple quantum mechanics results and its use for
application in nanostructures. Formal exact results of com-
plex quantum systems can be found in the literature [2].

2. Theory and calculations

The ground state energy of the potential well, with width L
is:

E =
h2

8mL2
(1)

The value of the Eq. (1) corresponds to the ground state
of an infinite potential well [3].
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FIGURE 1. The first three quantum states of a quantum well.

The consideration of infinite well barrier means physi-
cally that the trapped particle has energy much smaller than
the size of the well barrier.

To apply the results to an electron in a system with quan-
tum size effects for considering it moving in a nanostructure
confining in a region L [4]. In particular, in semiconductor
materials we observe this quantum confinement by its optical
properties.

We can consider the dimension of that system for an elec-
tron moving at temperature T with the use of an elementary
concept of thermal physicsi.e. the equipartition principle of
energy. The electron is moving only in one direction, using
this principle the result is of the order of (1/2)kT, where k is
the Boltzman constant [5] then, with the help of Eq. (1), L is:

L =
1
2

h√
mkT

(2)

It is generally accepted that the calculation of static en-
ergy levels within quantum wells should take account for the
variation in the effective mass m∗ [6]. The electron is mov-
ing with an equivalent mass m* in the semiconductor [7],
such statement is rigorously demonstrated in solid state text-
books [8], a typical value is m∗ = 0.1mo. At room tempera-
ture kT=0.025 electron Volts (eV). Then we find that we must
have L in the order of 10 nanometers, this is the origin of the
nanostructure word, that is no more than: a structure mea-
sured in nanometers. Thus a “thin semiconductor layer” of
thickness of 1 micrometer does not has a size for confine-
ment effects. It is in fact a crystal which would not exhibit
any quantum size effects. To observe quantum size effects we
require thinner layers. The minimum state of a 10 nm GaAs
quantum wells for the infinite well has a value of 57 meV [9],
a value accordingly with the experiment is of the order of
32 meV obtained with a finite potential well. We can calcu-
late this result using formal quantum mechanics methods [3].

In this problem, the infinite well model overestimates the
confinement energies, but is useful for the discussion of the
physics because of its simplicity. For more exact values you
can see the literature [10], but here we give a short discussion
of the important facts about the quantum confinement.

FIGURE 2. A micrograph of a heterostructure, gratuitous, obtained
form the web.

3. Quantum wells

For the potential well, quantum mechanics establishes that an
electron cannot be found in any state of energy, the boundary
conditions implies that wave is equal to zero in the walls of
the potential well, being the most energetic states those hav-
ing more nodes (n) in the inside of a quantum well (Fig. 1).
At the present and thanks to the technological advances it
is possible to manufacture physical systems where they can
confine electrons in nanoscale structures and if the system
has two dimensions we have the quantum wells.

In a quantum well the electrons are confined in one di-
rection only (vg. the z direction), while in the plane (x,y)
they move freely. At the direction z the electronic states are
discreet, on the other hand in (x,y) the possible states are con-
tinuous.

The present-day technique of epitaxial growth for molec-
ular beams, allows joining two different materials to make
a flat heterostructure between two semiconductors. A quan-
tum well can be obtained when a plate of a semiconductor is
placed (for example GaAs) between two semiconductors of
prohibited bigger interval itself (Al1−xGaxAs) Fig. 2, [11].

4. Heterojunctions and heterostructures

The effective mass approximation it‘s used for a bulk crystal,
meaning the crystal is very large with respect to the scale of
an electron wave function which is effectively infinite. When
two such materials are placed adjacent to each other they
form a heterojunction. In such case the Schrödinger’s equa-
tion would be used for any one band, taking the effective
mass to be the same in each material. The heterostructures
are formed from multiple heterojunctions.

Starting from Schr̈odinger’s equation a mathematical
model that allows describing the electronic state of the het-
erostructure of (GaAs-Al1−xGaxAs) is the one of BenDaniel-
Duke used in semiconductor junctions [12]. ConsideringE1

andE2 as the energies of the borders of the bands in both
semiconductors andV0 = E2 − E1 tells how much are apart
between the borders, then the equation that describes the sys-
tem is the Schr̈odinger equation (3) when the transversal
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FIGURE 3. Calculations of the heterostructure with different aluminum concentrations.
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moment in the plane (x,y) is equal to zero and the direction
of growth z is perpendicular to the plane.

(
−~

2

2
d

dz

1
m∗

d

dz
+ V (z)

)
ψ(z) = Eψ(z) (3)

The value ofV (z) is equal to zero at the plane of GaAs of
thicknessα while it takes the valueV0 in Al1−xGaxAs. The
condition of contour inz = 0 can be obtained integrating the
Eq. (3) in the neighborhood of that plane, then in order to
avoid infinite kinetic energies it is seen that both

ψ(z) and
1

m∗
dx(z)

dz
(4)

must be continuous.
The solutions of the equation for the involving function

in a quantum well corresponds to the confined states which
can be classify according to their parity.

Semiconductor quantum wells are examples of nanos-
tructures built by artificial crystals in layers of different ma-
terials grown on top of a thicker crystal. The structures are
made by the specialized epitaxial crystal growth techniques.
The layer thickness of the crystal growth can be controlled
with atomic precision. This makes it easy to achieve the thin
layer thickness required to observe quantum confinement of
the electrons in a semiconductor at room temperature. An
example of a heterostructure nanostructure device is a series
of single GaAs/AlGaAs quantum wells. The single quan-
tum well is formed in the thin GaAs layer sandwiched be-
tween AlGaAs layers. Using the above theory we present the
states of this system. The corresponding levels of energy are
obtained by solving numerically the transcendent equations
considering the small masses of the electron and the hole.

Even

ψ(z) =





cos(kα/2) exp [β(z + α/2)] z < −α/2
cos(kz) |z| ≤ α/2
cos(kα/2) exp [β(−z + α/2)] z > α/2

Odd

ψ(z) =





sin(kα/2) exp [β(z + α/2)] z < −α/2
sin(kz) |z| ≤ α/2
sin(kα/2) exp [β(−z + α/2)] z > α/2

Using these trial forms of the wave function in their cor-
responding Schrödinger’s equations, we obtain:

K =
√

2m ∗ E

~
β =

√
2m ∗ (V − E)

~
(5)

Solving numerically the transcendental equations we can
get the corresponding energy levels.

Graphs 1 and 2 in Fig. 3 show the values of the energy of
the status restricted in terms of the aluminum percentage and
of the thickness of the cape of GaAs.

This type of structure is a multiple quantum wells. In this
system the individuals are isolated from each other, and the
properties are associated to the single quantum wells. They
are often used in optical applications to give a usable optical
density. It would be very difficult the optical absorption of
a single 10 nm thick quantum well, simply because it has so
little material to absorb the light.

5. Conclusions

The expression known of the infinite potential well, and the
exact value of the ground state of energy are very useful
to introduce an idea of modern systems handled in solid
state physics. The use of simple arguments give to under-
graduate students in intermediate courses of Applied Modern
Physics in Engineering, Chemistry and Physics undergrad-
uate and graduate Programs, the opportunity to obtain a pri-
mary knowledge of the nanostructure building and a first idea
of this modern systems handled actually in applied physics.
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