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A novel set of reduced equations to model perfect layer matched (PML) in FDTD
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We propose a new set of reduced equations describing the Perfectly Matched Layer (PML) boundary condition for the Finite Difference Time
Domain Method (FDTD) algorithm. These expressions take into account the main properties of the electromagnetic wave propagation in
continuos medias: absorbing, free space and conductive, simplifying the solution of electromagnetic problems as such as the FDTD lattice.
A two-dimensional (2-D) transversal electric TE mode Gaussian pulse propagating along free-space is presented as a vehicle of study. The
efficiency of this model is validated by a new way to compute the power reflection coefficient of the electromagnetic field arriving at the
PML interface at several points. Also a detailed description of the rounding up process to obtain integer values for FDTD equations indexes
is discussed.
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Se propone un conjunto de ecuaciones FDTD reducidas que describen la condición de frontera PML y la región de ańalisis utilizando el
método de diferencias finitas en el dominio del tiempo. Para lograr esto el conjunto de ecuaciones describen las propiedades de los principales
medios continuos de propagación electromagńetica: medio absorbente, espacio libre y conductor, lo que simplifica la implementación y
solucíon de problemas de propagación mediante FDTD. Como caso de estudio se analiza la propagación bidimensional de un pulso gausiano
en un modo TE. La eficiencia del modelo propuesto se valida calculando el coeficiente de reflexión en varios puntos de la interfaz entre la
región de inteŕes y la regíon PML. Se presenta también una descripción detallada del proceso de redondeo de losı́ndices fraccionarios del
conjunto de ecuaciones FDTD.

Descriptores: Ecuaciones de Maxwell; diferencias finitas en el dominio del tiempo; condiciones de frontera absorbentes; propagación
electromagńetica.
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1. Introduction

The Finite Difference Time Domain (FDTD) method has re-
cently sparked a wealth of work to solve a large variety of
electromagnetic problems. The main advantage of the FDTD
method is that it is a straightforward solution of the six-
coupled field components of the Maxwells curl equations. It
consists in discretizing the time-dependent Maxwell’s equa-
tions using central-difference approximations for the space
and time partial derivatives. The resulting finite-difference
equations are solved according to the Yee algorithm [1]. This
implies a computational representation of the propagation
zone called computation domain that must be limited by the
application of boundary conditions. In fact, an important
issue in the FDTD research is the requirements of efficient
absorbing boundary conditions (ABCs) to truncate open re-
gion problems. Berengers perfectly matched layer (PML) has
been shown to be one of the most effective FDTD ABCs [2].
Berengers PML consists of a lossy and artificial layer with a
thickness varying from 4 to 12 cells and can be placed gener-
ally very close to the electromagnetic sources located inside

the inner FDTD computational domain. This type of PML
is based on splitting each field component into two subcom-
ponents. For large electromagnetic problems PML requires
large time computing and memory storage along several lines
code. In this paper we propose an original PML model, that
is based on a new set of reduced equations that deals -in a
simple way- with the main characteristics of the most com-
mon media used in electromagnetic problems: absorbing,
free space and conductive regions, simplifying the solution
field within the FDTD lattice. To test this model we propose
a two-dimensional (2-D) transversal electric TE mode Gaus-
sian pulse that propagates within an homogenous medium
like free-space, which is a well known boundary problem.
The efficiency of the model is validated by calculating at sev-
eral points of the PML interface, the power reflection coef-
ficient of the electromagnetic field. The rest of the paper is
organized as follows: Sec. 2 formulates the equations that
describe the studied propagation mode. Sec. 3 includes a
discussion on the main features concerning the reduced PML
model along a detailed description of the rounding up process
to obtain integer values for FDTD equations indexes. Sec. 4
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FIGURE 1. Transversal electric - two dimensional mode (TE-2D).

FIGURE 2. E centered base cell.

presents the Modeling setup, while the main simulation re-
sults are discussed in Sec. 5, and finally the conclusions of
this work are outlined in Sec. 6.

2. The finite difference time-domain method

The FDTD leads to an asymptotic solution of Maxwell’s curl
equations converting them in difference’s equations using the
space-time centered scheme with an approximation of second
order [3]. To ensure convergence, the standard conditions of
stability and numeric dispersion must be applied, see [4] and
references therein.

2.1. The two-dimensional transversal electric (2D-TE)
Model

In order to obtain PML absorbing boundary equations, a
set of symmetric Maxwell equations must be considered by

adding the equivalent magnetic conductivityσ∗ term into the
Faraday’s Law. This is an hypothetical consideration required
to form an absorbing PML layer for magnetic and electric
fields.

From vectorial Maxwell curl equations, TE propagation
mode expressions are obtained assuming electromagnetic
propagation within thex−y plane [5], based on the following
considerations:

1. Both, the physical and electrical properties of propa-
gation region are uniform along thez direction, hence
derivatives for theE andH field components in thez
direction vanish, leading to define a set of 2-D equa-
tions.

2. It is assumed that a TE mode is composed by only one
componentEz which is transversal to the propagating
x − y plane, leading toHz = Ex = Ey = 0, then
the field components that are taken into account on the
wave propagation are:Ez, Hx andHy as depicted in
Fig. 1.

Under these considerations, the field equations for the
TE-2D mode are written as:
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where σ is the electric conductivity,σ∗ is the equivalent
magnetic conductivity,µ is the permeability andε is the per-
mitivity. In the following section discretization of the TE-2D
mode is described.

2.2. Discretization of the TE-2D equation set

Figure 2 showsE-centered base cell, surrounded byH field
describing their positions depending on the coordinate axis.

From (1)-(3), space and time differences are evaluated
obtaining (4)-(6), where the subscript indicates the spatial
position, and the superscript represents the temporal posi-
tion [7].

Ez
n+ 1

2
(i− 1

2 ,j+ 1
2 )

=
(

2ε− σ∆t

2ε + σ∆t

)
Ez

n− 1
2

(i− 1
2 ,j+ 1

2 )

+
(

2∆t

2ε + σ∆t

) [
Hyn

(i,j+ 1
2 )
−Hyn

(i−1,j+ 1
2 )

∆x

]

−
(

2∆t

2ε + σ∆t

) [
Hxn

(i− 1
2 ,j+1)

−Hxn
(i− 1

2 ,j)

∆y

]
(4)

Rev. Mex. F́ıs. E57 (1) (2011) 25–31



A NOVEL SET OF REDUCED EQUATIONS TO MODEL PERFECT LAYER MATCHED (PML) IN FDTD 27

Hyn+1
(i,j+ 1

2 )
=

(
2µ− σ∗x∆t

2µ + σ∗x∆t

)
Hyn

(i,j+ 1
2 ) +

(
2∆t

2µ + σ∗x∆t

) 
Ez

n+ 1
2

(i+ 1
2 ,j+ 1

2 )
− Ez

n+ 1
2

(i− 1
2 ,j+ 1

2 )

∆x


 (5)

Hxn+1
(i− 1

2 ,j+1)
=

(
2µ− σ∗y∆t

2µ + σ∗y∆t

)
Hxn

(i− 1
2 ,j+1) −

(
2∆t

2µ + σ∗y∆t

) 
Ez

n+ 1
2

(i− 1
2 ,j+ 3

2 )
− Ez

n+ 1
2

(i− 1
2 ,j+ 1

2 )

∆y


 (6)

3. Reduced equation model from perfectly
matched layer equations

The original PML model [2] establishes that an artificial ma-
terial region surrounding the scatterer has both electrical and
magnetic conductivities. Each field component is split into
two parts, resulting in a total of 12 field components for a
three dimensional region. In this way only normal field com-
ponents to PML interface are attenuated within the absorption
region. Attenuation is properly achieved by a predefined con-
ductivity profile. Practical implementation in a FDTD mesh
implies to establish two sets of equations: One set to describe
the interest region and the other one to take into account the
PML. In contrast with traditional techniques where special
conditions must be used to match the main computational do-
main, the interface and the absorbing boundaries layers, this
method assumes that electric and magnetic conductivities are
defined in such a way that these simulation regions can be
represented by only one set of equations. This leads to only
four expressions to completely describe the PML instead the

eight expressions proposed by [2] and commonly found in
the literature. This procedure allows the simplest solution
when compared with standard methods. However, special
care must be taken with the round up process of the spa-
tial subscripts whereas the temporal subscripts are omitted
because they are implicitly built within the FDTD code [7].
The different computational domains and their corresponding
conductivities are schematically represented in Fig. 3. Those
regions leads to the reduced set of equations.

The new set of PML equations are obtained from
Maxwell’s symmetric equations describing a TE-2D propa-
gation according with the following procedure:

1. The transversal electrical componentEz is decom-
posed into itsx andy projections, allowingEz to be
replaced by(Ezx + Ezy).

2. An artificial decomposition of conductivities is also
performed according to its axis projection, lead-
ing to σ = σx = σy and σ∗ = σ∗x = σ∗y , resulting
into (7)-(10).
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An specific computational domain can be modeled
by (7)-(10) trhough the following steps:

1. Absorbing region is defined by consideringσ=σx=σy

andσ∗ = σ∗x = σ∗y besidesσ/ε0 = σ∗/µ0 is accom-
plished as a matching condition.

2. Free space is defined whenσx = σy = σ∗x = σ∗y = 0
which leads to Maxwell’s equations in free space.

3. The conductive region is defined byσx andσy 6= 0 and
σ∗x = σ∗y = 0.
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FIGURE 3. Free space, absorbing and conductive regions.

FIGURE 4. Location of the base cell PML projected on to the mesh
of the computational region.

Conductivity values at the absorbing region are assigned
by the conductivity profile, making the possibility of wave
absorption within the PML layer. For this case a polynomial
conductivity function profile is used and it will be introduced
later on this paper.

3.1. Rounding up equation’s fractional indexes proce-
dure to implement the computer code

It has been found in FDTD literature a lack of informa-
tion about the process of writing code from FDTD fractional

FIGURE 5. Rounding of the cell base subscripts.

equations. To the authors knowledge, this is the first time that
a detailed description of the rounding up process to obtain
integer values for the FDTD equation indexes is presented.
This procedure is described as follows:

1. Considering the centeredE based cell depicted in
Fig. 2, the positions along theX andY directions are
identified as (i − 1) and (j − 1) respectively whereas
subsequent positions alongX andY direction are iden-
tified as (i + 1) and (j + 1) respectively.

2. When the position of equation’s fractional indexes are
related to Fig. 4, then (7), (8), (9) and (10) can be easily
rewritten in terms of integer indexes.

3. To conform a computational region (FDTD mesh) it is
usual to replicate theE centered base cell as in Fig. 5.
The region is over-dimensioned onto the upper and
right side in order to maintain symmetry and to apply
uniform perfect conductor conditions even around the
outer side. In this case, the added elements inX and
Y directions are identified asImax andJmax indexes.

4. Following this procedure, it is found for example,
that Hx can be evaluated inX direction from 1 to
Imax, however inY direction it is evaluated from
(1 : Jmax−1) so index range forHx in Eq. (10) is
(1 : Imax, 1:Jmax − 1).

After this process, a rounded-up PML equation system
can be written by:
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those equations can be directly entered into a computer code.

3.2. Conductivity profile in the PML layer

A smooth transition from inner region to PML layer is re-
quired for the correct performance of the absorption bound-
ary condition. Abrupt changes can generate undesirable re-
flections or PML mismatching, then an adequate incremen-
tal conductivity evolution trough PML layer is desired. This
can be accomplished by the implementation of a conductivity
profile function. To this end, we use a polynomial function
as in Ref. 2:

σ(ρ) = σmax

[ρ

δ

]m

. (15)

Whereσ(ρ) is the conductivity value at a distanceρ from
interface to an inner point into the PML layer,σmax is the
maximum conductivity value at the outer cell of the PML
layer,δ is the total thickness of the PML layer andm is the
degree of the polynomial profile.

Optimal values reported for polynomial profile in our pre-
vious work [7] remain between 3 and 4 form and1.0 for
σmax. When the conductivity profile is implemented an aver-
age value around a selected pointL is performed as in Ref. 6:

σρ(L) =
1

∆ρ

ρ(L)+∆ρ
2∫

ρ(L)−∆ρ
2

σp(u)du, (16)

where∆ρ is the space step andσρ(u) is a general conduc-
tivity distribution around the pointL. By using (15) in (16),
anL-based algorithm is conformed to assign a conductivity
value for everyL point into the PML layer. Hence forL = 0
reads:

σρ(0) =
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And for L 6= 0:

FIGURE 6. Schematic setup for the calculation of the reflection
coefficient.

σρ(L > 0) =
1
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4. Modelling setup

As is known, Berenger has established the reflection coeffi-
cient for the PML as:

R(Θ) = e−
2

(n+1)
σmδ
ε0c (19)

Being Θ the incidence angle over the PML. The procedure
defines a test domain that is centered within a benchmark do-
main, simulating an almost infinite domain for the reflection
layer. The difference between measurements perfomed inside
the test domain and the benchmark domain provides a mea-
sure of the spurious reflection caused by PML (see Fig. 6).

A different way of power reflection measurement is pro-
posed in this paper. We assume a Gaussian pulse propagating
over the domain, the incident and reflected waves over the
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TABLE I. Main parameters of the experiment to model a TE-2D
with ABC-PML, 12 cells.

Calculation region (FDTD) Iḿax:924, Jḿax:1374

Number of cells (layer PML) 12

Power source Gaussian pulse

Dispersion parameter s = 0.2× 10−9

Location - source (FDTD) I:362, J:562

Frequency 3 GHz

Degree of polynomial profile 4

Initial conductivity σ0 = 2× 10−6 S/m

Numerical stability t = 8.33× 10−12 sec.

Numerical dispersion 0.005 m.

Relative permittivity 1

Relative permeability 1

FIGURE 7. Propagation of theEz field component.

PML boundary are measured at test points (probes), located
inside the domain as shows Fig. 8, then we calculate reflec-
tion coefficient to estimate PML absorption as:

Γ = 20 log
Hi

Hr
(20)

FIGURE 8. Position of probe sensors located at30◦ and40◦ inci-
dence angles.

TABLE II. Reflection coefficient for: (TE-2D), FDTD, ABC-PML,
12 cells.

Incidence angle 30◦ 45◦

Incident wave amplitude .023 .017

Reflected wave amplitude 1.09× 10−8 6.74× 10−9

Maximum value (Reflected wave)−5.5× 10−8 −7× 10−8

Minimum value (Reflected wave)−7.7× 10−8 −8.4× 10−8

Power Reflection Coefficient (dB) -126.5 -128.1

In order to evaluate the absorption performance of this al-
gorithm a simulation is performed by considering a 3 GHz
TE wave propagating in vacuum with a magnitude of
H=0.2982 A/m; the 2D computational domain dimensions
are 1374× 924 cells, with space and time increments of
5 × 10−3 mts. and8.33 × 10−12 sec. respectively to satisfy
stability conditions. Such quantities ensure that the waves
can fully propagate and achieve the PML interface. Numeri-
cal results are obtained for many iterations that represent the
propagation of theEz component. Its complete evolution has
been modeled from the source up to the walls of the compu-
tation domain.

As a source we use a Gaussian Pulse given by:

Ez(t) = e
1

2s2
(∆t(n0−n))2 cos(ω∆t(n0 − n)) (21)

Wheres is the scattering parameter,n is the time step,
n0 is the reference time-step andω the angular frequency.
We measure the power reflection coefficientΓ just at the do-
main interface with the PML medium in order to have an es-
timate of PML absorption effectiveness at several measure-
ment points. The main parameters employed for the simula-
tion are listed in Table I.
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5. Results

Figure 7 illustrates the evolution of theEz field component
from 300 up to 2880 iterations. Figure 7a and Fig. 7b il-
lustrate the onset of the electric field propagation. Figure 7c
shows theEz filed component for 1000 iterations, arriving
over the PML layer, with values of field ranging from−0.02
up to0.02 V/m. At 1500 iterations (Fig. 7d), the filed com-
pletely arrives over the inferior wall . A significant wave ab-
sorption from the PML layer can be observed, at this moment
the field values fluctuate from -0.15 to 0.15 V/m. As the
wave goes on 2340 iterations (Fig. 7e) it arrives to the op-
posite right wall of the PML layer, with values from -0.01 to
0.01 V/m. Finally, the field componentEz has concluded its
propagation (Fig. 7f), presenting some reflections with val-
ues from−8 × 10−8 to 1 × 10−8 V/m, which are minimum
comparing with precedent values.

Several sensors are located within the domain, at differ-
ent angles ranging from0◦ to 45◦, in such a way that incident
and reflected waves can be measured without interference be-
tween them. To avoid interference between both waves thes
parameter in (21) is established to vanish the incident wave,
before the reflected wave impinges the probe. As we assume
that propagation is over free space, the wavefront energy is
uniformly scattered over a circumference area given byπr2,
then is possible to calculate the magnitude of the incident
field at the interface. After measuring the reflected field at
the probe, the reflected field at the interface can be calculated
in the same way. The relationship between both fields defines

the power reflection coefficient. In this paper we present re-
sults only for30◦ and45◦, as shown in Fig. 8. Calculated
power reflection coefficients are listed in Table II.

6. Conclusions

An electromagnetic TE-2D wave is modeled by the FDTD
method with PML model containing a reduced number of
equations. These expression can define the propagating zone,
the interface and the PML layers through the electric and
magnetic conductivities. The round up of the subscripts of
the whole model equations is discussed in detail. A experi-
ment is carried out by considering a polynomial conductivity
profile with m = 4 in order to achieve a smooth transition
from one medium to other. As a result, the distribution of the
electric fieldEz component propagating over the periphery
of the computation domain is illustrated. Finally the data are
reported for30o and40o incidence angles, to calculate the
power reflection coefficient, reaching values as low as -126.5
and -128.1 dB respectively, in contrast power reflection co-
efficient values reported in Ref. 2 are around -70 dB, this
clearly illustrates the correct performance of the PML model
based on the proposed expressions.
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