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In this paper we discuss the physical and geometrical content of the various equivalent definitions that have been given so far in the literature
of a crystal’s Brillouin zones. This serves as a motivation to introduce a computationally and conceptually simpler definition. Calculation of
Brillouin-zone related properties in two-dimensional lattices is carried out as an illustration of the versatility of this new approach, particularly

a count of the number of Landsberg subzones in these Bravais lattices is given, which could be of interest for theoretical physics and number
theory.
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En este trabajo se presenta una dismusiobre los contenidossfcos y georatricos de las diversas definiciones que se han propuesto
hasta ahora para definir las zonas de Brillouin de un cristal. Con base en ello, se introduce una nueindgfiei@s computacional

y conceptualmente &s sencilla. Para demostrar la conveniencia de esta nueva propuesta, se réllidas de algunas propiedades
relacionadas con las zonas de Brillouin de redes cristalinas bidimensionales; particularmente, se da un caimeeralelenzonas de
Landsberg en dichas fetilas de Bravais, que puede ser provechoso paisitatérica y la teora de imeros.

Descriptores:Redes de Bravais; subzonas de Landsberg; esquema de zona reducida.

PACS: 61.50.Ah

1. Introduction author is aware of, there exist no methods for finding higher-
order Brillouin zones in a general Bravais lattice since it has
Brillouin zones are introduced in the physics curriculum atheen cumbersome to take a region-oriented approach instead
the upper-undergraduate level, when there is need to delst a point-oriented one. The second purpose is to provide
into the physics of a wave or an electron in a perfect crystalajternative geometrical pictures when trying to explain the
They are useful geometrical constructs that convey informapiosyncrasies of periodic lattices to junior physics students.
tion about diffraction conditions, but also encode the nOtiOfPerhaps one way of th|nk|ng m|ght have more appea] to a
of nth order neighbors (nearest, second nearest, etc.) togudent over other ways of presentation, but we hope that by
lattice point. Their discussion, however, is usually centeregyrasping onto different pictures a firmer understanding will
on giving a historically relevant definition, not so much on pe gchieved.
explaining their intrinsic properties. In Sec. 2 we present and discuss the relationship between
An atomic crystal can be mathematically modeled bygjfferent but equivalent definitions of Brillouin zones. This
defining a set of basic vectors, called lattice vectors, that UpoBeryes as a motivation for introducing in Sec. 3 a new defini-

linear combination generate a lattice. For example, given tWejon, In Sec. 4 we give examples of how we put our definition
vectorsa; andas, a latticeA is formed by taking all the pos-  to computational use.

sible combination®a; +nsas, Withny,ny € Z. Asitturns

out, a lattice may satisfy a certain number of symmetries de-

pending on the lattice vectors. If in the above example we2. Discussion of previous definitions of Bril-

further specifya; - a = 0, and|a;| = |ag|, a so-called louin zones

square lattice is formed; furthermore it is symmetrical (in-

variant) under a rotation of 90 A lattice that satisfies a par- Brillouin zones emerged as a useful concept for understand-

ticular set of symmetries is called a Bravais lattice. Since théng the physics of waves within a crystal structure, and thus

original physical motivation for introducing Brillouin zones they encompass the various equivalent conditions that must

was to study propagation in crystals it is only natural to makebe met in reciprocal space by a wave vector that undergoes

use of Fourier transforms. The Fourier transform of a crysdiffraction from an atomic lattice. Each way of defining the

tal, also called reciprocal space, results in another, possiblgones corresponds to a different intuition, be it geometrical or

different, Bravais lattice. It is in reciprocal space that wavephysical, of the intrinsic characteristics of periodic lattices.

propagation is analyzed and where Brillouin zones displayAltogether, all the definitions involve a way of stating that

their convenience. constructive interference between to incoming plane waves
The purpose of this paper twofold. The main purpose is tascattering elastically takes place at boundaries of Brillouin

present an alternative definition of Brillouin zones that allowszones. The traditional manner of defining them goes as fol-

for a more tractable way of constructing them. As far as thdows. LetA be a Bravais lattice in reciprocal spade.c A
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be a lattice vector of\, and call the perpendicularly bisect- manner of the Ewald definition, and the perpendicular bisec-
ing plane ofLL a Bragg plane Then thenth Brillouin zone  tors of the von Laue definition are given by the first intersec-
taken with respect to an origi@, B, (0), is defined as the tions of the growing spheres with the sphere centereal at
set of pointsk such that one crosses at masBragg planes, This implies what we call the Jones definition — after G. A.
and encounters at leasof them when going from the origin  Jones [1]: a poink is in B,,(0) if the elementd.;, Lo, . .. of

0 to k. We shall call this the von Laue definition, which is A can be ordered so that

related to the diffraction condition k=L < [k—To| <... 3)

1L =k-L; (1) with L, = 0. Let us note that the Jones definition lessens
2 the geometric importance of the poiditas an origin for the
as expressed in Aschroft and Mermin, [4] withrepresent-  lattice coordinate system, shifting instead its role to that of a
ing a wave vector. What Eq. (1) means is that for an incidentdummy” index that tells us how to choose an origin in order
plane wavek and an outgoing plane wale, some lattice to fix B, (0). Furthermore, by establishirg, = 0 we au-
vectorL is defined ad. = k — k', so that in the regime of tomatically define the set of Bragg planes taken with respect
elastic scattering the wave vectors of the incoming and outto 0, let us call it/ (0), that yields the von Laue definition.
going waves must meet at Bragg planes for diffraction to takd3ut we can as well start by fixing/» (0), in which case we
place. need to utilize the inequalities of Eq. (3) to our advantage.
We can analogously define Brillouin zones through an-
other interpretation of the diffraction condition, in what we 3. A new definition
shall call the Ewald definition. Following Kittel, [5] by squar-
ing L = k — k" and imposing elastic scattering we may reex-A remark about Brillouin zones is in order. We can think
press Eq. (1) as them as being composed of two elements, convex polygons
L?=2k-L, (2)  Wwhose vertices are defined by intersections of Bragg planes,
and the interior regions enclosed by such polygons. In this
but this time we see it as the definition of a sphere of rakljus picture Bragg planes — and thus also lattice points except
centered ak, such that it touches a lattice point at a distancethe origin0 — do not belong exclusively to one Brillouin
L from the origin — the equivalence of the physical contentzone because they represent the various possibilities of sat-
of the two equations is discussed in Ashcroft and Mermin [4].isfying the diffraction condition. And of course not every
Now letC'(k) be the number of lattice points on the surface ofpolygon that can be drawn out between Bragg plane intersec-
the sphere so defined (k) be the number of lattice points in tions will turn out to be the boundary of some Brillouin zone.
the interior of the surface, anfi(k) = C(k) + N (k). Then  Butit s the case that there is a simple way of picking out the
B,,(0) is the set of pointk such thaC'(k) < n < E(k). correct interior regions of Brillouin zones without having to
Naturally, both the von Laue and the Ewald definitionsworry about their boundaries. Therefore we may find Bril-
are equivalent to Bragg's law of diffraction. But the intention louin zones by taking the union of its interior regions, which
here is to motivate a geometrical understanding of Brillouinwe shall callb,,, with the set of Bragg plane segments that
zones through the physical phenomenon that brought themmake contact with them.
to life. We see that depending on view point, we can think  On to thedefinition of Brillouin zones by constraintiset
about drawing planes or spheres in reciprocal space in ordel;, = L/2 be a point defined by the Bragg plafg,(0), and
to find Brillouin zones. From here on we move onto purelylet D(k) be the number of constraints of the fodm> dy,,
geometrical considerations. subject tosgn((k — dr,) - dr,) = 1, satisfied by the point
As has been pointed out elsewhere (see for example Veek € R™ — {H,(0)}. Then the set,, (0) of interior points to
manet al. [3]), the first Brillouin zone coincides with the def- thenth Brillouin zoneB,,(0) is b,(0) = {k|D(k) = n}.
inition of aVoronoi cellof the lattice [7],i.e. the set of points The above definition gives a rule for assigning the vari-
that are closer to the origin than to any other lattice point.ous regions enclosed by a set of Bragg plaHg$0) to their
The collection of Voronoi cells of a set of points is called a proper Brillouin zones. Plainly stated it says that a point is
Voronoi diagram which can be conceived in a conceptually inside B,,(0) if it “lies outside” n Bragg planes. The ad-
simple manner [7]: at each point in the set define a sphereantage of this approach is that it focuses on regions de-
whose radius- = r(t), r(0) = 0, grows with time. The fined by constraints, instead of the previous point-oriented
Voronoi diagram of the set is given by the intersections of thedefinitions. When finding Brillouin zones, however, we also
spheres with their nearest neighbours as they expand. Thiged to find the set of Bragg planég, (0). We may still
parallel permits us to put forward an argument that bridgesise the constraint definition in a methodical manner to con-
the von Laue and Ewald definitions of Brillouin zones, andstruct Brillouin zones for a given lattice point. The method
leads to two other definitions. At each lattice point, let aconsists of finding the half-distanek,, of each lattice point
sphere of radius given by a variable wave vediqi)| ex- L, in order of increasing distance @ tracing the appropi-
pand initially fromk(0) = 0. Then the wave-vector spheres ate Bragg plane and updating the number of constraints
define theB,,(0) as they sweep through the lattice in the satisfied by each newly formed region. We say that we have
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TABLE |. Number of Landsberg subzonesih,. Due to low sym-
metry, extremely small Brillouin zones form in an oblique lattice,
o o o so we only provid_e a count up tBlo. For the other lattices the
L, L count can be continued to much higher orders, although only a sam-

\<—> ple is given here.
e 0 B, Square Rectangular Hexagonal R. Centered Oblique
Qg In < o 1 1 1 1 1

1 4 4 6 6 6

2 8 10 6 8 12

3 12 12 6 14 18

4 20 18 12 22 24

5 20 26 18 24 28

6 12 30 30 28 36

7 12 34 30 36 42

8 20 38 18 44 48

9 28 42 18 48 54

10 44 48 36 52 60

11 48 50 42 52

12 48 58 54 62

13 64 68 54 70

14 60 76 42 72

15 52 72 66 76

16 60 78 72 80

17 52 86 72 88

18 40 88 96 88

(e) 19 52 96 84 102
20 72 100 72 102

FIGURE 1. Finding the first three Brillouin zones in an hexagonal
lattice by the constraint definition. For simplicity only a subset of
reciprocal space is shown. The arrows attached to a Bragg plane
indicate its outside region, or the direction of sweepirg(k) is
identified by color and number; notice how with each successive
Bragg plane reciprocal space is subdivided according to how they
satisfyk > dr, while being outside of each corresponding Bragg
plane. Fig. 1e shows the first three Brillouin zones.

found a Brillouin zone when no more Bragg planes cross
through a region.

To clarify the application of the method, let us use it to
find the first three Brillouin zones of an hexagonal lattice in
R2. The process is illustrated in Fig. 1. First, we define an
origin 0, and locate the (six) nearest points to it. We pick one
of them, sayL;, and trac.e its Bfagg plane. Now we Imagme in an hexagonal lattice. Here we sho®:(0), B2(L1),...,
the Bragg plane sweeping reciprocal space parallel to |tsehéB2(Li) .., B2(Ly2), with their corresponding lattice points. To
and to the counter of every point touched by the plane in thig, . fow tﬁey intert\;vine, the Landsberg subzones of &g,

fashion we add a 1. Thatis, for every pokit outside of this  get garker counterclockwise, (0) is drawn with a dotted white
Bragg planeD (k™) = 1, whereas for every poilk~ on the  |ipe.

insideD (k™) = 0. Continuing in the same fashion willy,

we end up with three divisiond)(k) = 0, 1,2, depending planes of the second-nearest neighbors. We pigktrace

on whether the point lies on the outside of two, one or nonéts Bragg plane and sweep reciprocal space (Fig. 1c). In
of the Bragg planes (Fig. 1a). After doing the same on all the~ig. 1d we show how the regions look like after tracing all the
nearest lattice points (Fig. 1b), we proceed to trace the BragBragg planes of the second-nearest neighbors. After finishing

FIGURE 2. Construction of the reduced zone scheme Ry

Rev. Mex. is. E57 (1) (2011) 32-37



ON BRILLOUIN ZONES AND RELATED CONSTRUCTIONS 35

) 1st zone ) 2nd zone ) 38th zone ) 39th zone

) 3th zone ) 4th zone ) 26th zone ) 27th zone
) 9th zone ) 10th zone ) 23th zone ) 24th zone

) 2nd zone ) 3rd zone ) 11th zone ) 12th zone

) 1st zone ) 2nd zone ) 8th zone ) 9th zone

FIGURE 3. Various puzzle tessellations dBo for the five two-dimensional Bravais lattices, in top-down row order: square, rectangular,
hexagonal, rectangular centered, oblique.
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tracing and sweeping with the Bragg planes of the third-number of Landsberg subzones that compBg€0). This
nearest neighbors, we may notice that no further Bragg planeomputations were done MATLAB 7. The results are given
will cut through By(0), B1(0), B2(0), nor B3(0): we have in Table I. Due to the low symmetry of the oblique lattice,
thus found the first three Brillouin zones (Fig. 1e). near-intersections of Bragg planes result in a substantial num-

By taking into account symmetry it is possible to con- ber of minute Landsberg subzones, so it was only feasible to
sider a smaller subset éf, (0) and still be able to construct count up toB;.
all of B,,.

A dynamic geometrical picture of the method can bey 5
imagined. Instead of growing spheres from lattice points
and following their intersections, or instead of counting plane
crossings for every point in reciprocal space, as the Ewalgk can be shown [3] that not only do Brillouin zoné, (0),
and von Laue definitions require, we take only one expand;, — 1 2, .., tessellate the plane, but this is also true of the
ing sphere centered at the origy and as it reaches the p (A) for a fixedn. From this we may find the reduced
variousdy, we attach to it tangents planes at those pointszone scheme by constructirigy, (A) and looking atB,(0).
Then we think of points in reciprocal space as initially empty|n practice, a routine based on the aforementioned method
bins and for each Bragg plane that passes by them, Wy constructing Brillouin zones was used to calculBgat
add one to their counter. With the sphere sweeping througBach |attice point. Thet,(0) was calculated. In Fig. 3
reciprocal space, different numbers are added to these biRge show a number dsrillouin zone puzzlesvhich are con-
as different constraints are satisfied, hence different Brillouinstrycted from various tessellatiom, (A) with the boundary

zones are created. _ . _ of By superimposed [8]. These puzzle figures were done with
The idea of a growing sphere with Bragg planes beingyatiLag 7.

attached to it is supported by the fact thatras— oo, the

B,, tend to a circular annulus shape [1]. To wit, more and
more Bragg planes are added as tangents, so they intersecfto  Final Remarks
n more rapidly and over a smaller radial interval.

Finding the Reduced Zone Scheme and Brillouin
Zone Puzzles

In this paper we have elaborated on a geometrical interpre-
tation of the diffraction condition in crystals, which we then
4. Landsberg subzones and the reduced zone combined with intution about Voronoi diagrams. This lead
scheme us to an insight of the more mathematically oriented defini-
tion used by Jones [1] and served to propose the constraint
We shall now briefly illustrate how can the constraint defi-definition for finding the interior points of Brillouin zones.
nition enter in calculations related to Brillouin zones in two This definition depends upon a suitable notion of the “out-
dimensions. First we sketch a method for counting the numside” of a Bragg plane; the interior of theh Brillouin zone
ber of interior regions,,, called Landsberg subzones, that s then seen to lie outsideBragg planes, so it may be further
make upB,,. Next we sketch how can one find the reducedextended to non-euclidean metrics in lattices by re-stating it
zone scheme by tessellation. To the best of our knowledgavith an acceptable notion of the inside-outside of the Bragg
there exists no previous attempt at performing these calculglanes.
tions neither for high nor for the less symmetrical lattices. Further intuition of Brillouin zones might stem from yet
Practical implementations require tuning that would diStraCtanother approach inspired in Computationa| geometry or d|g_
from the main ideas. ital image processing. As it stands, the method here proposed
counts the number of constraints that a point satisfies for the
4.1. Counting Landsberg subzones outsides of Bragg planes, because of its convenience. But we
. ) can just as well change the definition to count to how many
The b,,(0) that we have previously defined have a connecs ies a point belongs, for a given subsetdf(0). This

tion to number-theoretical properties of interest to mathe- . -
.- . . . : I f I f theack t th
maticians [2], and of possible theoretical use in physics [3]wou d give way for an analogy of tteackprojection method

of tomographic reconstruction if we think it in terms of the

We may take advantage of some tools of morphological Im't[ace—and—sweep picture. An exploration of this topic might

age processing, (for furth_er clarification see any stan_da_rd te)]ﬁlield interesting results on the geometry of periodic lattices.
on digital image processing), namely, erosion and dilation o

sets, and extraction of connected components. Shortly put,

eroding (dilating) an image means making it smaller (Iarger)Acknowledgements

by erasing (drawing) along its border with a specified pen-

element. After calculating,, we perform on it an erosion The author is grateful for fruitful discussions with Juli@€ar
followed by a dilation, which has the effect of rounding ver- Gutiérrez-Vega and Eduardo Uresti, and would like to ac-
tices and making the regions comprisibyg become practi- knowledge the comments of one of the reviewers, which clar-
cally disconnected. Then making use of standard algorithmBied some subtleties and helped bring this manuscript into its
for counting the number of disconnected sets we may find theresent form.
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