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In this paper we discuss the physical and geometrical content of the various equivalent definitions that have been given so far in the literature
of a crystal’s Brillouin zones. This serves as a motivation to introduce a computationally and conceptually simpler definition. Calculation of
Brillouin-zone related properties in two-dimensional lattices is carried out as an illustration of the versatility of this new approach, particularly
a count of the number of Landsberg subzones in these Bravais lattices is given, which could be of interest for theoretical physics and number
theory.

Keywords: Bravais lattices; Landsberg subzones; reduced zone scheme.

En este trabajo se presenta una discusión sobre los contenidos fı́sicos y geoḿetricos de las diversas definiciones que se han propuesto
hasta ahora para definir las zonas de Brillouin de un cristal. Con base en ello, se introduce una nueva definición, que es computacional
y conceptualmente ḿas sencilla. Para demostrar la conveniencia de esta nueva propuesta, se realizan cálculos de algunas propiedades
relacionadas con las zonas de Brillouin de redes cristalinas bidimensionales; particularmente, se da un conteo del número de zonas de
Landsberg en dichas retı́culas de Bravais, que puede ser provechoso para la fı́sica téorica y la teoŕıa de ńumeros.

Descriptores:Redes de Bravais; subzonas de Landsberg; esquema de zona reducida.
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1. Introduction

Brillouin zones are introduced in the physics curriculum at
the upper-undergraduate level, when there is need to delve
into the physics of a wave or an electron in a perfect crystal.
They are useful geometrical constructs that convey informa-
tion about diffraction conditions, but also encode the notion
of nth order neighbors (nearest, second nearest, etc.) to a
lattice point. Their discussion, however, is usually centered
on giving a historically relevant definition, not so much on
explaining their intrinsic properties.

An atomic crystal can be mathematically modeled by
defining a set of basic vectors, called lattice vectors, that upon
linear combination generate a lattice. For example, given two
vectorsa1 anda2, a latticeΛ is formed by taking all the pos-
sible combinationsn1a1+n2a2, with n1, n2 ∈ Z. As it turns
out, a lattice may satisfy a certain number of symmetries de-
pending on the lattice vectors. If in the above example we
further specifya1 · a2 = 0, and |a1| = |a2|, a so-called
square lattice is formed; furthermore it is symmetrical (in-
variant) under a rotation of 90◦. A lattice that satisfies a par-
ticular set of symmetries is called a Bravais lattice. Since the
original physical motivation for introducing Brillouin zones
was to study propagation in crystals it is only natural to make
use of Fourier transforms. The Fourier transform of a crys-
tal, also called reciprocal space, results in another, possibly
different, Bravais lattice. It is in reciprocal space that wave
propagation is analyzed and where Brillouin zones display
their convenience.

The purpose of this paper twofold. The main purpose is to
present an alternative definition of Brillouin zones that allows
for a more tractable way of constructing them. As far as the

author is aware of, there exist no methods for finding higher-
order Brillouin zones in a general Bravais lattice since it has
been cumbersome to take a region-oriented approach instead
of a point-oriented one. The second purpose is to provide
alternative geometrical pictures when trying to explain the
idiosyncrasies of periodic lattices to junior physics students.
Perhaps one way of thinking might have more appeal to a
student over other ways of presentation, but we hope that by
grasping onto different pictures a firmer understanding will
be achieved.

In Sec. 2 we present and discuss the relationship between
different but equivalent definitions of Brillouin zones. This
serves as a motivation for introducing in Sec. 3 a new defini-
tion. In Sec. 4 we give examples of how we put our definition
to computational use.

2. Discussion of previous definitions of Bril-
louin zones

Brillouin zones emerged as a useful concept for understand-
ing the physics of waves within a crystal structure, and thus
they encompass the various equivalent conditions that must
be met in reciprocal space by a wave vector that undergoes
diffraction from an atomic lattice. Each way of defining the
zones corresponds to a different intuition, be it geometrical or
physical, of the intrinsic characteristics of periodic lattices.
Altogether, all the definitions involve a way of stating that
constructive interference between to incoming plane waves
scattering elastically takes place at boundaries of Brillouin
zones. The traditional manner of defining them goes as fol-
lows. LetΛ be a Bravais lattice in reciprocal space,L ∈ Λ
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be a lattice vector ofΛ, and call the perpendicularly bisect-
ing plane ofL a Bragg plane. Then thenth Brillouin zone
taken with respect to an origin0, Bn(0), is defined as the
set of pointsk such that one crosses at mostn Bragg planes,
and encounters at leastn of them when going from the origin
0 to k. We shall call this the von Laue definition, which is
related to the diffraction condition

1
2
L = k · L̂; (1)

as expressed in Aschroft and Mermin, [4] withk represent-
ing a wave vector. What Eq. (1) means is that for an incident
plane wavek and an outgoing plane wavek

′
, some lattice

vectorL is defined asL = k − k
′
, so that in the regime of

elastic scattering the wave vectors of the incoming and out-
going waves must meet at Bragg planes for diffraction to take
place.

We can analogously define Brillouin zones through an-
other interpretation of the diffraction condition, in what we
shall call the Ewald definition. Following Kittel, [5] by squar-
ing L = k−k

′
and imposing elastic scattering we may reex-

press Eq. (1) as

L2 = 2k · L, (2)

but this time we see it as the definition of a sphere of radiusk,
centered atk, such that it touches a lattice point at a distance
L from the origin — the equivalence of the physical content
of the two equations is discussed in Ashcroft and Mermin [4].
Now letC(k) be the number of lattice points on the surface of
the sphere so defined,N(k) be the number of lattice points in
the interior of the surface, andE(k) = C(k) + N(k). Then
Bn(0) is the set of pointsk such thatC(k) < n ≤ E(k).

Naturally, both the von Laue and the Ewald definitions
are equivalent to Bragg’s law of diffraction. But the intention
here is to motivate a geometrical understanding of Brillouin
zones through the physical phenomenon that brought them
to life. We see that depending on view point, we can think
about drawing planes or spheres in reciprocal space in order
to find Brillouin zones. From here on we move onto purely
geometrical considerations.

As has been pointed out elsewhere (see for example Veer-
manet al. [3]), the first Brillouin zone coincides with the def-
inition of aVoronoi cellof the lattice [7],i.e. the set of points
that are closer to the origin than to any other lattice point.
The collection of Voronoi cells of a set of points is called a
Voronoi diagram, which can be conceived in a conceptually
simple manner [7]: at each point in the set define a sphere
whose radiusr = r(t), r(0) = 0, grows with time. The
Voronoi diagram of the set is given by the intersections of the
spheres with their nearest neighbours as they expand. This
parallel permits us to put forward an argument that bridges
the von Laue and Ewald definitions of Brillouin zones, and
leads to two other definitions. At each lattice point, let a
sphere of radius given by a variable wave vector|k(t)| ex-
pand initially fromk(0) = 0. Then the wave-vector spheres
define theBn(0) as they sweep through the lattice in the

manner of the Ewald definition, and the perpendicular bisec-
tors of the von Laue definition are given by the first intersec-
tions of the growing spheres with the sphere centered at0.
This implies what we call the Jones definition — after G. A.
Jones [1]: a pointk is in Bn(0) if the elementsL1,L2, . . . of
Λ can be ordered so that

|k− L1| ≤ |k− L2| ≤ . . . (3)

with Ln = 0. Let us note that the Jones definition lessens
the geometric importance of the point0 as an origin for the
lattice coordinate system, shifting instead its role to that of a
“dummy” index that tells us how to choose an origin in order
to fix Bn(0). Furthermore, by establishingLn = 0 we au-
tomatically define the set of Bragg planes taken with respect
to 0, let us call itHΛ(0), that yields the von Laue definition.
But we can as well start by fixingHΛ(0), in which case we
need to utilize the inequalities of Eq. (3) to our advantage.

3. A new definition

A remark about Brillouin zones is in order. We can think
them as being composed of two elements, convex polygons
whose vertices are defined by intersections of Bragg planes,
and the interior regions enclosed by such polygons. In this
picture Bragg planes — and thus also lattice points except
the origin0 — do not belong exclusively to one Brillouin
zone because they represent the various possibilities of sat-
isfying the diffraction condition. And of course not every
polygon that can be drawn out between Bragg plane intersec-
tions will turn out to be the boundary of some Brillouin zone.
But it is the case that there is a simple way of picking out the
correct interior regions of Brillouin zones without having to
worry about their boundaries. Therefore we may find Bril-
louin zones by taking the union of its interior regions, which
we shall callbn, with the set of Bragg plane segments that
make contact with them.

On to thedefinition of Brillouin zones by constraints. Let
dL = L/2 be a point defined by the Bragg planeHL(0), and
let D(k) be the number of constraints of the formk > dL,
subject tosgn((k − dL) · dL) = 1, satisfied by the point
k ∈ Rm − {HΛ(0)}. Then the setbn(0) of interior points to
thenth Brillouin zoneBn(0) is bn(0) = {k|D(k) = n}.

The above definition gives a rule for assigning the vari-
ous regions enclosed by a set of Bragg planesHΛ(0) to their
proper Brillouin zones. Plainly stated it says that a point is
inside Bn(0) if it “lies outside” n Bragg planes. The ad-
vantage of this approach is that it focuses on regions de-
fined by constraints, instead of the previous point-oriented
definitions. When finding Brillouin zones, however, we also
need to find the set of Bragg planesHΛ(0). We may still
use the constraint definition in a methodical manner to con-
struct Brillouin zones for a given lattice point. The method
consists of finding the half-distancedLi of each lattice point
Li in order of increasing distance to0, tracing the appropi-
ate Bragg plane and updating the number of constraints
satisfied by each newly formed region. We say that we have
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FIGURE 1. Finding the first three Brillouin zones in an hexagonal
lattice by the constraint definition. For simplicity only a subset of
reciprocal space is shown. The arrows attached to a Bragg plane
indicate its outside region, or the direction of sweeping.D(k) is
identified by color and number; notice how with each successive
Bragg plane reciprocal space is subdivided according to how they
satisfyk > dL while being outside of each corresponding Bragg
plane. Fig. 1e shows the first three Brillouin zones.

found a Brillouin zone when no more Bragg planes cross
through a region.

To clarify the application of the method, let us use it to
find the first three Brillouin zones of an hexagonal lattice in
R2. The process is illustrated in Fig. 1. First, we define an
origin 0, and locate the (six) nearest points to it. We pick one
of them, sayL1, and trace its Bragg plane. Now we imagine
the Bragg plane sweeping reciprocal space parallel to itself,
and to the counter of every point touched by the plane in this
fashion we add a 1. That is, for every pointk+ outside of this
Bragg plane,D(k+) = 1, whereas for every pointk− on the
insideD(k−) = 0. Continuing in the same fashion withL2,
we end up with three divisions,D(k) = 0, 1, 2, depending
on whether the point lies on the outside of two, one or none
of the Bragg planes (Fig. 1a). After doing the same on all the
nearest lattice points (Fig. 1b), we proceed to trace the Bragg

TABLE I. Number of Landsberg subzones inBn. Due to low sym-
metry, extremely small Brillouin zones form in an oblique lattice,
so we only provide a count up toB10. For the other lattices the
count can be continued to much higher orders, although only a sam-
ple is given here.

Bn Square Rectangular Hexagonal R. Centered Oblique

0 1 1 1 1 1

1 4 4 6 6 6

2 8 10 6 8 12

3 12 12 6 14 18

4 20 18 12 22 24

5 20 26 18 24 28

6 12 30 30 28 36

7 12 34 30 36 42

8 20 38 18 44 48

9 28 42 18 48 54

10 44 48 36 52 60

11 48 50 42 52 · · ·
12 48 58 54 62 · · ·
13 64 68 54 70 · · ·
14 60 76 42 72 · · ·
15 52 72 66 76 · · ·
16 60 78 72 80 · · ·
17 52 86 72 88 · · ·
18 40 88 96 88 · · ·
19 52 96 84 102 · · ·
20 72 100 72 102 · · ·

FIGURE 2. Construction of the reduced zone scheme forB2

in an hexagonal lattice. Here we showB2(0), B2(L1), . . . ,
B2(Li), . . . , B2(L12), with their corresponding lattice points. To
show how they intertwine, the Landsberg subzones of eachB2(Li)
get darker counterclockwise.B0(0) is drawn with a dotted white
line.

planes of the second-nearest neighbors. We pickL3, trace
its Bragg plane and sweep reciprocal space (Fig. 1c). In
Fig. 1d we show how the regions look like after tracing all the
Bragg planes of the second-nearest neighbors. After finishing
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FIGURE 3. Various puzzle tessellations ofB0 for the five two-dimensional Bravais lattices, in top-down row order: square, rectangular,
hexagonal, rectangular centered, oblique.
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tracing and sweeping with the Bragg planes of the third-
nearest neighbors, we may notice that no further Bragg planes
will cut throughB0(0), B1(0), B2(0), nor B3(0): we have
thus found the first three Brillouin zones (Fig. 1e).

By taking into account symmetry it is possible to con-
sider a smaller subset ofHΛ(0) and still be able to construct
all of Bn.

A dynamic geometrical picture of the method can be
imagined. Instead of growing spheres from lattice points
and following their intersections, or instead of counting plane
crossings for every point in reciprocal space, as the Ewald
and von Laue definitions require, we take only one expand-
ing sphere centered at the origin0, and as it reaches the
variousdL we attach to it tangents planes at those points.
Then we think of points in reciprocal space as initially empty
bins and for each Bragg plane that passes by them, we
add one to their counter. With the sphere sweeping through
reciprocal space, different numbers are added to these bins
as different constraints are satisfied, hence different Brillouin
zones are created.

The idea of a growing sphere with Bragg planes being
attached to it is supported by the fact that asn → ∞, the
Bn tend to a circular annulus shape [1]. To wit, more and
more Bragg planes are added as tangents, so they intersect to
n more rapidly and over a smaller radial interval.

4. Landsberg subzones and the reduced zone
scheme

We shall now briefly illustrate how can the constraint defi-
nition enter in calculations related to Brillouin zones in two
dimensions. First we sketch a method for counting the num-
ber of interior regionsbn, called Landsberg subzones, that
make upBn. Next we sketch how can one find the reduced
zone scheme by tessellation. To the best of our knowledge,
there exists no previous attempt at performing these calcula-
tions neither for highn nor for the less symmetrical lattices.
Practical implementations require tuning that would distract
from the main ideas.

4.1. Counting Landsberg subzones

The bn(0) that we have previously defined have a connec-
tion to number-theoretical properties of interest to mathe-
maticians [2], and of possible theoretical use in physics [3].
We may take advantage of some tools of morphological im-
age processing, (for further clarification see any standard text
on digital image processing), namely, erosion and dilation of
sets, and extraction of connected components. Shortly put,
eroding (dilating) an image means making it smaller (larger)
by erasing (drawing) along its border with a specified pen-
element. After calculatingbn we perform on it an erosion
followed by a dilation, which has the effect of rounding ver-
tices and making the regions comprisingbn become practi-
cally disconnected. Then making use of standard algorithms
for counting the number of disconnected sets we may find the

number of Landsberg subzones that composeBn(0). This
computations were done inMATLAB 7. The results are given
in Table I. Due to the low symmetry of the oblique lattice,
near-intersections of Bragg planes result in a substantial num-
ber of minute Landsberg subzones, so it was only feasible to
count up toB10.

4.2. Finding the Reduced Zone Scheme and Brillouin
Zone Puzzles

It can be shown [3] that not only do Brillouin zonesBn(0),
n = 1, 2, . . ., tessellate the plane, but this is also true of the
Bn(Λ) for a fixed n. From this we may find the reduced
zone scheme by constructingBn(Λ) and looking atB0(0).
In practice, a routine based on the aforementioned method
for constructing Brillouin zones was used to calculateBn at
each lattice point. ThenB0(0) was calculated. In Fig. 3
we show a number ofBrillouin zone puzzles, which are con-
structed from various tessellationsBn(Λ) with the boundary
of B0 superimposed [8]. These puzzle figures were done with
MATLAB 7.

5. Final Remarks

In this paper we have elaborated on a geometrical interpre-
tation of the diffraction condition in crystals, which we then
combined with intution about Voronoi diagrams. This lead
us to an insight of the more mathematically oriented defini-
tion used by Jones [1] and served to propose the constraint
definition for finding the interior points of Brillouin zones.
This definition depends upon a suitable notion of the “out-
side” of a Bragg plane; the interior of thenth Brillouin zone
is then seen to lie outsiden Bragg planes, so it may be further
extended to non-euclidean metrics in lattices by re-stating it
with an acceptable notion of the inside-outside of the Bragg
planes.

Further intuition of Brillouin zones might stem from yet
another approach inspired in computational geometry or dig-
ital image processing. As it stands, the method here proposed
counts the number of constraints that a point satisfies for the
outsides of Bragg planes, because of its convenience. But we
can just as well change the definition to count to how many
insides a point belongs, for a given subset ofHΛ(0). This
would give way for an analogy of thebackprojection method
of tomographic reconstruction if we think it in terms of the
trace-and-sweep picture. An exploration of this topic might
yield interesting results on the geometry of periodic lattices.
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