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We compute important ratios between decay widths of some exclusive two-body nonleptonic and semileptonicB decays, which could be test
of factorization hypothesis. We also present a summary of the expressions of the decay widths and differential decay rates of these decays, at
tree level, includingl = 0 (ground state),l = 1 (orbitally excited) andn = 2 (radially excited) mesons in the final state. From a general point
of view, we consider eight transitions, namelyH → P, V, S, A, A

′
, T, P (2S), V (2S). Our analysis is carried out assuming factorization

hypothesis and using the WSB, ISGW and CLFA quark models.
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Calculamos varias relaciones importantes entre los anchos de decaimiento de canales exclusivos no leptónicos y semilept́onicos del meśonB,
las cuales pueden servir como prueba a la hipótesis de factorización. Tambíen, presentamos un resumen sobre las expresiones de los anchos
de decaimiento y los anchos de decaimiento diferenciales, para estos procesos, a nivelárbol, incluyendo mesones conl = 0 (sin excitacíon
orbital), l = 1 (excitados orbitalmente) yn = 2 (excitados radialmente) en el estado final. Desde un punto de vista general, consideramos
ocho transiciones:H → P, V, S, A, A

′
, T, P (2S), V (2S). Nuestro ańalisis se desarrolla asumiendo hipótesis de factorización y utilizando

los modelos de quarks WSB, ISGW y CLFA.

Descriptores: Fı́sica delB; decaimientos semileptónicos; decaimientos no leptónicos.
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1. Introduction

Exclusive semileptonic and two-body nonleptonic decays of
heavy mesons offer a good scenario for studying, at theoreti-
cal and experimental levels, CP violation and physics beyond
the Standard Model. Some of these channels provide meth-
ods for determining the angles of the unitarity triangle, allow
to study the role of QCD and test some QCD-motivated mod-
els (see for example some recent reviews in Ref 1). These
topics are of great interest in particle physics and the knowl-
edge of them will be improved with forthcoming experiments
at Large Hadron Collider (LHC) [2].

The purpose of this paper is to compute useful ratios
between two-body nonleptonic and semileptonic decays of
heavy (H) mesons, at tree level, that could be tested exper-
imentally. Specifically, we work with exclusiveB channels
although we also consider a couple ofBs processes. We as-
sume naive factorization and use the WSB [3], ISGW [4] and
CLFA [5] quark models.

It is expected that naive factorization approach works rea-
sonably well in decays where penguin and weak annihilation
contributions are absent or suppressed, such asB → DK [6],
K0 → ππ, D0 → K±π∓, D0 → K+K−, π+π− and
Bs → J/ψφ [7], D+ → K

∗0
0 π+ andD+

s → f0π
+ [8] chan-

nels. Also, factorization assumption works well in two-body
hadronic decays ofBc meson (without considering charmless

modes) where the quark-gluon sea is suppressed in the heavy
quarkonium [9].

We also present an important summary and a general
analysis on the expressions of the decay widths and differ-
ential decay rates of two-body nonleptonic and semileptonic
decays of heavy mesons, respectively, includingl = 0, 1 and
n = 2 mesons in the final state. Forl = 0, we have con-
sidered pseudoscalar (P ) and vector (V ) mesons, forl = 1
we have included orbitally excited (p-wave) scalar (S), axial-
vector (A, A

′
) and tensor (T ) mesons, and forn = 2,

we have studied radially excitedP (2S) andV (2S) mesons
(see Table I). We have classified eight transitions, namely
H → P, V, S, A, A

′
, T , P (2S), V (2S), in three groups.

It allows us to manipulate, in an easy way, all these decays.

The paper is organized as follows: In Sec. 2 we present,
in a general way, the parametrization of the hadronic matrix
element〈M |Jµ|H〉 for eight cases. Sec. 3 contains expres-
sions forΓ(H → M1M2) anddΓ(H → Mlν)/dt and a brief
discussion. In Sec. 4, we analyze vector and axial contribu-
tions of the weak interaction toH → (P, V, S,A, A

′
, T )lν

decays assuming a meson dominance model. In Sec. 5, we
compute some important ratios between decay widths of ex-
clusive B (and Bs) decays, which allow us to get tests to
factorization approach. Concluding remarks are presented in
Sec. 6. Finally, in the appendix we briefly mention the quark
models used in this work.
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TABLE I. Classification of mesons considering then 2s+1LJ and
the JPC notations. n is the radial quantum number,l is the or-
bital angular momentum,s is the spin, andJ is the total angular
momentum.P andC are parity and charge conjugate operators,
respectively.

n l s J n 2s+1LJ JPC Meson

0 0 0 1 1S0 0−+ Pseudoscalar(P )

1 1 1 3S1 1−− Vector(V )

0 1 1 1P1 1+− Axial-vector(A′)

1 1 0 1 3P0 0++ Scalar(S)

1 1 1 3P1 1++ Axial-vector(A)

2 1 3P2 2++ Tensor(T )

2 0 0 0 2 1S0 0−+ P (2S)

1 1 2 3S1 1−− V (2S)

2. Hadronic Matrix Elements

In this section, we present the parametrizations of the eight
H → M transitions, whereH denotes a pseudoscalar heavy
meson andM can be aP , V , S, A, A

′
, T , P (2S), V (2S)

meson, classified in three groupsi. In the first case, theM
meson hasJ = 0, in the second,J = 1, and in the third
groupJ = 2.

2.1. H → M(J = 0) transition

In this group, there are three transitions ifM is a meson with
J = 0 (see Table I):M can be the pseudoscalarP meson,
or the scalarS meson, which is an orbitally excited meson,
or the radially excited mesonP (2S). The hadronic matrix
element〈M |Jµ|H〉 for M = P, S, P (2S) has the same
Lorentz structure and it is defined as follows [4]:

〈M(pM )|Jµ|H(pH)〉 ≡ F+(pH + pM )µ

+ F−(pH − pM )µ, (1)

whereJµ is theVµ −Aµ weak current,pH(M) is the 4 - mo-
mentum of the mesonH(M), F+ andF− are form factors.
Following the notation displayed in appendix of the ISGW
model [4], these form factors are:

• For M = P : 〈P |Jµ|H〉 ≡ 〈P |Vµ|H〉, F+ = f+ and
F− = f−.

• ForM = S: 〈S|Jµ|H〉 ≡ −〈S|Aµ|H〉, F+ = u+ and
F− = u−.

• For M = P (2S): 〈P (2S)|Jµ|H〉 ≡ 〈P (2S)|Vµ|H〉,
F+ = f

′
+ andF− = f

′
−.

It is important to note that the parity operator requires that
〈P |Aµ|H〉 = 0 and〈S|Vµ|H〉 = 0.

Reference 3 uses a different parametrization for
〈P |Jµ|H〉 using dimensionlessF1 andF0 form factors. It

is possible to transform(F1, F0) → (f+, f−) using the
relations showed in the appendix.

2.2. H → M(J = 1) transition

Considering theM meson withJ=1, this group has four
transitions (see Table I):M=V, A, A

′
, V (2S). The hadronic

matrix element〈V (A(13P1), A(11P1), V (2S))|Jµ|H〉 can
be parametrized by means of the following linear combina-
tion which is Lorentz-covariant [4]:

〈M(pM , ε)|Jµ|H(pH)〉≡iGεµνρσε∗ν(pH+pM )ρ(pH−pM )σ

+Fε∗µ+A+(ε∗.pH)(pH+pM )µ

+A−(ε∗.pH)(pH−pM )µ, (2)

whereG, F , andA± are form factors,ε is the polarization
vector of mesonM and pH(M) is the 4-momentum of the
mesonH(M). Following the notation used in the appendix
of the ISGW model [4], these form factors are:

• For M = V : G = g, F = −f , A+ = −a+ and
A− = −a−.

• For M = A(1 3P1) ≡ A: G = −q, F = l, A+ = c+

andA− = c−.

• ForM = A(1 1P1) ≡ A
′
: G = −v, F = r, A+ = s+

andA− = s−.

• ForM = V (2S): G = g
′
, F = −f

′
, A+ = −a

′
+ and

A− = −a
′
−.

The parametrization of the matrix element for theH → A
transition has the same structure that the matrix element of
the H → V transition just interchanging the role of vector
and axial currents:〈V |Vµ(Aµ)|H〉 ↔ 〈A|Aµ(Vµ)|H〉.

Reference 3 ([5]) works with another parametrization for
theH → V (A) transition, which is very useful because it
allows to write the decay width of two-body nonleptonic de-
cays of heavy mesons as a function of helicity form factors
(see for example the Refs. 3 and 10). It is easy to transform
the parametrization given by the Eq. (2) into the parametriza-
tion given in the Refs. 3 and 5 by using the relations between
form factors showed in the appendix.

2.3. H → M(J = 2) transition

This group contains only one transition (see Table I): when
M is a tensor meson (T ), which is ap-wave. The Lorentz-
covariant parametrization of the hadronic matrix element
〈T |Jµ|H〉 given in the ISGW model is [4]:

〈T (pT , ε)|Jµ|H(pH)〉 = ih(q2)εµνρσ

× εναpα
H(pH + pT )ρ(pH − pT )σ − k(q2)ε∗µν(pH)ν+

ε∗αβpα
Hpβ

H

[
b+(q2)(pH + pT )µ + b−(q2)(pH − pT )µ

]
, (3)
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TABLE II. Differential decay widths ofH → (P, V, S, A, A
′
, T, P (2S), V (2S))lνl.

H → Mlνl dΓ(H → Mlνl)/dt

H → (P, S, P (2S))lνl ζ
[
A(t)|F HM

1 (t)|2λ3/2 + B(t)|F HM
0 (t)|2λ1/2

]

ζG(t)

H → (V, A, A
′
, V (2S))lνl ζtλ1/2

[|H+(t)|2 + |H−(t)|2 + |H0(t)|2
]

ζ
{

ϕ(t)λ5/2 + ρ(t)λ3/2 + θ(t)λ1/2
}

H → T lνl ζ
{

α(t)λ7/2 + β(t)λ5/2 + γ(t)λ3/2
}

where ενα is the polarization tensor of the tensor meson,
pH(T ) is the momentum of the heavy mesonH(T ), and
h, k, b± are form factors.k is dimensionless andh, b± have
dimensions of GeV−2.

In the literature [11, 12], there is another parametriza-
tion of 〈T |Jµ|H〉, which is constructed in analogy with the
parametrization of〈V |Jµ|H〉 given in Ref. 3, using the ten-
sor polarizationεµν of theT meson.

3. dΓ(H → Mlν)/dt and Γ(H → M1M2)

In this section we collect, in a compact form, using the clas-
sification of the last section, the expressions, at tree level, of
the differential decay rate ofH → Mlνl (see Table II) and
the decay width ofH → MM

′
(see Table III), whereH is a

heavy meson (D, Ds, B, Bs or Bc), andM (M
′
) can be any

of the eight mesonsP, V, S, A, A
′
, T , P (2S), V (2S).

In the first row of Table II, we display the differential de-
cay rate of the semileptonicH → Mlνl decay, whereM is
a meson withJ = 0, i.e, M = P, S, P (2S), using the
parametrization given in the WSB model [3]. The second
row shows the differential decay rate ofH → Mlνl, where
M is a meson withJ = 1, i.e, M = V, A, A

′
, V (2S),

using parametrizations given in the WSB [3] and ISGW [4]
quark models, and in the last row we give the differential de-
cay rate forH → T (J = 2)lνl using the parametrization of
the ISGW model [4].

In Table II,λ = λ(m2
H , m2

M , t), where

λ = λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

is the triangular function,t = (pH − pM )2 is the momentum
transfer andH±,0 are helicity form factors [3]. The factorζ
and functionsA(t), B(t), G(t), ϕ(t), ρ(t), θ(t), α(t), β(t)
andγ(t) are defined by:

ζ =
G2

F |Vq′q|2
192π3m3

H

, (4)

A(t) =
(

t−m2
l

t

)2 (
2t + m2

l

2t

)
, (5)

B(t) =
3
2
m2

l

(
t−m2

l

t

)2 (m2
H −m2

P )2

t
, (6)

G(t) =
[

2t|V (t)|2
(mH + mV )2

+
(mH + mV )2|A1(t)|2

4m2
V

− (m2
H −m2

V − t)A1(t)A2(t)
2m2

V

]
λ3/2

+
|A2(t)|2

4m2
V (mH + mV )2

λ5/2

+ 3t(mH + mV )2|A1(t)|2λ1/2, (7)

ϕ(t) =
s2
+

4m2
A

, (8)

ρ(t)=
1

4m2
A

[
r2+8m2

Atv2+2(m2
H−m2

A−t)rs+

]
, (9)

θ(t) = 3t r2, (10)

α(t) =
b2
+

24m4
T

, (11)

β(t)=
1

24m4
T

[
k2+6m2

T th2+2(m2
H −m2

T−t)kb+

]
, (12)

γ(t) =
5tk2

12m2
T

, (13)

whereGF is the Fermi constant,mH(P, V, A, T ) is the mass
of theH(P, V, A, T ) meson,ml is the mass of the lepton,
V (t) andA1,2(t) are form factors [3],ϕ(t), ρ(t) andθ(t) are
quadratic functions of the form factorss+, r andv (c+, l and
q) for H → A(1P1)lν (H → A(3P1)lν), α(t), β(t) andγ(t)
are quadratic functions [13] of the form factorsk, b+ andh.
All these form factors are explicitly given in the appendix B
of the Ref. 4.

The dependence ofdΓ(H → Mlν)/dt with

λ(|−→p |=λ1/2/2mH ,

where−→p is the three-momentum of theM meson in theH
meson rest frame) is given by,

dΓ/dt ∼ λl+ 1
2 ,

wherel is the orbital angular momentum of the wave at which
the particles in the final state can be coupled. Assuming con-
servation of total angular momentumJ and a meson domi-
nance model we can find specific values forl in each exclu-
sive H → Mlν decay. Thus, inH → M(J = 0)lν the
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particles in the final state are coupled tol = 0, 1 waves (see
the first row in Table II). Whenml ≈ 0 (l = e, µ), the co-
efficientB(t) vanishes, so the contribution of thes-wave is
negligible; inH → M(J = 1)lν the particles in the final
state can be coupled tol = 0, 1, 2 waves (see the second row
in Table II); and inH → T (J = 2)lν to l = 1, 2, 3 waves
(see the last row in Table II).

It is also possible to write in a compact expression the
differential decay rate of the semileptonicH → Mlνl de-
cay, whereM is a p-wave (orbitally excited) meson: scalar,
vector-axial or tensor meson, in terms of helicity amplitudes
(see Ref. 14).

As for two-body nonleptonic decays of heavy mesons,
the effective weak HamiltonianHeff has contributions from
current-current (tree), QCD penguin and electroweak pen-
guin operators [15]. In general,Heff ≈

∑
i Ci(µ)Oi, where

Ci(µ) are the Wilson coefficients andOi are local operators.
The amplitude for theH → M1M2 decay is

M(H → M1M2) ≈
∑

i

Ci(µ)〈O〉i. (14)

In the scenario of naive factorization, it is assumed that

M(H → M1M2) ≈ Ci(µ)〈M2|(J1i)µ|0〉
× 〈M1|(J2i)µ|H〉+ (M1 ↔ M2), (15)

whereJµ is theVµ − Aµ weak current and the hadronic ma-
trix element of a four-quark operator is written as the product
of a decay constant and form factors [16].

This factorization presents a difficulty because the Wil-
son coefficients areµ scale and renormalization scheme de-
pendent while〈O〉i areµ scale and renormalization scheme
independent, so clearly the physical amplitude depends on
the µ scale. The naive factorization disentangles the short-
distance effects from the long-distance sector assuming that
〈O〉i, atµ scale, contain nonfactorizable contributions in or-
der to cancel theµ dependence and the scheme dependence
of Ci(µ). Thus, the naive factorization is an approximation
because it does not consider possible QCD interactions be-
tween the mesonM2 and theH andM1 mesons. In general,
it does not work in all two-body heavy meson decays [16].

Assuming naive factorization, we have considered only
those decays which are produced by the color-allowed ex-
ternalW -emission tree diagram or the color-suppressed in-
ternal W -emission diagram. It is expected that naive fac-
torization works reasonably well in decays where penguin
and weak annihilation contributions are absent or negli-
gible, as for example inB → DK [6], K0 → ππ,
D0 → K±π∓, K+K−, π+π− and Bs → J/ψφ [7],
D+ → K

∗0
0 π+ andD+

s → f0π
+ [8] channels. Also, factor-

ization assumption works well in two-body hadronic decays
of Bc meson (except in charmless processes, because they
are produced only by annihilation contributions) where the
quark-gluon sea is suppressed in the heavy quarkonium [9].

We have used the notationH → M1,M2 [17] to mean that
M2 is factorized out under factorization approximation,i.e.,
M2 arises from the vacuum. ForH → TM decays there is
not any possibility to produce theT meson from the vacuum
with theV − A current, because〈T |(V − A)µ|0〉 ≡ 0. So,
this decay has only the contributionH → T,M . Recently, it
has been reported that it is possible to produce tensor mesons
from the vacuum involving covariant derivatives [12,18].

Using the parametrizations given in Sec. 2 for eight tran-
sitions, namelyH → M(J = 0, 1, 2), we display, in Ta-
ble III, expressions of decay widths for 40 different types of
H(qH q̄′) → M1(qq̄′)M2(qiq̄j) decays, which are produced
by theqH → qqjqi transition.

In the first row of Table III, we show the decay
width for six different types of channels:H → P, P

′
;

P, P
′
(2S); S, P

′
; S, P

′
(2S); P (2S), P

′
; P (2S), P

′
(2S).

They are produced by theH → M(J = 0) transition. The
hadronic matrix elements〈P (S, P (2S))|Jµ|H〉, which are
neccesary in order to calculate the decay width, have the same
parametrization. In this case, we have used the parametriza-
tion presented in Ref. 3. In these decays the particles in the
final state are coupled to as- wave becauseΓ ∼ λ0+1/2.
In a similar way, in the second row of Table III, we dis-
play the decay width of nine different modes:H→P, V ;
P, A; P, V (2S); S, V ; S, A; S, V (2S); P (2S), V ; P (2S), A;
P (2S), V (2S). These nine channels have in common the
H → M(J = 0) transition. In these decays, the particles in
the final state are coupled to ap-wave (l = 1).

In the third row of Table III, we present the de-
cay width for eight different types of decays:H→V,
P ; V, P (2S); A,P ; A, P (2S); A

′
, P ; A

′
, P (2S);

V (2S), P ; V (2S), P (2S). The hadronic matrix elements
〈V (A,A

′
; V (2S))|Jµ|H〉, which correspond to theH →

M(J = 1) transition, have a similar parametrization.
The particles in the final state in these decays are cou-
pled to a p-wave (l = 1). In the fourth row of Ta-
ble III, we display the decay width for twelve different
decays: H → V1, V2; V1, A2; V1, V2(2S); A1, V2;
A1, A2; A1, V2(2S); A

′
1, V2; A

′
1, A2; A

′
1, V2(2S); V1(2S),

V2; V1(2S), A2; V1(2S), V2(2S). They also arise from the
H → M(J = 1) transitionii. The twoJ = 1 particles in the
final state can be coupled tol = 0, 1, 2 waves.

In the fifth row of Table III, we show the decay widht
for theH → T, P (P (2S)) channels, which are produced by
the H → T transition. We have used the parametrization
for 〈T |Jµ|H〉 given in the Ref. 4. In this case, the parti-
cles in the final state can be coupled to al = 2 wave. Using
the same parametrization, we present in the last row of Table
III, the decay width for three different modes:H → T, V
(A, V (2S)). In this case, the particles in the final state can
be coupled tol = 1, 2, 3 waves.

In Table III, all form factors and the functionλ are eval-
uated inm2

M2
because the momentum transfert=(pH−p1)2

= p2
2 = m2

M2
.ξ(M2), FH→T and the decay constants are

given by
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TABLE III. Decay widths ofH → M1M2, whereM1,2 = P, V, S, A, A
′
, T, P (2S), V (2S)

H → M1, M2 Γ(H → M1, M2)

H → (P1, S1, P1(2S)), (P2, P2(2S)) ξ(M2)(m2
H −m2

M1)
2|F HM1

0 (m2
M2)|2λ1/2

H → (P1, S1, P1(2S)), (V, A, V (2S)) ξ(M2)|F HM1
1 (m2

M2)|2λ3/2

H → (V, A, A
′
, V (2S)), (P, P (2S)) ξ(M2)|AHM1

0 (m2
M2)|2λ3/2

H → (V1, A1, A
′
1, V1(2S)), (V2, A2, V2(2S)) ξ(M2)G(t = m2

V2)

ξ(M2)m2
2λ

1/2
[|H+(m2

M2)|2 + |H−(m2
M2)|2 + |H0(m

2
M2)|2

]

H → T, (P, P (2S)) ξ(M2)(1/24m4
T )|FH→T (m2

M2)|2λ5/2

H → T, (V, A, V (2S)) ξ(M2)
[
α(m2

M2)λ
7/2 + β(m2

M2)λ
5/2 + γ(m2

M2)λ
3/2

]

TABLE IV. Vector and axial contributions to semileptonicH → (P, V, S, A(3P1or1P1), T )lν decays.

Contribution JP of W ∗ H → Plν H → V lν H → Slν H → Alν H → T lν

Vector 0+ l = 0 l = 1

1− l = 1 l = 1 l = 0, l = 2 l = 2

Axial 0− l = 1 l = 0 l = 2

1+ l = 0, l = 2 l = 1 l = 1 l = 1, l = 3

ξ(M2) =
G2

F |VqqH |2|Vqiqj |2a2
1(2)f

2
M2

32πm3
H

, (16)

FH→T (m2
P ) = k + (m2

H −m2
T )b+ + m2

P b−, (17)

〈M(p)|Jµ|0〉 = ifMpµ, M = P, P (2S), (18)

〈M(p, ε)|Jµ|0〉 = fMmM εµ, M = V, A, V (2S), (19)

where k and b± are form factors given in the ISGW
model [4], evaluated att = m2

P , a1(2) are the QCD factors,
and|VqqH

| and|Vqiqj | are the appropriate CKM factors.
Finally, we do not consider decays where a tensor me-

son, or a scalar meson or an axial-vector meson1 1P1 arises
from the vacuum. In the first case, as we mentioned before,
〈T |Jµ|0〉 ≡ 0; in the second case, the decay constant of the
scalar mesons, defined as〈S|Jµ|0〉 = fSpµ vanishes or is
small (of the order ofmd −mu, ms −mu,d); and in the last
case, the decay constant of the1 1P1 meson vanishes in the
SU(3) limit byG- parity [19].

4. Contributions of the vector and axial cou-
plings

In this section, we illustrate how the particles in the final state
of H → Mlν andH → M1M2 decays can be coupled to
specific waves, obtain the quantum numbers of the poles that
appear in the monopolar form factors, and explain the corre-
spondence between the form factors and the respective waves
in the final state. We show that these numbers depend on
the vector and axial couplings of the weak interaction. Let
us consider the decay chainH → MM∗ → MW ∗ →
Mlν(MM ′), whereW ∗ is the off-shell intermediate boson

of the weak interaction. We need to combine parity and total
angular momentum conservations in the strongH → MM∗

process.
In Table IV, we show the specific waves in which particles

in the final state ofH → (P, V, S, A, T )lν decays can be cou-
pled and determine if they come from the vector or axial con-
tributions. We must keep in mind that the off-shellW ∗ boson
has spin0 or 1. Thus, in the vector coupling there are two
possibilities:SW∗ = 0 with PW∗ = +1, andSW∗ = 1 with
PW∗ = −1 (SW∗ andPW∗ denote spin and parity ofW ∗,
respectively). In a similar way, in the axial coupling there are
two options:SW∗ = 0 with PW∗ = −1 andSW∗ = 1 with
PW∗ = +1. Thus, there are four cases for theW ∗ boson:
JP = 0+, 1−, 0− and1+. They are displayed in the sec-
ond column of Table IV. Assuming total angular momentum
and parity conservations of the strongH → MM∗ process,
we obtain the values of the orbital angular momentuml of
the particles in the final state ofH → Mlν (see Table IV).
These values can be verified with the exponentl + (1/2) of
λ in the expressions fordΓ/dt in Table II. We can see in the
third (fourth) and the fifth (sixth) columns in Table IV, that
the vector and axial contributions interchange their roles in
H → Plν (H → V lν) andH → Slν (H → Alν), respec-
tively.

In Table V, we show the respective form factors with the
corresponding poles inH → P (V )lν decays. In the second
column, we list the quantum numbersJP of poles, which are
the sameJP options for the off-shellW ∗ boson (see the sec-
ond column in Table IV). In this case, we must check the form
factors that appear in the parametrization of the hadronic ma-
trix elements〈M |Vµ|H〉 and〈M |Aµ|H〉 for M = P, V . Fol-
lowing this idea, we obtain the quantum numbers of the poles
for H → Mlν whereM is ap-wave meson: forH → Slν
the poles are0− and1+; for H → Alν, the poles are0+, 1−
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TABLE V. Form factors and the vector and axial contributions of
the weak interaction toH → (P, V )lν decays.

Contribution JP of Pole H → Plν H → V lν

Vector 0+ F0(t)

1− F1(t) V (t)

Axial 0− A0(t)

1+ A1(t), A2(t), A3(t)

and1+; and forB → T lν the poles are1−, 0− and1+. These
values are important if we are interested in constructing a
quark model with monopolar form factors forH → S, A, T
transitions.

Let us illustrate, as an example, the situation onH→Plν
from Tables IV and V. This decay has two contributions:
l = 0 andl = 1 (see exponents ofλ in Table II) which arise
from the vector coupling of the weak current (see Table IV).
The respective poles have quantum numbers0+ and1− and
the form factors areF0 andF1 (see Table V).

5. Useful ratios

In this section, we present some ratios between exclusive
semileptonic and two-body nonleptonic decays ofB andBs

mesons, using the expressions fordΓ(H → Mlν)/dt and
Γ(H → M1,M2) (see Tables II and III, respectively), that
could be a test of factorization hypothesis with forthcoming
measurements at LHC. We have worked with decays where
it is expected that naive factorization works well. In order
to obtain the numerical values presented in this section, we
have evaluated the form factors in the WSB [3] and CLFA [5]
quark models and taken from the Particle Data Group [20]
the values of the CKM factors, branching ratios, masses and
mean lifetime of mesons.
5.1 B → P, M(cc) decays:Let us consider exclusive two-
body nonleptonicB decays with orbitally or radially excited
charmonium mesons in the final state, which are produced by
the color suppressedb → ccs(d) transition. The following
ratio

Γ(B+ → P+,M1(cc))
Γ(B+ → P+,M2(cc))

= (kinematical factor)
(

fM1

fM2

)2
∣∣∣∣∣
FB→P

0(1) (m2
M1

)

FB→P
0(1) (m2

M2
)

∣∣∣∣∣

2

,

allows to obtain decay constants of charmonium mesons.
The form factorF0(1) corresponds whenM1 and M2 are
J = 0(1) mesons.

Evaluating the form factors in the CLFA model [5], we
obtain

fJ/ψ

fψ(2S)
= 1.15± 0.07 (1.29± 0.17),

fJ/ψ

fχc1(1P )
= 1.41± 0.13 (1.51± 0.32),

fηc

fηc(2S)
= 1.65± 1.27,

fηc

fχc0(1P )
= 2.63± 0.52,

taking (M1=J/ψ, M2=ψ(2S), P=K(π)), (M1 = J/ψ,
M2 = χc1(1P ), P = K(π)), (M1 = ηc, M2 = ηc(2S),
P = K), and(M1 = ηc, M2 = χc0(1P ), P = K), re-
spectively. The most important sources of uncertainties come
from experimental values of branching ratios and form fac-
tors. However, the error in the last ratios is dominated by the
uncertainty in the branching ratios. These quotients between
decay constants with orbitally and radially excited charmo-
nium states are a good test of the factorization hypothesis.

On the other hand, takingfJ/ψ = (416.3 ± 5.3) MeV
[21,22] andfηc = (335± 75) MeV [23], we obtain:

fψ(2S) = 361.7± 22.5 (322.7± 42.7) MeV,

fχc1(1P ) = 295.24± 27.48 (275.7± 58.5) MeV, (20)

fηc(2S) = 203.03± 102.12 MeV,

fχc0(1P ) = 127.4± 38.1 MeV.

From these values we obtainfηc/fηc(2S) = 1.65 ± 0.9
andfJ/ψ/fψ(2S) = 1.15 ± 0.07(1.29 ± 0.17) while in the
Ref. 21 is obtainedfηc/fηc(2S) = fJ/ψ/fψ(2S) = 1.41.

5.2 B+ → K+(π+), J/ψ decays: An important test to
naive factorization is given by

Γ(B+ → K+, J/ψ)
Γ(B+ → π+, J/ψ)

= (18.31± 1.51)

∣∣∣∣∣
FB→K

1 (m2
J/ψ)

FB→π
1 (m2

J/ψ)

∣∣∣∣∣

2

= 33.21± 5.14,

where the errors come from the numerical values of the
CKM and form factors (which are evaluated in the CLFA
model [5]). The experimental value of this ratio is20.7± 1.8
[20]. This sizable difference means that these exclusive chan-
nels have large nonfactorizable contributions [24]. Some au-
thors have explored the possibility of new physics in these
decays [25].

5.3 B0
s → D+

s (K+),K−(D−
s ) decays:The ratio between

the branching ratios ofB0
s → D+

s , K− (mediated by the
b → cus transition) andB0

s → K+, D−
s decays (mediated

by theb → ucs transition), which are color favored, is

R =
B(B0

s → D+
s ,K−)

B(B0
s → K+, D−

s )
= (3.94)

(
fK−

fD−
s

)2

×
∣∣∣∣∣
FBs→Ds

0 (m2
K−)

FBs→K
0 (m2

D−
s
)

∣∣∣∣∣

2

.
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This ratio is sensitive to the value of the decay constant
fD−s . Evaluating the form factors in the CLFA model [5], we
obtainR = 9.82± 1.27 (11.34± 1.43) with fD−

s
= 259± 7

[26] (241 ± 3 [27]) MeV. The sources of the uncertainty
come from the CKM factors, the decay constants and the
form factors. The dominant error comes from the value
of Vub. From the experimental valueB(B0

s → D±
s K∓)

= (3.0 ± 0.7) × 10−4 [20] it is obtainedR = 1 while we
computeR ≈ 10. Thus, with improved measurements, this
ratio is a good test to the numerical inputs forVub andfD−s .

5.4 H → P ′P and P → lνl decays:Let us compare the
two-body nonleptonicH(qq1) → P ′(qq2), P (q3q4) and the
leptonicP (q3q4) → lνl decays. It is well known that the
decay rate ofP (q3q4) → lνl is

Γ(P → lνl) =
G2

F |Vq3q4 |2f2
P mP m2

l

8π

(
1− m2

l

m2
P

)2

.

The ratio betweenΓ(H → P ′, P ) and the last expression
is given by

Γ(H → P ′, P )
Γ(P → lνl)

=
|Vq1q2 |2a2

1

4

× (m2
H −m2

P ′)
2λ

1
2 (m2

H ,m2
P ′ , m

2
P )

m3
Hm2

l mP (1− m2
l

m2
P

)2

×
∣∣∣FH→P ′

0 (m2
P )

∣∣∣
2

. (21)

This quotient is independent of the decay constantfP ,
and could be used as a test for the form factorFH→P ′

0 (m2
P ).

For some exclusive channels, we obtain

∣∣∣FB−→D0

0 (m2
D−

s
)
∣∣∣
2

= 0.301± 0.037 (0.293± 0.053),

∣∣∣FB0
s→K+

0 (m2
D−

s
)
∣∣∣
2

= 0.765± 0.216 (0.681± 0.197),

with l = τ− (µ−). The error comes basically from the ex-
perimental value of the branching ratios. We can see that
the value of|FB→D

0 (m2
Ds

)|2 is approximately equal when
the leptonl is τ or µ. The situation for|FBs→K

0 (m2
Ds

)|2 is
different because the value ofVub also is a source of uncer-
tainty. On the other hand, the value ofFBs→K

0 in q2 = 0
depends strongly on phenomenological models, ranges from
0.23 to 0.31 [28]. Thus, the improvement of these experi-
mental ratios in future experiments, as LHCb, will be a test
of the respective form factors.

5.5 H → P1, P2(V ′) decays: Another important ratio is
given by the decay widths ofH→P1, P2 and H→P1, V

′,
whereP2 andV ′ have the same quark content withP1 = P,
S, P (2S), P2 = P, P (2S) andV ′ = V, A(3P1), V (2S).
Using the expressions given in Table III and monopolar form
factors with the fact thatFH→P1

0 (0) = FH→P1
1 (0) [3], we

obtain:

Γ(H → P1, P2)
Γ(H → P1, V ′)

=
(

fP2

fV ′

)2 [
1−m2

V ′/m2
1−

1−m2
P2

/m2
0+

]2

×
[
λ(m2

H ,m2
P1

,m2
P2

)
]1/2

[
λ(m2

H ,m2
P1

,m2
V ′)

]3/2
(m2

H −m2
P1

)2. (22)

This ratio provides information on the quotientfP2/fV ′ .
As an example, we obtain(fπ+/fρ+) = 0.631 ± 0.045
using theB0 → D−, π+ and B0 → D−, ρ+ decays
which branching ratios are(2.68 ± 0.13) × 10−3 and
(7.6±1.3)×10−3, respectively [20]. The main uncertainty
arises from these experimental values. On the other hand,
takingfπ+=(130.7±0.4) MeV andfρ+ = (216 ± 2) MeV
[5] it is obtained(fπ+/fρ+) = 0.605 ± 0.006. So, in this
case factorization assumption gives a good approximation to
the value of this quotient.
5.6 H → P ′, V1(2) decays:In order to obtainfV1/fV2 , we
can consider the ratio between the decay rates ofH → P ′,
V1(qiqj) andH → P ′, V2(qiqj), whereP ′ = P, S, P (2S)
andV1,2 = V, A(3P1), V (2S):

Γ(H → P ′, V1)
Γ(H → P ′, V2)

=
(

fV1

fV2

)2

×
∣∣∣∣∣
FH→P ′

1 (m2
V1

)
FH→P ′

1 (m2
V2

)

∣∣∣∣∣

2 [
λ(m2

H , m2
P ′ ,m

2
V1

)
λ(m2

H , m2
P ′ ,m

2
V2

)

]3/2

. (23)

Let us choose, as an application, theB → P, V and
B → P, A processes. From the expressions in Table III and
using monopolar form factors [3] we obtain:

Γ(B → P, V )
Γ(B → P, A)

=
(

fV

fA

)2

×
[

1−m2
A/m2

1−

1−m2
V /m2

1−

]2 [
λ(m2

B ,m2
P ,m2

V )
λ(m2

B ,m2
P ,m2

A)

]3/2

. (24)

Taking theB0 → D−, ρ+ and B0 → D−, a+
1 de-

cays we get(fρ/fa1) = 1.06 ± 0.31. The dominant er-
ror comes from the experimental valueB(B0 → D−a+

1 )
= (6.0 ± 3.3) × 10−3. With fρ=(216 ± 2) MeV [5] it is
obtainedfa1 = (0.203 ± 0.059) GeV. This value is smaller
than the one reported in the literature. For example, in the
Ref. 29,fa1 = 0.238 ± 0.010 GeV while the Ref. 8 gives
fa1 = 0.229 GeV (extracted from theτ− → M−ντ de-
cay) andfa1 = 0.256 GeV (from theB0 → D∗+, a−1 and
B0 → D∗+, ρ− decays). On the other hand, in Ref. 30 ob-
tainedfa1 = 0.215 (0.223) GeV for θ = 32◦ (58◦), where
θ is the mixing angle between theK1A andK1B mesons. As
the error inB(B0 → D−a+

1 ) is too big, it is important to
get a more precise estimation of this branching in future ex-
periments in order to test hypothesis factorization with these
exclusive decays.

It is also possible to obtain the quotient(fρ/fa1)
from B(B0

s → D+
s , ρ−)/B(B0

s → D+
s , a−1 ) and
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B(B−
c → ηc, ρ

−)/B(B−
c → ηc, a

−
1 ). At present, there are

not experimental values of these branchings. So, in the future
these decays will be a test of naive factorization by means of
the ratio(fρ/fa1).

5.7 H → V1, V2(3) decays: Another important ratio in
order to compute the quotientfV1/fV2 comes from the
H → V1, V2(qiqj) andH → V1, V3(qiqj) processes, where
V1 = V, A(1P1), A(3P1), V (2S) andV2,3 = V, A(3P1),
V (2S). As an example, we consider theB → V, V ′ and
B → V, A decays. From expressions displayed in Table III
we obtain:

Γ(B → V, V ′)
Γ(B → V,A)

=
(

fV ′

fA

)2 G(m2
V ′)

G(m2
A)

. (25)

Taking theB0 → D∗−, ρ+ and B0 → D∗−, a+
1 de-

cays and evaluatingG with appropriate monopolar form fac-
tors [3], we get(fρ/fa1) = 0.81± 0.07, where the source of
uncertainty are the form factors. This value agrees with the
one reported in Ref. 29, although is smaller than the value
obtained in previous subsection.

fρ/fa1 can also be obtained from

Γ(B0
s→D∗+

s , ρ−)/Γ(B0
s → D∗+

s , a−1 )

and Γ(B−
c → J/ψ, ρ−)/Γ(B−

c → J/ψ, a−1 ). At present,
there is not experimental information of these decays in or-
der to test the factorization hypothesis.

5.8B → M1,M2 andB → M1lνl decays:It is well known
that the ratio

R = Γ(B → M1,M2)/[dΓ(B → M1lνl)/dt|t=m2
M2

]

provides a method to test factorization hypothesis and may be
used to determine some unknown decay constants [29, 31].
Also, it is possible combining exclusive semileptonic and
hadronicB decays to measure CKM matrix elements (see for
example Ref. 32). IfM1 is any of the eight mesons showed
in Table I,M2(qiqj) is aJ = 1 meson andml ≈ 0, we obtain

RV ′ =
Γ(H → M, V ′)

dΓ(H → Mlνl)/dt|t=m2
V ′

=
ξ(V ′)

ζ
= 6π2|Vij |2(aH

1 )2f2
V ′ , (26)

whereV ′ = V, A(3P1), V (2S). Thus, RV ′ , which is
model-independent, is a clean and direct test of factorization
hypothesis. On the other hand, assuming the validity of the
factorization with a fixed value fora1, it provides an alterna-
tive use: it may be used for determination of unknown decay

constants. For example,fρ can be obtained from

Rρ− ≡
Γ(B− → D0, ρ−)

dΓ(B− → D0lνl)/dt|t=m2
ρ

=
Γ(B0

s → D+
s , ρ−)

dΓ(B0
s → D+

s lνl)/dt|t=m2
ρ

=
Γ(B−

c → ηc, ρ
−)

dΓ(B−
c → ηclνl)/dt|t=m2

ρ

, (27)

whereRρ− = 6π2|Vud|2(aH
1 )2f2

ρ− .
We also can use the equation (26) in order to obtain ratios

between decay constants ofJ = 1 mesons:

RV ′1

RV ′2

=
(

fV ′1

fV ′2

)2

, V ′
1,2 = V, A(3P1), V (2S). (28)

5.9 B0
(s) → D+

(s), π
−(K−) decays:Taking pairs of decays

that are U-spiniii partners, we get

Rπ/K =
B(B0

s → D+
s , π−)

B(B0 → D+,K−)

= (12.45)

∣∣∣∣∣
FBs→Ds

0 (m2
π)

FB→D
0 (m2

K)

∣∣∣∣∣

2

= 13.07± 0.32

andRK/π = 0.082 ± 0.002, evaluating the form factors in
the CLFA model [5]. The dominant source of error comes
from these form factors. In the first (second) case, the ratio
between the experimental values of the branching ratios [20]
is 16.0±5.4 (0.112±0.027). In both cases, the experimental
ratio is bigger than the theoretical one. Therefore, with im-
proved measurements at future experiments as LHCb, these
ratios will be a good test of the breaking of U-spin symmetry
through the ratio of the form factors. On the other hand, they
provide an alternative strategy in order to determinefK/fπ
and compare with other methods (see for example in Ref. 34).

6. Summary

We computed several useful ratios between decay widths of
two-body nonleptonic and semileptonicB and Bs decays,
which with improved measurements in forthcoming experi-
ments as LHCb, could be test of factorization approach by
means of quotients between form factors or decay constants.
The ratios withB decays considering charmonium states and
light mesons in final state (see subsection 5.1) could be the
more likely scenario to test the factorization scheme. It is
important to mention that divergences from the results ob-
tained assuming the current approximations do not imply a
failure of the QCD itself or the factorization approach alone.
It would be required a more exhaustive and comprehensive
analysis for getting more conclusions on these and possi-
ble new physics effects in these decays. We also presented
a summary of the expressions forΓ(H → M1,M2) and
dΓ(H → M1lν)/dt, at tree level, including eight types of
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mesons in final state:M1,2 can be a ground state meson
(l = 0), or an orbitally excited meson (l = 1) or a radially ex-
cited meson (n = 2), assuming factorization hypothesis and
using the parametrizations of〈M |Jµ|B〉 given in the WSB
and the ISGW quark models. The form factors were evalu-
ated in the WSB and CLFA quark models. We classified in
three groups theH → M1,2 transitions and explained some
aspects related with the dynamics of these processes.
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Appendix

In this appendix, we briefly mention the quark models and
their form factors that are used in this work.

1. The ISGW model [4]:it is a hybrid model that com-
bines a nonrelativistic quark potential model with a phe-
nomenological ansatz. It is consistent with heavy quark sym-
metry at maximum recoiltm. Their form factors are modeled
by a gaussian and normalized atq2

max. All the form factors
in this model are in function of

FH→M
n (q2) =

(
m̃M

m̃H

) 1
2

(
βHβM

β2
HM

)n
2

e−Λ(tm−q2), (29)

whereΛ = m2
d/(4κ2m̃Hm̃Mβ2

HM ). m̃H(M) is the mock
mass of theH(M) meson,β is a variational parameter and
κ = 0.7 is a relativistic compensation factor of the model.
The appendix B of the Ref. [4] has all the required inputs
for evaluating the form factors for theH → M(J = 0, 1, 2)
transition.

2. The WSB model [3]:It gives the form factors in terms
of relativistic bound state wave functions taking the solutions
from a relativistic harmonic oscillator potential. The form
factors are calculated as wave function overlaps in the infi-
nite momentum frame atq2 = 0. The mononopolar form
factors in this model present a vector meson dominance form
of theq2 dependence and are given by

FH→M (q2) =
FH→M (0)

1− q2/m2
JP

, (30)

wheremJP is the mass of the pole. The Ref. 3 provides the
values ofFH→M

n (0) andmJP for the H → M transition.
We use these form factors in order to compute the numerical
values showed in subsections 5.5, 5.6 and 5.7.

We can obtain the form factors of the WSB
model [3] in function of the form factors of the
ISGW model [4] comparing the parametrizations given
in both models for theH→P (V ) transition. Making
〈P |Jµ|H〉WSB=〈P |Jµ|H〉ISGW we obtain:

F0(t) =
t

(m2
H −m2

P )
f−(t) + f+(t), (31)

F1(t) = f+(t), (32)

and from〈V |Jµ|H〉WSB = 〈V |Jµ|H〉ISGW it is obtained:

A0(t) =
i

2mV

× [
f(t) + ta−(t) + (m2

H −m2
V )a+(t)

]
, (33)

A1(t) =
if(t)

(mH + mV )
, (34)

A2(t) = −i(mH + mV ) a+(t), (35)

V (t) = −i(mH + mV ) g(t). (36)

Using these relations it is straightforward to get
dΓ(H→P (V )lν)/dt or Γ(H → P (V ),M) with the
parametrization of the WSB model from respective expres-
sions in the ISGW model, and viceversa.

3. The CLFA model [5]:The relativistic light-front quark
model gives a fully treatment of quark spin and the center-
of-mass motion of the hadron. In a covariant approach of this
model the decay constants and the form factors are calculated
by means of Feynman momentum loop integrals which are
manifestly covariant [5]. The form factors in the spacelike
region are given by the three-parameter form

FH→M (q2) =
FH→M (0)

1− a(q2/m2
H) + b(q2/m2

H)2
. (37)

We have taken from the Ref. [5] the values ofFH→M (0), a
and b for obtaining the numerical values presented in Sub-
secs. 5.1, 5.2, 5.3 and 5.9.

i. We use the ISGW model [4] because it provides all the
parametrizations considered in this work.

ii. For theH → A, A′ transitions it is required to interchange the
role of vector and axial currents in order to obtain the specific
expressions displayed in Tables II and III.

iii. The U-spin symmetry is a SU(2) subgroup of the SU(3) fla-

vor symmetry group, in which quarksd ands form a doublet
[24,33].
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