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Conservative nonlinear oscillators in Abel’s mechanical problem
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We study a family of conservative,truly nonlinear,oscillators, arising from particular solutions of Abel’s mechanical problem. An exact
period-to-amplitude relation is produced for each instance. The lagrangian and hamiltonian formulations of such systems are discussed,
along with their relations with the harmonic oscillator.
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Se estudia una familia de osciladores no lineales, intrı́nsecamente no analı́ticos, que surgen como soluciones particulares del problema
mećanico de Abel. Se incluye en cada caso la expresión exacta del periodo en función de la amplitud de las oscilaciones. Las formulaciones
lagrangiana y hamiltoniana son discutidas, ası́ como la relacíon que los mencionados sistemas guardan con el oscilador armónico.
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1. Introduction

Examples of nonlinear oscillator models appear not only
in physics, but also in engineering [1], mathematical biol-
ogy [2-3] and related fields. In physics, specific applications
may be found in quantum optics [4], solar physics [5] and lab-
oratory plasmas [6], to name just a few possibilities. Some
examples of current theoretical research are to be found in
Refs 7 to 8.

As a consequence, there is an increasing interest in intro-
ducing this subject, in a clear and simple way, to undergrad-
uate students. This interest is reflected in physics education
journals [9-17].

The present paper’s aim is to introduce little known in-
stances of conservative nonlinear oscillators arising from
Abel’s mechanical problem, as a way of illustrating some of
the main concepts and techniques of analytical mechanics.
The only prerequisites for reading the present communica-
tion are: familiarity with ordinary differential equations, spe-
cial functions and integral transforms, and a rough acquain-
tance with analytical mechanics. Thus, we believe it will be
of interest for senior undergraduate and graduate students,
and faculty members in charge of courses in analytical me-
chanics or mathematical methods for physicists.

Abel’s mechanical problem can be stated as follows: [18]
consider a wire bent into a smooth plane curve, and let a bead
of massm start from rest and slide without friction down the
wire towards the origin under the action of its own weight.
In this way, the timeτ it takes the bead to reach the origin is
function only of the initial height,yi, at which the bead starts
its motion. For a prescribed relationτ(yi) it is possible, in

principle, to deduce the equation

f(x, y) = 0 (1)

that describes the curve in which the bead slides. The cen-
tral idea we present is that if you can smoothly match at the
origin a curve with knownτ(yi) relation with another curve
with the same prescribed behaviour, you will obtain a (gener-
ally anharmonic) oscillator with a known period to amplitude
relation.

Expression (1) represents an holonomic constraint (as it
is an equation, and not, for example, an inequality) so that the
system is amenable to a lagrangian treatment. Moreover, we
will be able to produce not only lagrangian and hamiltonian
functions for each and every curve we construct, but also the
effective potential that acts on the bead in each case. Inter-
estingly, the systems we here present are not only examples
of conservative nonlinear oscillators, but are also intrinsically
non-analytical,i.e. that when subject to small amplitude os-
cillations, our systems do not conform to the simple harmonic
oscillator model. These systems have been calledtruly non-
linear oscillatorsin recent literature [19].

The rest of this communication is divided as follows: in
Sec. 2 we present a family of curves, particular solutions
of Abel’s mechanical problem. In Sec. 3 we derive the La-
grangian of a bead sliding in one of such curves. In Sec. 4
we construct curves in which the movement of the bead is
that of a conservative nonlinear oscillator. In this last section
we also discuss some of the salient features of the behavior
of the resulting oscillators. Finally, Sec. 5 is reserved for
conclusions.
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2. A family of curves

We now return to Abel’s mechanical problem, sketched in
Sec. 1: a massive bead slides down towards the origin, in a
frictionless motion, along a smooth plane curveσ. The con-
servation of the mechanical energy of the bead dictates that,
when starting its motion from rest at a heightyi, it will reach
the origin in a lapse of timeτ(yi) given by

τ(yi) =

yi∫

0

ds
dy√

2g(yi − y)
1
2
dy (2)

(where

ds(y) =

√
1 +

(
dxσ

dy

)2

dy

is the differential of the arch length alongσ), provided that
the bead is subject to a potential:

V (y) = mgy.

Indeed, in a frictionless motion along a wire, the conservation
of energy dictates that

m

2

(ds

dt

)2

+ mgy = E (3)

is constant in time, as

v =
ds

dt
=

√(
dx

dt

)2

+
(

dy

dt

)2

(4)

is just the rapidity of the bead.
By considering initial conditionsy(t = 0) = yi and

v(t = 0) = 0 we get, from (3):

ds

dt
=

√
g(yi − y)

which, when solved fort, gives us (2).
Equation (2) is an example of Abel’s integral equation.

It can be inverted, in order to obtainds/dy, by using the
Laplace transform method. The steps are laid out in Ref. 18,
among other places. The result, which constitutes the so-
lution of Abel’s mechanical problem, may be written in the
following form:

ds

dy
(y) =

√
2g

π

d

dy

y∫

0

τ(ν)
(y − ν)1/2

dν (5)

We now examine the implications of imposing on curveσ a
condition of the type

τ(yi) = Kyβ
i (6)

for a fixedβ ∈ R and a real constantK > 0. Forβ = 0, (6)
corresponds to the isochronous condition (i.e. the indepen-
dence of the period from the amplitude in a periodic motion)

and the resulting curve turns out to be in this case (half of)
Huygens’s tautochrone (also known as the isochrone curve),
while the solutions forβ = 1/2 are inclined planes. For the
general case we plug (6) in (5) to obtain:

ds

dy
(y) =

√
2g

π
K

d

dy

y∫

0

νβ

(y − ν)1/2
dν (7)

The integral on the r.h.s. of (7) is divergent forβ ≤ −1, and
for β > −1 one can apply the Laplace transform method and
the convolution theorem to get

ds

dy
(y) =

√
2g

π

Γ(β + 1)
Γ(β + 3/2)

K
d

dy
yβ+1/2 (8)

whereΓ stands for the gamma function (as we will be tac-
itly using some of the properties of this function it may be
convenient to have a textbook such as [20] at hand).

Equation (8) tells us thats will be finite at the origin only
if β ≥ −1/2, and the caseβ = −1/2 itself has no geo-
metrical (let alone physical) interpretation, as it would imply
that the arch-length traveled from origin to any given point
on the curve would be same, irrespective of the end point.
Thus, physically acceptable bounded curves exist only for
β > −1/2. With this caveat in mind, from (8) we may con-
clude

xσ(y) = ±
y∫

0

√
(dsσ

dy′ )
2 − 1dy′

= ±
y∫

0

√(
y′

H

)2β−1

− 1dy′ (9)

where, by definition:

H :=

(√
2g

π

Γ(β + 1)
Γ(β + 1/2)

K

) 2
1−2β

(10)

In order to retain the physical interpretation of Eq. (9) the in-
tegrand on the r.h.s. must remain real-valued for values ofy
arbitrarily close toy = 0, and so the expression is only valid
for β ≤ 1/2 . Moreover, for any acceptable value ofβ (i.e.
−1/2 < β ≤ 1/2) we get the restriction

y < H (11)

so that the curve ends at heightH (a more thorough analysis
shows us thatdy/dx diverges at heightH).

A curveσ is thus identified by three different parameters:
β,± andH. From now on we will writeσβ,H,± to refer to a
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FIGURE 1. SomeΣ curves. Chained curve:α = 0.24, dashed:
α = 0.54, continuous thick:α = 1 (the tautochrone), thin con-
tinuous: α = 1.86, dotted: α = 2.85. In all casesH = 1m,
g = 9.8m/s2.

specific curve. The solution (9) can be written, with a suitable
change of the integration variable, in a very compact way:

xβ,H,±(y) = ±H

y/H∫

0

√
η2β−1 − 1dη y ∈ [0,H] (12)

Notice thatσβ,H,,− is just the reflection ofσβ,H,+, with the
vertical axis through the origin acting as the reflection axis.

By plugging (11) in (8) and applying the condition
s±,β,H(y = 0) = 0 (meaning that we will measure the arch-
length from the origin) we find the arch-length traveled from
any given point(x±,β,H(y), y) ∈ σβ,H,± to the origin:

sβ,H,±(x, y) = sβ,H,±(y) =
H

β + 1/2

( y

H

)β+1/2

(13)

so thatsβ,H,−(y) = sβ,H,+(y) = sβ,H(y), as would be ex-
pected.

Finally, by plugging (13) and (11) in (6) we find:

τβ,H(si) =

√
πH

2g

Γ(β + 1/2)
Γ(β + 1)

×
{β + 1/2

H

}β/(β+1/2)

s
β/(β+1/2)
i (14)

The meaning of this equation is the following: if a bead
moves along the curveσβ,H,± starting from rest at an arch-
lengthsi away from the origin, it will reach the origin in a
time τβ,H(si) given by (14).

3. A family of Lagrangians

In order to obtain the equation of motion of a particle moving
on aσβ,H,± curve, we could start from the Lagrangian of a
free-falling bead

L(x, y, ẋ, ẏ) = T − V =
m

2
{(ẏ)2 + (ẋ)2} −mgy (15)

along with condition (12), which is that a of scleronomic
holonomic constraint, so that Lagrange’s method of indeter-
minate multipliers could be applied directly. Actually, it is

much easier to reduce the number of variables, eliminatingx
through (12) in order to obtain from (15) the Lagrangian

Lβ,H(y, ẏ) =
m

2
ẏ2

( y

H

)2β−1

−mgy (16)

The Euler-Lagrange equation:

( d

dt

∂

∂ẏ
− ∂

∂y

)
Lβ,H(y, ẏ) = 0 (17)

then gives us:

d2y

dt2
+

2β − 1
2y

(dy

dt

)2

+
gH1−2β

y1−2β
= 0 (18)

valid for 0 ≤ y ≤ H. This seems to be quite unmanage-
able an equation. But by applying the point-transformation
y → s, with the new coordinates defined through (13) we
obtain the transformed Lagrangian

Lβ,H(s, ṡ) :=
m

2
ṡ2 −mgH

{
β+1/2

H s
}β/(β+1/2)

(19)

so that the Euler-Lagrange equation
(

d

dt

∂

∂ṡ
− ∂

∂s

)
Lβ,H(s, ṡ) = 0 (20)

now renders

d2s

dt2
+ g(β + 1/2)2β/(2β+1)H

2β−1
2β+1 s

1−2β
2β+1 = 0. (21)

Equation (21) can be written in the form:

d2s

dt2
= −Qα,Hsα (s > 0) (22)

with the exponent

α :=
1− 2β

1 + 2β

taking values in[0,∞), and constantQα,H > 0 defined
through:

Qα,H := g
(1 + α)(1−α)/2

Hα
.

Forα > 0 the nonlinear Eq. (22) is that of a point-like parti-
cle of massm under the influence of the restoring force

fα,H(s) = −mQα,Hsα

(we will not mention anymore the caseα = 0, which is
simply free fall). Thus, Eq. (22)would be that of a anhar-
monic oscillator, if itwould notbe for the annoying fact that
s in only defined in the half-line. If we chose to stick with
Eq. (22) we would have to impose suitable boundary condi-
tions ats = 0 in order to have a well posed problem. Instead,
we will learn in Sec. 4 how to circumvent this, by joining
σβ,H,+ with σβ,H,− at the origin, as laid out in Sec. 1.
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FIGURE 2. Examples ofUΣ potentials. Thin continuous curve:
α = 0.24 (Q = 12.4 Jm−1.24/kg,) dotted curve:α = 0.54
(Q = 15.4 Jm−1.54/kg,) continuous thick curve: a harmonic os-
cillator, α = 1 (Q = 20.0 Jm−2/kg,) chained: α = 1.86,
(Q=28.6 Jm−2.86/kg,) dashed:α = 2.85 (Q=38.5 Jm−3.85/kg.)
In all casesm = 0.1 kg.

FIGURE 3. Some examples ofFΣ. Gray curve: α = 0.24

(mQ=1Nm−0.24), black line, corresponding to a harmonic oscil-
lator: α = 1 (mQ=0.7N/m), dashed:α = 2.85 (mQ=1Nm−2.85).

4. A family of nonlinear oscillators

From (12) it is easy to obtain the limits:

lim
y→0−

dxβ,H,−
dy

= +∞

lim
y→0−

dxβ,H,+

dy
= −∞ (23)

that warrant that theσβ,H,− path can be smoothly joined at
the origin withσβ,H,+. We will call the resulting path:

Σβ,H = Im(σ+,β,H) ∪ Im(σ−,β,H) (24)

Here, Im(σ) stands for the path which is the image of curveσ.
Each one of theΣβ,H paths has one, and only one, min-

imum around which a bead will describe a periodic motion.
The relation between the period of motion and the amplitude
in each path can be deduced from (14) so that it is clear that

FIGURE 4. The phase-space portrait of atruly nonlinearoscillator
of Eq. (31), withα = 2.86, m = 0.1kg, and Q=38.6 Jm−3.86/kg.
Amplitudessi = 1, 0.75, 0.5 and0.25 m. pS is graphed in kg m/s
ands in meters.

FIGURE 5. The phase-space portrait of atruly nonlinearoscillator
of Eq. (31), withα = 0.24, m = 0.1kg, and Q=12.4 Jm−1.24/kg.
Amplitudessi = 1, 0.75, 0.5 and 0.25 m.pS isgraphed in kg m/s
ands in meters.

(with the exception of the tautochrone,i.e. β = 0) the motion
in aΣβ,H is anharmonic.

To be more precise:Tβ,H , the period of motion in aΣβ,H

curve, is related with the amplitude of motion,si, through
Tβ,H(si) = 4τβ,H(si) with τβ,H as given in (14). In terms
of exponentα this turns out to be:

Tα,H(si) =

√
8πH

g

Γ
(

1
1+α

)

Γ
(

3+α
2(1+α)

)

×
{

(α + 1)H
}α/2−1/2

s1/2−α/2. (25)

In any givenΣβ,H path, the generalized coordinateSβ,H can
be defined through

Sβ,H(x) :=

{
−s−,β,H(x, y) if (x, y) ∈ σβ,H,−

s+,β,H(x, y) if (x, y) ∈ σβ,H,+

(26)

From now on we will drop, for expediency, theβ,H sub-
scripts.
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Just ass±(x, y) assigns to each point inσ± one and only
one non-negative real value, so thats± is a coordinate for
σ±, S(x, y) assigns to each point inΣ one and only one real
value, so thatS is a coordinate forΣ.

In order to write the equation of motion of a bead in aΣ
path we just need to notice that Eq. (22) can be written at
once, forσ+ andσ− simultaneously, as:

d2S

dt2
= FΣ(S) (27)

whereFΣ(S) is given by

FΣ(S) =





mQ|S|α if S < 0

0 if S = 0

−mQ|S|α if S > 0

(28)

The termFΣ, which is the component in theS direction of the
total force (constraint plus gravitational) acting on the bead,
is derived from potential

UΣ(S) :=
mQ

α + 1
|S|α+1,

that is

FΣ(S) = − d

dS
UΣ(S), ∀S ∈ R. (29)

Notice: there is no problem with the derivativeof the poten-
tial at S = 0, the potentialis smooth there . The derivative
of the force,though, is discontinious atS = 0 for oscillators
with α < 1 (see Figs. 2 and 3.)

The Lagrangian of the bead moving on aΣ path can then
be written down:

LΣ(S, Ṡ) =
m

2
(Ṡ)2 − mQ

α + 1
|S|α+1, (30)

along with its Hamiltonian:

HΣ(S, pS) =
p2

S

2m
+

mQ

α + 1
|S|α+1. (31)

Let us pause for a moment and reflect in the following: by
definition, the generalized momentum associated withS is

pS :=
∂

∂ Ṡ
LΣ, (32)

which along with (30) gives

pS = m Ṡ.

Also, we have that the magnitude of the velocity of a bead
moving inanycurve whatsoever is related with traveled the
arch-length through (4), so that the termp2

S/2m is the kinetic
energy of the bead. This did not need to be so: if we had
derived a HamiltonianHΣ(y, py) the kinetical energy term
would have been quite difficult to recognize. In this sense,
the arch-length is the “natural” coordinate for a curve.

From (31) and Hamilton’s equations we get the equation
of motion of the bead:

d2S

dt2
+ g

sgn(S)|S|α
Qα

= 0 (33)

which is a quasi-linear second order differential equation,
with no exact solutions.

Yet, a qualitative analysis can be made of the solutions of
(32). Indeed, from (28) we recognizeUΣ(S) as the potential
energy of the bead when moving on pathΣ. We thus have:

p2
S

2m
+

mQ

α + 1
|S|α+1 = E (34)

whereE is the total energy of the bead. From the very be-
ginning we chose to study only conservative systems (no fric-
tion.) That Hamiltonian (31) has no explicit time dependency
is just a confirmation of this fact.

Equation (33) tells us that our systems are in a sense just
distorted versions of the harmonic oscillator, with the1 − α
as an indicator of the degree of distortion. The phase-space
portraits for some selected values ofα are shown in Figs. 3, 4
and 5. All orbits are simply closed, no matter the values of
α andE. With the exception of the case forα = 1 (the har-
monic oscillator,) non of the orbits are ellipses. Forα > 1
the orbits resemble ellipses compressed in thepS direction,
for α < 1 the orbits resemble ellipses compressed in theS
direction. The value of|α− 1| gives us an idea of the degree
of compression. In the limit whenα → 0 (corresponding to a
free-falling bead ellastically bouncing at the origin) the orbits
collapse into rectangles.

At the same time, the oscillators just presented (with the
exception ofα = 1) are truly nonlinear in the following
sense: forα = 2n, n ∈ N, the Maclaurin series ofUΣ con-
tains just one term, which is proportional toSα, and for any
otherα ∈ R+ the potential is not analytical in any neigh-
bourhood around the minimumS = 0. This precludes the
possibility of a standard small oscillations treatment.

FIGURE 6. The phase-space portrait of an harmonic oscillator,
showed for comparison.
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5. Conclusions

In the preceding pages we have presented a family of conser-
vative oscillators arising from Abel’s mechanical problem.
This oscillators are amenable to a lagrangian treatment, as
the solutions of Abel’s mechanical problem always result
in holonomic scleronomic constraints. We have produced
the exact period-to-amplitude relation (25), valid for all dis-
cussed cases. The oscillators turn out to betruly nonlinear,
impervious to the usual perturbative treatment.

The material included in this paper may complement and
enrich any exposition of classical and/or analytical mechan-
ics at university intermediate level as it:

- Presents little known instances of conservative nonlin-
ear oscillators.

- Provides physically relevant, and fairly simple, exam-
ples of the use of lagrangian mechanics.

- Shows us that there are still interesting things to learn
in classical mechanics at a fairly elementary level.

- Illustrates the use of mathematical tools such as the
Laplace transform and the Gamma function in physi-
cal problems.
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