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We study a family of conservativéquly nonlinear, oscillators, arising from particular solutions of Abel's mechanical problem. An exact
period-to-amplitude relation is produced for each instance. The lagrangian and hamiltonian formulations of such systems are discussed
along with their relations with the harmonic oscillator.
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Se estudia una familia de osciladores no linealesinsgécamente no anttos, que surgen como soluciones particulares del problema
meanico de Abel. Se incluye en cada caso la expresikacta del periodo en furici de la amplitud de las oscilaciones. Las formulaciones
lagrangiana y hamiltoniana son discutida$,casno la reladn que los mencionados sistemas guardan con el osciladénamn

Descriptores: Osciladores no lineales; magica anatica; problema meanico de Abel.
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1. Introduction principle, to deduce the equation

Examples of nonlinear oscillator models appear not only flx,y) =0 (1)
in physics, but also in engineering [1], mathematical biol-
ogy [2-3] and related fields. In physics, specific applicationghat describes the curve in which the bead slides. The cen-
may be found in quantum optics [4], solar physics [5] and lab-ral idea we present is that if you can smoothly match at the
oratory plasmas [6], to name just a few possibilities. Someorigin a curve with knownr(y;) relation with another curve
examples of current theoretical research are to be found iwith the same prescribed behaviour, you will obtain a (gener-
Refs 7 to 8. ally anharmonic) oscillator with a known period to amplitude
As a consequence, there is an increasing interest in intraelation.
ducing this subject, in a clear and simple way, to undergrad- Expression (1) represents an holonomic constraint (as it
uate students. This interest is reflected in physics educatios an equation, and not, for example, an inequality) so that the
journals [9-17]. system is amenable to a lagrangian treatment. Moreover, we
The present paper’s aim is to introduce little known in- will be able to produce not only lagrangian and hamiltonian
stances of conservative nonlinear oscillators arising fronfunctions for each and every curve we construct, but also the
Abel’'s mechanical problem, as a way of illustrating some ofeffective potential that acts on the bead in each case. Inter-
the main concepts and techniques of analytical mechanicgstingly, the systems we here present are not only examples
The only prerequisites for reading the present communicaef conservative nonlinear oscillators, but are also intrinsically
tion are: familiarity with ordinary differential equations, spe- non-analyticalj.e. that when subject to small amplitude os-
cial functions and integral transforms, and a rough acquaineillations, our systems do not conform to the simple harmonic
tance with analytical mechanics. Thus, we believe it will beoscillator model. These systems have been caildgl non-
of interest for senior undergraduate and graduate studentinear oscillatorsin recent literature [19].
and faculty members in charge of courses in analytical me- The rest of this communication is divided as follows: in
chanics or mathematical methods for physicists. Sec. 2 we present a family of curves, particular solutions
Abel’'s mechanical problem can be stated as follows: [18]of Abel's mechanical problem. In Sec. 3 we derive the La-
consider a wire bent into a smooth plane curve, and let a beagtangian of a bead sliding in one of such curves. In Sec. 4
of massmn start from rest and slide without friction down the we construct curves in which the movement of the bead is
wire towards the origin under the action of its own weight. that of a conservative nonlinear oscillator. In this last section
In this way, the timer it takes the bead to reach the origin is we also discuss some of the salient features of the behavior
function only of the initial heighty;, at which the bead starts of the resulting oscillators. Finally, Sec. 5 is reserved for
its motion. For a prescribed relatiar{y;) it is possible, in  conclusions.
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2. Afamily of curves

and the resulting curve turns out to be in this case (half of)
Huygens'’s tautochrone (also known as the isochrone curve),

We now return to Abel's mechanical problem, sketched inyhile the solutions for3 = 1/2 are inclined planes. For the
Sec. 1: a massive bead slides down towards the origin, in general case we plug (6) in (5) to obtain:

frictionless motion, along a smooth plane cusueThe con-

servation of the mechanical energy of the bead dictates that,

when starting its motion from rest at a heightit will reach
the origin in a lapse of time(y;) given by

Yi ds

Wy 2

T(yi) = / \/%(yz _ y)%

(where

dzy >
ds(y) =1/1+ (d;) dy

is the differential of the arch length alorg, provided that
the bead is subject to a potential:

Y

ds V29 . d VP

@(y) = Kdy/(y_ V)1/2du (7)
0

The integral on the r.h.s. of (7) is divergent for< —1, and
for 3 > —1 one can apply the Laplace transform method and
the convolution theorem to get

ds = J29 LB+ pd gy
R LA

whereI stands for the gamma function (as we will be tac-
itly using some of the properties of this function it may be
convenient to have a textbook such as [20] at hand).

Viy) =mgy. Equation (8) tells us thatwill be finite at the origin only
Indeed, in a frictionless motion along a wire, the conservatiof 8 > —1/2, and the casgg = —1/2 itself has no geo-
of energy dictates that metrical (let alone physical) interpretation, as it would imply
that the arch-length traveled from origin to any given point
@(@)2 tmgy=FE 3 Oon the curve would be same, irrespective of the end point.
2 \dt Thus, physically acceptable bounded curves exist only for

is constant in time, as

ds dr\? dy 2
SRR N
is just the rapidity of the bead.

By considering initial conditiong/(t = 0) = y; and
v(t = 0) = 0 we get, from (3):

ds
== 9(yi —v)

which, when solved fot, gives us (2).

Equation (2) is an example of Abel’s integral equation.

It can be inverted, in order to obtails/dy, by using the

Laplace transform method. The steps are laid out in Ref. 18,
among other places. The result, which constitutes the so-
lution of Abel's mechanical problem, may be written in the

following form:

ds, . \/@d/y 7(v) v
(y

diy(y) - T dy — V)1/2 (5)
0

We now examine the implications of imposing on cusva
condition of the type

(yi) = Ky (6)

for a fixed3 € R and a real constarit’ > 0. For3 = 0, (6)
corresponds to the isochronous conditiae.(the indepen-

B > —1/2. With this caveat in mind, from (8) we may con-
clude

z,(y) = i/,/(ﬁ;‘j)Q — 1dyr
0

Y N 268-1

_ Y /

= i/ (H) - 1dy (9)
0

where, by definition:
e
K)

(2 LB+
= <\/:F(ﬁ+ 1/2)

In order to retain the physical interpretation of Eq. (9) the in-
tegrand on the r.h.s. must remain real-valued for values of
arbitrarily close tay = 0, and so the expression is only valid
for 8 < 1/2 . Moreover, for any acceptable value ©f(i.e.
—1/2 < 8 < 1/2) we get the restriction

(10)

y< H (11)

so that the curve ends at heigtit(a more thorough analysis
shows us thaty /dx diverges at height).

A curveo is thus identified by three different parameters:

dence of the period from the amplitude in a periodic motion)3, = andH. From now on we will writesg 5 1 to refer to a
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much easier to reduce the number of variables, eliminating
through (12) in order to obtain from (15) the Lagrangian

Ls.u(y,y) = yz( )MH —mgy (16)

The Euler-Lagrange equation:

d o0 9] .
(@@ ~ )Lﬁ,H(y»Y) =0 17)

PR S —— then gives us:

-3 -2 2 3
FIGURE 1. SomeX curves. Chained curvex = 0.24, dashed: d’y 26—1 gH' 28
a = 0.54, continuous thick:a. = 1 (the tautochrone), thin con- a2 2y (dt) yl—20 =0 (18)
tinuous: o = 1.86, dotted: o« = 2.85. In all casesH = 1m,
g = 9.8m/s’. valid for 0 < y < H. This seems to be quite unmanage-

able an equation. But by applying the point-transformation
specific curve. The solution (9) can be written, with a suitable, —, s with the new coordinate defined through (13) we
change of the integration variable, in a very compact way: obtain the transformed Lagrangian

y/H

. m. B/(B+1/2)
25,1+ (Y) / /n28-1 _ 1dn yel0,H (12) L£8,1(s,8) = Esz—mgH{BJré/zs} (29)

0 so that the Euler-Lagrange equation

Notice thatos g, _ is just the reflection ofg ., with the

vertical axis through thg origin acting as Fhe reflection r.p(is. (d 0_29 > L5.1(5,8 =0 (20)
By plugging (11) in (8) and applying the condition dt 95 s

s+ 5.1 (y = 0) = 0 (meaning that we will measure the arch-

length from the origin) we find the arch-length traveled from now renders

any given poin{(z+ 5,11 (y), y) € op,m,+ to the origin: s g(B +1/2)2/CB+D 35 ga5tt = 0. (21)
2 .
. . H y\P+ / 3 dt
sp.%(Ty) = 85+ y) = B+1/2 (ﬁ) (13) Equation (21) can be written in the form:
so thatsg i — (y) = sg.u.+(y) = sg.u(y), as would be ex- ?s N
pected. i —Qa,us" (s>0) (22)

Finally, by plugging (13) and (11) in (6) we find: with the exponent

N _ [mHI(B+1/2) 1-28
(1) = \ 29 T(B+1) R Y?
9 {ﬁ+H1/2 }5/(ﬁ+1/2)sf/(6+1/2) (14)  taking values in[0,00), and constanta,s > 0 defined
through:
The meaning of this equation is. the following: if a bead (14 a)i-0)/2
moves along the curvegs 1 starting from rest at an arch- Qo = QL.
length s, away from the origin, it will reach the origin in a 7 He
time 75,1 (s;) given by (14). Fora > 0 the nonlinear Eq. (22) is that of a point-like parti-

cle of massn under the influence of the restoring force

3. A family of Lagrangians fa(s) = —mQa, ms®

In order to obtain the equation of motion of a particle moving
on aog, i+ curve, we could start from the Lagrangian of a
free-falling bead

(we will not mention anymore the cagse = 0, which is
simply free fall). Thus, Eq. (22)vould be that of a anhar-
monic oscillator, if itwould notbe for the annoying fact that

L(z,y,%y) =T -V = T{(yﬁ + (%)} —mgy (15) S in only defined in the half-line. If we chose to stick with

2 Eq. (22) we would have to impose suitable boundary condi-

along with condition (12), which is that a of scleronomic tions ats = 0 in order to have a well posed problem. Instead,
holonomic constraint, so that Lagrange’s method of indeterwe will learn in Sec. 4 how to circumvent this, by joining
minate multipliers could be applied directly. Actually, it is og i+ With og g, _ at the origin, as laid out in Sec. 1.
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-1.0 -0.5

FIGURE 2. Examples ofUs, potentials. Thin continuous curve:
a = 024 (Q = 12.4Jm 2 /kg,) dotted curve:a. = 0.54
(Q = 15.4 Jm 5% /kg,) continuous thick curve: a harmonic os-
cillator, « 1 (Q = 20.0Jm 2/kg,) chained:a = 1.86,
(Q=28.6 IJm~2-3% /kg,) dashednr = 2.85 (Q=38.5 Jm 3% /kg.)

In all casesn = 0.1 kg.

FIGURE 3. Some examples ofx. Gray curve: a« = 0.24
(MmQ=1Nm°-2%), black line, corresponding to a harmonic oscil-
lator: & = 1 (MQ=0.7N/m), dashedx = 2.85 (MQ=1NnT2%%),

4. A family of nonlinear oscillators
From (12) it is easy to obtain the limits:

dl’g,H7_

lim dy

y—0~

= 400

deg a4+

dy (23)

lim
y—0~

that warrant that the; ; _ path can be smoothly joined at
the origin witho s i 4. We will call the resulting path:
Yg,H = |m(0+’ﬁ7H) U |m(0,ﬂ’H) (24)

Here, In{o) stands for the path which is the image of cusve

Each one of th& s i paths has one, and only one, min- Sp. (%) :
imum around which a bead will describe a periodic motion.
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FIGURE 4. The phase-space portrait ofraly nonlinearoscillator
of Eq. (31), withaw = 2.86, m = 0.1kg, and Q=38.6 Jm~3-%5 /kg.
Amplitudess; = 1,0.75,0.5 and0.25 m. ps is graphed in kg m/s
andsin meters.

P

TR,

FIGURE 5. The phase-space portrait ofraly nonlinearoscillator
of Eq. (31), withaw = 0.24, m = 0.1kg, and Q=12.4 IJm'-2* /kg.
Amplitudess; = 1,0.75,0.5 and 0.25 m.pgs isgraphed in kg m/s
andsin meters.

N

(with the exception of the tautochrories. 5 = 0) the motion
inaXg, g is anharmonic.

To be more precisél , the period of motionin &g g
curve, is related with the amplitude of motios, through
T3 1(si) = 4713,1(s;) with 75 as given in (14). In terms
of exponent this turns out to be:

fsir T()
g F(z(ﬁt—%))

@/2-1/2
X {(a—|— I)H} si/2=e/2 - (25)

Ta,H(si)

In any givenX 3 z path, the generalized coordinéig ; can
be defined through

{

if (z,y)€o05m—
if (z,y) € op,m,+

—S,’g_’H(l', y)

S+757H(x7 y)

(26)

The relation between the period of motion and the amplitudd-rom now on we will drop, for expediency, the H sub-
in each path can be deduced from (14) so that it is clear thasscripts.
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Just assy (x, y) assigns to each point . one and only From (31) and Hamilton’s equations we get the equation
one non-negative real value, so that is a coordinate for of motion of the bead:
o+, S(z,y) assigns to each point @ one and only one real

value, so thaf is a coordinate foE. a5 g[S _ (33)
In order to write the equation of motion of a bead ik a dt? Q>
path we just need to notice that Eq. (22) can be written at
once, fors. ando_ simultaneously, as: which is a quasi-linear second order differential equation,
with no exact solutions.
diS = Fx(S) 27) Yet, a qualitative analysis can be made of the solutions of
dt? > (32). Indeed, from (28) we recognizg;(S) as the potential
whereFs (S) is given by energy of the bead when moving on pathWe thus have:
mQ|S|¢ if S<0 é + mQ |S‘a+1 - B (34)
Fx(S) = 0 if $=0 (28) 2m - a+l
—m@Q|S|* if §>0 whereF is the total energy of the bead. From the very be-

ginning we chose to study only conservative systems (no fric-

The termFy;, which is the component in thiedirection ofthe  tjon ) That Hamiltonian (31) has no explicit time dependency
total force (constraint plus gravitational) acting on the beadis just a confirmation of this fact.

is derived from potential Equation (33) tells us that our systems are in a sense just

mQ | et distorted versions of the harmonic oscillator, with the «
Us(9) == m|5| ; as an indicator of the degree of distortion. The phase-space
portraits for some selected valuescoéire shown in Figs. 3, 4
that is and 5. All orbits are simply closed, no matter the values of
d « and E. With the exception of the case far= 1 (the har-
Fz(5) = ——5Us(S), VSeR. (29)  monic oscillator,) non of the orbits are ellipses. kor> 1

the orbits resemble ellipses compressed inghalirection,
Notice: there is no problem with the derivatigéthe poten-  for o < 1 the orbits resemble ellipses compressed inghe
tial at.S = 0, the potentials smooth there . The derivative direction. The value ofa — 1| gives us an idea of the degree
of the forcethough, is discontinious & = 0 for oscillators  of compression. In the limit whem — 0 (corresponding to a

with v < 1 (see Figs. 2 and 3.) free-falling bead ellastically bouncing at the origin) the orbits
The Lagrangian of the bead moving o gath can then  collapse into rectangles.
be written down: At the same time, the oscillators just presented (with the
. Mm,ao  MQ | oot exception ofa. = 1) aretruly nonlinear in the following
Ly(8,9) = 5(5) T a+1 |S51%7, (30)  sense: forr = 2n,n € N, the Maclaurin series dfs; con-
o o tains just one term, which is proportional &', and for any
along with its Hamiltonian: othera € RT the potential is not analytical in any neigh-
9 mQ bourhood around the minimui = 0. This precludes the
Hx(S,ps) = 5i + ?\SP“. (31)  possibility of a standard small oscillations treatment.
m [0
p

Let us pause for a moment and reflect in the following: by
definition, the generalized momentum associated Witk

0
= —L 32
Ps 95 =, (32)

which along with (30) gives
) - -0\ 5
Ps =m S k

Also, we have that the magnitude of the velocity of a bead
moving inany curve whatsoever is related with traveled the
arch-length through (4), so that the tepgy/2m is the kinetic
energy of the bead. This did not need to be so: if we had
derived a HamiltoniarH s (y, p,) the kinetical energy term FIGURE 6. The phase-space portrait of an harmonic oscillator,
would have been quite difficult to recognize. In this senseshowed for comparison.

the arch-length is the “natural” coordinate for a curve.

\
Y
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5. Conclusions

In the preceding pages we have presented a family of conser-

vative oscillators arising from Abel’'s mechanical problem.

This oscillators are amenable to a lagrangian treatment, as
the solutions of Abel's mechanical problem always result
in holonomic scleronomic constraints. We have produced

the exact period-to-amplitude relation (25), valid for all dis-

cussed cases. The oscillators turn out tdring/ nonlinear,
impervious to the usual perturbative treatment.

The material included in this paper may complement and
enrich any exposition of classical and/or analytical mechanacknowledgments

ics at university intermediate level as it:

R. MUNOZ AND G. FERNANDEZ-ANAYA

- Provides physically relevant, and fairly simple, exam-
ples of the use of lagrangian mechanics.

- Shows us that there are still interesting things to learn
in classical mechanics at a fairly elementary level.

- lllustrates the use of mathematical tools such as the
Laplace transform and the Gamma function in physi-
cal problems.

- Presents little known instances of conservative nonlin-The support of SNI-CONACYT (Mexico) is duly acknowl-
edged.

ear oscillators.
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