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The perturbation theory of dense fluids interacting according to an intermolecular potential represented as a linear combinations of m-
Yukawa functions, whose reference interaction is the hard-sphere potential, allows setting an equation of state in terms of tidlratio
corresponding species molecular sizes. In this work we deteriime solving numerically the non-linear equation that results from the
minimization of the system Helmholtz free energy. The resulting valuesasé density and temperature dependent, and are in quantitative
agreement with those from the development of Mansoori and Canfield. The proposed method also provides the compressibility factor of the
corresponding Lennard-Jones fluid, represented by the combination of a hard-sphere plus two Yukawa terms, in good agreement with the
available values from Monte Carlo simulations.
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La teoila de perturbaciones para sistemas densos permite obtener lsbacimestado de forma aftada para cuando la interaéei inter-
molecular de sus componentes es representada como una cobiireeal de potenciales tipo m-Yukawa y tomando como el potencial de
referencia una interadm de esfera dura. Dicha ecuaeide estado depende de ladazle los dametros caractesticos moleculares. En este
trabajo se determina esta tawde los dimetros empleando unatodo variacional. Esto significa que tomamos la cobdicie minimizadn

de la enert libre de Helmholtz con respecto a unfaetroh = R/o. Esta condidn da una ecuagn no lineal para el pametro, la cual

se resuelva nuéricamente. Las soluciones obtenidas muestran la dependentieedpecto a la temperatura reducida y de la densidad.
Nuestros resultados pakason comparables cualitativamente con los obtenidos por Monsoori y Canfield. a8denobtiene el factor de
compresibilidad para un fluido de esferas durds mos érminos Yukawa el cual representa un fluido tipo Lennard Jones, obtenemos un
buen acuerdo con los resultados de Monte Carlo.

Descriptores: Teoiia de perturbaciones;atnetros caractesticos; potencial efectivo.

PACS: 01.40.-d; 61.20.Gy

1. Introduction past century invoked the splitting of the total intermolecular
potential into one represented by a hard-sphere (as a refer-

Classical theories of fluids are based on the statistical me2c€) and the rforreshpon,d'ng perturr]batmn akround tr&e refer-
chanics ensemble formalism that allows the description of"¢®: Among these theories [1] we have Barker-Henderson's

the thermodynamic behavior of diverse systems [1,2]. Th BH) [4] ’apd Weeks-ChandIer-Anders'en’s [5].  Just re-
common denominator for all these theories is the need for aReNtY Gerin, [6] developed a perturbation approach for the

intermolecular potential to describe the particle interactiondn€'modynamic properties of hard-sphere fluids based on a

as well as the resulting correlation functions and thermodydouble-Yukawa potentiali.e., one repulsive and the other

namic properties of interest. A successful approximation fO'attracth, foIIowmgh.the first-order pe_rturr]ba:ct]on scc:jheme of
the description of these interactions models hinges around th@ﬂg f"ml Lu [7]. ,T IS appromma:}lon ISt € Irst order mean
splitting of the interactions into short- and long-range contri-Spde”%a a_lppLoxwrr:atlond(MSA)_, irst order mr)h_ﬁ’gge’c'
butions [1-5]. Typically, the first term is described in terms of ©"d Order in the thermodynamic properties. WhilesBa's
either a hard- or soft-sphere, involving always a dominant regaquatlon_ of state is analytp, it is parametric in the S|zg—rat|o ,
pulsive contribution to account properly for the ever-presentVNe€reZ is the ‘equivalent diameter’ or hard-sphere diameter
excluded volume effects [2]. The second term might include_(an cruglal parameter in any perturbathn approach), while
an attractive and a repulsive contribution because, accordin'a the distance at which the total potential becomes zero.
to the experimental evidence, the corresponding potential of 5 the one hand. the R parameter in BH's perturbation
mean force exhibits a non-periodic oscillatory radial depenypeqry is obtained from the integration of the Mayer func-
dence impossible to represent with just only one type of inyjon and thus, it depends on the temperature [4]. On the other
teraction. hand, Gérin's theory keeps a constant value\dfor the de-
Based on these observations, the first developments dermination of the thermodynamics properties of various sys-
the perturbation theory of fluids in the second half of thetems, whose predictions are in good agreement with the cor-
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responding Monte Carlo (MC) simulation counterparts, everwith
though the used values have no physical justification.

In the present work we start with the analytical results ag = M7
from Guérin, and after invoking the Gibbs-Bogolioubov (GB) (1—mn)?
condition, we determine the value afthat minimizes the oo
system’s Helmholtz free energy [8]. This procedure, that a; = Qﬂpg/go(r)u(r)ﬁdr
we call VMSA, results in an equation non-linear on the J

parameter, indicates thatdepends on the system density and
temperature as well on the intermolecular potential parameand

ters. The resulting thermodynamic properties from VMSA .

are in good agreement with those from MC simulations at 9

low and intermediate densities, while exhibiting significant 42 = 7Tpﬁ/gl(r)u(r)r dr (3)
deviations for high densities as expected for this kind of vari- g
ational approaches [9]. Moreover, the VMSA predictions are
similar to those of Mansoori-Canfield, while involving a sim-
pler calculation of the\ parameter [9,12].

In Eq. (3)7n is the packing facton.e., n = mpa3\3/6,

ag is the Helmholtz free energy from Carnahan-Starling (CS)
. , equation of state, while; andas are the first order pertur-

In Sec. 2 we present the relevant expressions @tiais a ! a2 P

. X bation terms whe is splitinto and , respec-
approach for the thermodynamic properties of the HSMY ﬂu'tively 9(r) P 90(r) 9i(r) P
ids and the variational approximation for theparameter; When we apply these equations to the MYHS poten-
while in Sec. 3 we apply our analytical results to illustrate the,. : . :
behavior of the\ with the system density and temperature, astlal the resulting expressions for the integralsrgf(r) and

well as the behavior of the isothermal compressibility for a’ 9 (") P&come [71:

real system. oo 00
Go(s) = /rgo(r)efsrdr Gi(s) = /Tgl(r)efsrdr 4)
2. Thermodynamic properties of HSMYF and R R
VMSA

Within the PY approximation, Wertheim [9] derived an

Let us consider a mono-disperse fluid whose effective poterﬁnalyﬂcal expression for ¢s) of hard-spheres of diameter

tial is represented by the hard-sphere interaction, HS, plus g.e,
linear combination of Yukawa terms (MYHS): . R?L(sR)es® )
0 =
u(r) = 0o, for r< Ao, (1a) (1 =n)*Q(sR)s*R?
and with
S(z) + 12nL(z)e”?
r —
u(r) =ep (;) =cp(z), when z>X (1b) Q(z) (1 —7)2z2
wherex = r/o andp(z) is given by: L(z) = <1 — g) z+1+4+2n
C . P
plz) = — 5" (1) exp[~ai(z — 1)] (1c) S(z) = (1 —n)*z°

2 2
In Egs. (1a-c) mis the number of Yukawa termsande +6n(1 —n)z= + 18n° — 12n(1 + 2n) (6)

are the size and energy parameters representing the inverse of
the range and the magnitude of the interactions, respectivel
A = R/o, whereR is the effective hard-sphere diameter,

Moreover, Tang and Lu derived the correspondingsp

g‘xpression for a mono-disperse fluid represented by an inter-

is defined by the condition =0 [6], and the constant c is gcnop potenpal that comprises two Yukawa terms (with |d_en-
tical interaction magnitude) and a hard-sphere core of diam-

determlne_d such that(z)=-1. . eter R [10]. However, the inclusion of different interaction
Following the recently proposed perturbation approach

by Tang and Lu, we expand the radial distribution functionamp“tuqIes fo_r the wo Yukawa terms¢2) with equal di- )
asg(r) = go + g1, where the first contribution is the radial ameter is straightforward, so that for that case we have that:
distribution function of the reference hard-sphere fluid, while R?Bkexp(—sR)

the second becomes the perturbation contribution [7]. Conse- Gi(s) = GR+QPGRIQ () (7)
quently, the Helmholtz free energy of the system can be split s 7 s K

into the following three terms [6]: From the previous expressions we can obtain the explicit

contributions to the reduced Helmholtz free energy, Eq. (2),
a=ao+ay+ay @) inthe following form [6]:
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12n ¢ cexp(a;(1-X)) L(a;\) of € \?
- (—1)* Zoo=a95—12
T i(=1) (N2 Q) (8a) 2= R (AT*)
i : (i)
¢ o (=1) (1) (1— ) ol
aijp = —127790(R)W21W i (8b) X |: 74( ) eXp[Oll( )] Q3(O51)\)
c \? (1)
asy = —677 ()\T*) X |:ZJ WKJ] (13d)
(=D epl(ei 4 o) (1= )] (8¢) WhereQ!, denotes the derivative @@ with respect ta.
"N+ ajd) Q% (i M) The compressibility factor given by Eq. (11) has an explicit
c \2 analytical form in terms of the intermolecular potential pa-
aze = 6n ( /\T*) rameters, with the exception ofthat should be determined

i through (at least) three possible routes [9,11,13]: by (i) using
% {Ei(_l)iexlo[ai(l - )\)]] [Zj (=1 ] (8d) Barker-Henderson equation, [4], (ii) invoking an expression
Q% (i) (a;A)2K; derived by Verlet and Weiss (VW), [13], and (iii) applying
where\ = R/o, T* — kyT/e, ks is the Boltzmann con- a variational method subject to the Gibbs Bogolioubov crite-

: ria, [8,9,12].
stant gndl“ s the absolute temperatu_re, whilz) andQ(;) The first method translates into the following expression
are given by the Eq. (6), and;Hs given by the following for \-
expression, '
1
Ki =1+ o) explai(l=A)] = (1+a)  (9) A= / [1 - e—@WDW)} dx (14)
The thermodynamic definition of the excess internal energy 0
is given by the expression: which means that the calculated value)ois explicitly de-
U _ yid 5 pendent on the system temperature, where the integration is
U= —— = gl (10)  performed numerically [6].
NksT ap The second route ta uses molecular simulation results

By differentiation of the Helmholtz free energy with re- and the BH theory to adjust the following expression, this
spect to density we obtain the corresponding compressibilitpdjusts was obtained by Verlet-Weis (VW) [13]:

factor Z,i.e, _0.3837 +1.068/T*

7 =Zo+ 71+ Zs (11) 0.42931.0/T*
From Eq. (15) becomes evident the temperature depen-

dence of the\ parameter. Even though Eq. (15) was derived
l+n+n2—1np from the BH perturbation terms, there is a significant differ-

= (1_—77)3 ence between the behavior of this expression and that from

the BH (first) routej.e,, in that the slopes of the correspond-

and invoking the following relationship, ing curves are convex for the VW [13] and concave for the

(aiy) BH [4] routes, respectively. Note also that in both routes the

— (12)  reduced diameter decreases with increasing temperature, and
9 A does not depend on the system density [4,13].

we have that: The third method, the so-called VMSA involves the min-

imization of the Helmholtz free energy with respect\taus-

ingn = mp*A3/6. From Egs. (2) and (8a-d) the Helmholtz

(15)

WhereZ, is given by the Carnahan - Starling:

Zy

Zi =2y + Zip, Zij=n

Zii=a1,+12n> ¢ - Ei(fl)i%(l;)‘)] free energy can be considered as a density functional so that
AT C the minimization condition can be written as:
a;\(5+n)/2+2(2+ L(a; )@ (i)
|: ( 7])3/ ( 77) o 5 772 : (133) % _ 0 (16)
(1-1)3Q(a;A) (1=n)?Q*(i)) N/ .
5+n ¢ (1) - - :
= — 6n2 ) . and consequently, in the alternative form:
P2 = 2 = O 3 S i e (13) ety
c )’ (%), (5),... (3)
_ 2 i+ aN a_ AN
Za1 = az1 + 127 ()\T*) 2, (—=1) ON) e M) e e NON) e e
i 1=\ ! Oél)\ aiN)Q (oA da 3z
expllantan) (V)] (@R g _ <m) 2y 17)
(Oéi/\+04j)\> Q (Ozz)\)Q (Ozj)\) n,T*
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FIGURE 2. Reduced density dependence of the paramketfar
several reduced temperatures according to the numerical solution
of Eq. (17).

FIGURE 1. Temperature dependence of the reduced diamefier
px = 0.5 from the numerical solution of Eq. (17).

The explicit form of Eq. (17) can be obtained by invok-
ing Egs. (2) and (11) after a lengthy algebraic manipulation ]
whose result is a non-linear expression for thparameter 61
and explicit in the system density and the potential param- 5
eters. Because the non-linearity of equation (18), con-
taining exponentials and polynomials terms)\gfthe choice
of the physically meaningful root is based on the fact that

here we use the hard-sphere fluid as our perturbation referN 2- =274

ence, and consequently, the root to chose is that closest tc 1 /'///T*= 135

one. However, in practice this is not an issue because there i o) \s\\\ _,//'/5 )

only one root that satisfies the non-linear equation. Notealso | . — = T=1—

that neither Egs. (16)-(17) nor the general expressions for the '] \

free energy and compressibility factors contains restrictions -2 . T8

for the size of this rooti.e, A > 1 or A < 1. Note however sl . . . . . _ .
that the restrictions for the characteristic particles diameters 02 04 06 08
in the system have been discussed bg@Bu[6]. p=po

FIGURE 3. Reduced density dependence of the compressibility fac-
tor along several isotherms for a HS-2Yuk, with the parameters in-
3. Results dicated in the text, we used the results obtained from Eq. (17).

In this work we apply the new approach to the study of fluidsand Canfield, [9], who used a similar variational method,
interacting with a hard-sphere plus a double Yukawa poteneven though, applied to a rather different free energy expres-
tial, i.e,, sion through a more involved procedure for the determination
c _ of A\. In contrast to the variational development of Mansoori
u(r) = ep(z) =e—"(—1)" exp[—a;(x —1)]  (18)  and Canfield [9], the strong isothermal density dependence
x of the parameteh in our results originates in the use of the
for which we have results from literature for comparison pur-perturbation theory of Tang and Lu, which hinges around the
poses [6,12]. In Fig. 1 we plot the solution of Eq. (17) asexpansion of the radial distribution function.
a function of the system temperature far = 2 along the In Fig. 3 we display the density dependence of the com-
reduced isochorex = 0.5, for a fluid represented by an pressibility factor along several reduced temperatures for a
effective Lennard - Jones potential, where the perturbatio2-Yukawa fluid with parameters representing a HS+LJ po-
involves the parameters; = 2.6509, as = 14.8105 and tential, [11].
¢ = 2.0053 [6,14]. According to this figure, the dependence  In Fig. 4 we compare the predicted reduced density de-
of A at low densities exhibits a slope similar to that predictedpendence of the compressibility factor for the same system
by BH, however, as the density is increased the fluid behavess in Figs. 2-3, along the isothefftt = 1.35, against Monte
as that described by Verlet - Weiss [13] Carlo simulation results [12].
In Fig. 2 we plot the density dependence)ofparame- From these figures we can conclude that the proposed
terized’' by the system’s reduced temperature. Note that theariational approach provides quantitative agreement with
observed behavior is similar to that predicted by MansooriMonte Carlo simulation predictions within a range of fluid
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4. Conclusions

The thermodynamic properties of a fluid represented as a
hard-sphere plus an m-Yukawa type perturbation were ex-
pressed in terms of thé parameter, which is determined

by the VMSA theory. The resulting values indicate that

they have a significant dependence on the system density and

: temperature; and are quantitatively in agreement with those

24 from the perturbation theory of Barker and Henderson at low

/ densities, while at higher densities they follow the functional

S P dependence of Verlet-Weiss theory.

' The proposed VMSA approach differs from the other two

previously mentioned theories in that the resultihgaram-

00 02 04 _ 06 o8 10 eter depends not only on the system density and tempera-
P ture, but also on the potential parameters defining the model.

FIGURE 4. Comparison between the prediction based on Eq. (17)In this sense, our apprOX|_mat|9n Is ‘more Compl_ete’ than the
(solid line) and Monte Carlo simulation results (points, [12]) for others because the effective diameter representing the system

the reduced density dependence of the isothermal compressibility. Must depend on the system thermodynamic (temperature and
density) state conditions. Therefore, we can also use equa-

densities. However, there are obvious significant deviation§0ns of state for the description of the reference fluid other

at higher densities, whose origin must be investigated to finghan the Carnahan-Starling (seg, Ref. 12).

ways to overcome the deficienciesg, either through the Finally, we could claim that the proposed approach com-

modification of the hard-sphere contribution to the compressPletes formally the results from @un as well as Tang and

ibility factor or by introducing a higher order perturbation as LU for the thermodynamic properties of a fluid represented as

already attempted elsewhere [12]. We should highlight thaf hard-sphere plus m-Yukawa tails [6,7].

Fig. 1 shows the expected temperature dependence for the

parameter), while Fig. 2 indicates that the density effect Acknowledgements
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for the VMSA approximation [7]. Note that this high-density

behavior is typical for variational approximations [9,11]. In
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