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Thermodynamic properties of simple multi-Yukawa fluids:
a variational approach
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The perturbation theory of dense fluids interacting according to an intermolecular potential represented as a linear combinations of m-
Yukawa functions, whose reference interaction is the hard-sphere potential, allows setting an equation of state in terms of the ratioλ of the
corresponding species molecular sizes. In this work we determineλ by solving numerically the non-linear equation that results from the
minimization of the system Helmholtz free energy. The resulting values ofλ are density and temperature dependent, and are in quantitative
agreement with those from the development of Mansoori and Canfield. The proposed method also provides the compressibility factor of the
corresponding Lennard-Jones fluid, represented by the combination of a hard-sphere plus two Yukawa terms, in good agreement with the
available values from Monte Carlo simulations.

Keywords: Perturbation theory; characteristic diameters; effective potential.

La teoŕıa de perturbaciones para sistemas densos permite obtener la ecuación de estado de forma analı́tica para cuando la interacción inter-
molecular de sus componentes es representada como una combinación lineal de potenciales tipo m-Yukawa y tomando como el potencial de
referencia una interacción de esfera dura. Dicha ecuación de estado depende de la razón de los díametros caracterı́sticos moleculares. En este
trabajo se determina esta razón de los díametros empleando un método variacional. Esto significa que tomamos la condición de minimizacíon
de la enerǵıa libre de Helmholtz con respecto a un parámetroλ = R/σ. Esta condicíon da una ecuación no lineal para el parámetro, la cual
se resuelva nuḿericamente. Las soluciones obtenidas muestran la dependencia deλ respecto a la temperatura reducida y de la densidad.
Nuestros resultados paraλ son comparables cualitativamente con los obtenidos por Monsoori y Canfield. Además se obtiene el factor de
compresibilidad para un fluido de esferas duras más dos t́erminos Yukawa el cual representa un fluido tipo Lennard Jones, obtenemos un
buen acuerdo con los resultados de Monte Carlo.

Descriptores: Teoŕıa de perturbaciones; diámetros caracterı́sticos; potencial efectivo.

PACS: 01.40.-d; 61.20.Gy

1. Introduction

Classical theories of fluids are based on the statistical me-
chanics ensemble formalism that allows the description of
the thermodynamic behavior of diverse systems [1,2]. The
common denominator for all these theories is the need for an
intermolecular potential to describe the particle interactions
as well as the resulting correlation functions and thermody-
namic properties of interest. A successful approximation for
the description of these interactions models hinges around the
splitting of the interactions into short- and long-range contri-
butions [1-5]. Typically, the first term is described in terms of
either a hard- or soft-sphere, involving always a dominant re-
pulsive contribution to account properly for the ever-present
excluded volume effects [2]. The second term might include
an attractive and a repulsive contribution because, according
to the experimental evidence, the corresponding potential of
mean force exhibits a non-periodic oscillatory radial depen-
dence impossible to represent with just only one type of in-
teraction.

Based on these observations, the first developments on
the perturbation theory of fluids in the second half of the

past century invoked the splitting of the total intermolecular
potential into one represented by a hard-sphere (as a refer-
ence) and the corresponding perturbation around the refer-
ence. Among these theories [1] we have Barker-Henderson’s
(BH) [4] and Weeks-Chandler-Andersen’s [5]. Just re-
cently Gúerin, [6] developed a perturbation approach for the
thermodynamic properties of hard-sphere fluids based on a
double-Yukawa potential,i.e., one repulsive and the other
attractive, following the first-order perturbation scheme of
Tang and Lu [7]. This approximation is the first order mean
spherical approximation (MSA), first order ing(r), but sec-
ond order in the thermodynamic properties. While Guérin’s
equation of state is analytic, it is parametric in the size-ratio ,
whereR is the ‘equivalent diameter’ or hard-sphere diameter
(an crucial parameter in any perturbation approach), whileσ
is the distance at which the total potential becomes zero.

On the one hand, the R parameter in BH’s perturbation
theory is obtained from the integration of the Mayer func-
tion, and thus, it depends on the temperature [4]. On the other
hand, Gúerin’s theory keeps a constant value ofλ for the de-
termination of the thermodynamics properties of various sys-
tems, whose predictions are in good agreement with the cor-
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responding Monte Carlo (MC) simulation counterparts, even
though the usedλ values have no physical justification.

In the present work we start with the analytical results
from Gúerin, and after invoking the Gibbs-Bogolioubov (GB)
condition, we determine the value ofλ that minimizes the
system’s Helmholtz free energy [8]. This procedure, that
we call VMSA, results in an equation non-linear on theλ-
parameter, indicates thatλ depends on the system density and
temperature as well on the intermolecular potential parame-
ters. The resulting thermodynamic properties from VMSA
are in good agreement with those from MC simulations at
low and intermediate densities, while exhibiting significant
deviations for high densities as expected for this kind of vari-
ational approaches [9]. Moreover, the VMSA predictions are
similar to those of Mansoori-Canfield, while involving a sim-
pler calculation of theλ parameter [9,12].

In Sec. 2 we present the relevant expressions of Guérin’s
approach for the thermodynamic properties of the HSMY flu-
ids and the variational approximation for theλ parameter;
while in Sec. 3 we apply our analytical results to illustrate the
behavior of theλ with the system density and temperature, as
well as the behavior of the isothermal compressibility for a
real system.

2. Thermodynamic properties of HSMYF and
VMSA

Let us consider a mono-disperse fluid whose effective poten-
tial is represented by the hard-sphere interaction, HS, plus a
linear combination of Yukawa terms (MYHS):

u(r) = ∞, for r < λσ, (1a)

and

u(r) = εϕ
( r

σ

)
= εϕ(x), when x > λ (1b)

wherex = r/σ andϕ(x) is given by:

ϕ(x) =
c

x
Σm

i (−1)i exp[−αi(x− 1)] (1c)

In Eqs. (1a-c) m is the number of Yukawa terms,αi andε
are the size and energy parameters representing the inverse of
the range and the magnitude of the interactions, respectively,
λ = R/σ, whereR is the effective hard-sphere diameter,σ
is defined by the condition u(σ)=0 [6], and the constant c is
determined such thatϕ(x)=-1.

Following the recently proposed perturbation approach
by Tang and Lu, we expand the radial distribution function
asg(r) = g0 + g1, where the first contribution is the radial
distribution function of the reference hard-sphere fluid, while
the second becomes the perturbation contribution [7]. Conse-
quently, the Helmholtz free energy of the system can be split
into the following three terms [6]:

a = a0 + a1 + a2 (2)

with

a0 =
4η − 3η2

(1− η)2
,

a1 = 2πρβ

∞∫

σ

g0(r)u(r)r2dr

and

a2 = πρβ

∞∫

σ

g1(r)u(r)r2dr (3)

In Eq. (3)η is the packing factor,i.e., η = πρσ3λ3/6,
a0 is the Helmholtz free energy from Carnahan-Starling (CS)
equation of state, whilea1 anda2 are the first order pertur-
bation terms wheng(r) is split intog0(r) andg1(r), respec-
tively.

When we apply these equations to the MYHS poten-
tial the resulting expressions for the integrals ofrg0(r) and
rg1(r) become [7]:

G0(s) =

∞∫

R

rg0(r)e−srdr G1(s) =

∞∫

R

rg1(r)e−srdr (4)

Within the PY approximation, Wertheim [9] derived an
analytical expression for G0(s) of hard-spheres of diameter
R, i.e.,

G0 =
R2L(sR)esR

(1− η)2Q(sR)s2R2
(5)

with

Q(z) =
S(z) + 12ηL(z)e−z

(1− η)2z3

L(z) =
(
1− η

2

)
z + 1 + 2η

S(z) = (1− η)2z3

+ 6η(1− η)z2 + 18η2 − 12η(1 + 2η) (6)

Moreover, Tang and Lu derived the corresponding G1(s)
expression for a mono-disperse fluid represented by an inter-
action potential that comprises two Yukawa terms (with iden-
tical interaction magnitude) and a hard-sphere core of diam-
eterR [10]. However, the inclusion of different interaction
amplitudes for the two Yukawa terms (m=2) with equal di-
ameter is straightforward, so that for that case we have that:

G1(s) =
R2βk exp(−sR)

(sR + γ)Q2(sR)Q2(γ)
. (7)

From the previous expressions we can obtain the explicit
contributions to the reduced Helmholtz free energy, Eq. (2),
in the following form [6]:
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a11=
12η

(1−η)2
c

λT ∗
Σi(−1)i exp(αi(1−λ))

(αiλ)2
L(αiλ)
Q(αiλ)

(8a)

a12 = −12ηg0(R)
c

λT ∗
Σi

(−1)i

(αiλ)2
Ki (8b)

a21 = −6η
( c

λT ∗

)2

× Σi,j
(−1)i+j

(αiλ + αjλ)
exp[(αi + αj)(1− λ)]

Q2(αiλ)
(8c)

a22 = 6η
( c

λT ∗

)2

×
[
Σi(−1)i exp[αi(1− λ)]

Q2(αiλ)

] [
Σj

(−1)j

(αjλ)2Kj

]
(8d)

whereλ = R/σ, T ∗ = kBT/ε, kB is the Boltzmann con-
stant andT is the absolute temperature, whileL(z) andQ(z)
are given by the Eq. (6), and Ki is given by the following
expression,

Ki = (1 + αiλ) exp[αi(1− λ)]− (1 + αi) (9)

The thermodynamic definition of the excess internal energy
is given by the expression:

u =
U − U id

NkBT
= β

∂a

∂β
(10)

By differentiation of the Helmholtz free energy with re-
spect to density we obtain the corresponding compressibility
factor Z,i.e.,

Z = Z0 + Z1 + Z2 (11)

WhereZ0 is given by the Carnahan - Starling:

Z0 =
1 + η + η2 − η3

(1− η)3

and invoking the following relationship,

Zi = Zi1 + Zi2, Zij = η
∂(aij)

∂η
(12)

we have that:

Z11=a11+12η2 c

λT ∗
Σi(−1)i exp[αi(1−λ)]

(αiλ)2

×
[
αiλ(5+η)/2+2(2+η)

(1−η)3Q(αiλ)
− L(αiλ)Q′η(αiλ)

(1− η)2Q2(αiλ)

]
(13a)

Z12 = a12 − 6η2 5 + η

(1− η)3
c

λT ∗
Σi

(−1)i

(αiλ)2
Ki (13b)

Z21 = a21 + 12η2
( c

λT ∗

)2

Σi,j(−1)i+j

×exp[(αi+αj)(1−λ)]
(αiλ+αjλ)

Q′η(αiλ)Q(αjλ)Q′η(αjλ)
Q3(αiλ)Q3(αjλ)

(13c)

Z22=a22−12η2
( c

λT ∗

)2

×
[
Σi(−1)i exp[αi(1−λ)]

Q′
η(αiλ)

Q3(αiλ)

]

×
[
Σj

(−1)j

(αjλ)2
Kj

]
(13d)

WhereQ′η denotes the derivative ofQ with respect toη.
The compressibility factor given by Eq. (11) has an explicit
analytical form in terms of the intermolecular potential pa-
rameters, with the exception ofλ that should be determined
through (at least) three possible routes [9,11,13]: by (i) using
Barker-Henderson equation, [4], (ii) invoking an expression
derived by Verlet and Weiss (VW), [13], and (iii) applying
a variational method subject to the Gibbs Bogolioubov crite-
ria, [8,9,12].

The first method translates into the following expression
for λ:

λ =

1∫

0

[
1− e−βεϕDY (x)

]
dx (14)

which means that the calculated value ofλ is explicitly de-
pendent on the system temperature, where the integration is
performed numerically [6].

The second route toλ uses molecular simulation results
and the BH theory to adjust the following expression, this
adjusts was obtained by Verlet-Weis (VW) [13]:

λ =
0.3837 + 1.068/T ∗

0.42931.0/T ∗
(15)

From Eq. (15) becomes evident the temperature depen-
dence of theλ parameter. Even though Eq. (15) was derived
from the BH perturbation terms, there is a significant differ-
ence between the behavior of this expression and that from
the BH (first) route,i.e., in that the slopes of the correspond-
ing curves are convex for the VW [13] and concave for the
BH [4] routes, respectively. Note also that in both routes the
reduced diameter decreases with increasing temperature, and
λ does not depend on the system density [4,13].

The third method, the so-called VMSA involves the min-
imization of the Helmholtz free energy with respect toλ, us-
ing η = πρ∗λ3/6. From Eqs. (2) and (8a-d) the Helmholtz
free energy can be considered as a density functional so that
the minimization condition can be written as:

(
∂a

∂λ

)

ρ∗,T∗
= 0 (16)

and consequently, in the alternative form:
(

∂a

∂λ

)

η,T∗
+

(
∂a

∂η

)

ρ∗,T∗

(
∂η

∂λ

)

ρ∗,T∗

=
(

∂a

∂λ

)

η,T∗
+

3z

λ
= 0 (17)
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FIGURE 1. Temperature dependence of the reduced diameterλ for
ρ∗ = 0.5 from the numerical solution of Eq. (17).

The explicit form of Eq. (17) can be obtained by invok-
ing Eqs. (2) and (11) after a lengthy algebraic manipulation
whose result is a non-linear expression for theλ parameter
and explicit in the system density and the potential param-
eters. Because the non-linearity of equation (17),i.e., con-
taining exponentials and polynomials terms ofλ, the choice
of the physically meaningful root is based on the fact that
here we use the hard-sphere fluid as our perturbation refer-
ence, and consequently, the root to chose is that closest to
one. However, in practice this is not an issue because there is
only one root that satisfies the non-linear equation. Note also
that neither Eqs. (16)-(17) nor the general expressions for the
free energy and compressibility factors contains restrictions
for the size of this root,i.e., λ > 1 or λ < 1. Note however
that the restrictions for the characteristic particles diameters
in the system have been discussed by Guérin [6].

3. Results

In this work we apply the new approach to the study of fluids
interacting with a hard-sphere plus a double Yukawa poten-
tial, i.e.,

u(r) = εϕ(x) = ε
c

x
Σm

i (−1)i exp[−αi(x− 1)] (18)

for which we have results from literature for comparison pur-
poses [6,12]. In Fig. 1 we plot the solution of Eq. (17) as
a function of the system temperature form = 2 along the
reduced isochoreρ∗ = 0.5, for a fluid represented by an
effective Lennard - Jones potential, where the perturbation
involves the parametersα1 = 2.6509, α2 = 14.8105 and
c = 2.0053 [6,14]. According to this figure, the dependence
of λ at low densities exhibits a slope similar to that predicted
by BH, however, as the density is increased the fluid behaves
as that described by Verlet - Weiss [13]

In Fig. 2 we plot the density dependence ofλ ‘parame-
terized’ by the system’s reduced temperature. Note that the
observed behavior is similar to that predicted by Mansoori

FIGURE 2. Reduced density dependence of the parameterλ for
several reduced temperatures according to the numerical solution
of Eq. (17).

FIGURE 3. Reduced density dependence of the compressibility fac-
tor along several isotherms for a HS-2Yuk, with the parameters in-
dicated in the text, we used the results obtained from Eq. (17).

and Canfield, [9], who used a similar variational method,
even though, applied to a rather different free energy expres-
sion through a more involved procedure for the determination
of λ. In contrast to the variational development of Mansoori
and Canfield [9], the strong isothermal density dependence
of the parameterλ in our results originates in the use of the
perturbation theory of Tang and Lu, which hinges around the
expansion of the radial distribution function.

In Fig. 3 we display the density dependence of the com-
pressibility factor along several reduced temperatures for a
2-Yukawa fluid with parameters representing a HS+LJ po-
tential, [11].

In Fig. 4 we compare the predicted reduced density de-
pendence of the compressibility factor for the same system
as in Figs. 2-3, along the isothermT ∗ = 1.35, against Monte
Carlo simulation results [12].

From these figures we can conclude that the proposed
variational approach provides quantitative agreement with
Monte Carlo simulation predictions within a range of fluid
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FIGURE 4. Comparison between the prediction based on Eq. (17)
(solid line) and Monte Carlo simulation results (points, [12]) for
the reduced density dependence of the isothermal compressibility.

densities. However, there are obvious significant deviations
at higher densities, whose origin must be investigated to find
ways to overcome the deficiencies,e.g., either through the
modification of the hard-sphere contribution to the compress-
ibility factor or by introducing a higher order perturbation as
already attempted elsewhere [12]. We should highlight that
Fig. 1 shows the expected temperature dependence for the
parameterλ, while Fig. 2 indicates that the density effect
on λ becomes stronger with increasing density. Moreover,
at densitiesρ∗ > 0.85 Tang-Lu theory fails to predict accu-
rately the fluid thermodynamic properties, and consequently,
this condition can be used to establish the limit of validity
for the VMSA approximation [7]. Note that this high-density
behavior is typical for variational approximations [9,11]. In
fact, there is a paper related to the content of the present
manuscript, but It is somewhat different, [16].

4. Conclusions

The thermodynamic properties of a fluid represented as a
hard-sphere plus an m-Yukawa type perturbation were ex-
pressed in terms of theλ parameter, which is determined
by the VMSA theory. The resultingλ values indicate that
they have a significant dependence on the system density and
temperature; and are quantitatively in agreement with those
from the perturbation theory of Barker and Henderson at low
densities, while at higher densities they follow the functional
dependence of Verlet-Weiss theory.

The proposed VMSA approach differs from the other two
previously mentioned theories in that the resultingλ param-
eter depends not only on the system density and tempera-
ture, but also on the potential parameters defining the model.
In this sense, our approximation is ‘more complete’ than the
others because the effective diameter representing the system
must depend on the system thermodynamic (temperature and
density) state conditions. Therefore, we can also use equa-
tions of state for the description of the reference fluid other
than the Carnahan-Starling (seee.g., Ref. 12).

Finally, we could claim that the proposed approach com-
pletes formally the results from Guérin as well as Tang and
Lu for the thermodynamic properties of a fluid represented as
a hard-sphere plus m-Yukawa tails [6,7].
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