
ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 57 (1) 87–95 JUNIO 2011

Surface electric current distributions on spheres and spheroids as
sources of pure quadrupole magnetic fields

L. Medina
Facultad de Ciencias, Universidad Nacional Autónoma de Ḿexico.
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Neutral atom magnetic traps and nuclear magnetic resonance imaging require internal regions with constant gradient magnetic induction
fields, which are identified as pure quadrupole fields. This contribution starts from such fields in the interior of spheres and spheroids
in cartesian coordinates, identifying immediately their respective scalar magnetic potentials. Next, the corresponding potentials inside and
outside are constructed using spherical and spheroidal harmonic functions, respectively, except for a proportionality constant to be determined
by the boundary conditions at the surface of spheresr = a, prolateξ = ξ0 and oblateζ = ζ0 spheroids, where the electric current sources
are distributed. The negative gradients of the scalar potentials yield the respective magnetic induction fields inside (r ≤ a, ξ ≤ ξ0, ζ ≤ ζ0)
and outside (r ≥ a, ξ ≥ ξ0, ζ ≥ ζ0). Gauss’s law in its boundary condition form determines the normalization constant of the external
potentials, while Ampere’s law determines the electric current source distributions on the surface of the spheres and spheroids.

Keywords: Quadrupole magnetic fields and surface sources; constant gradient magnetic field; gradient coil windings; spherical and
spheroidal harmonics.

Trampas déatomos neutros e imageneologı́a por resonancia magnética requieren de regiones internas con campos de inducción magńetica de
gradiente constante. Esta contribución parte de tales campos en el interior de esferas y esferoides en coordenadas cartesianas, identificando
inmediatamente sus respectivos potenciales magnéticos escalares. A continuación, los potenciales interiores y exteriores correspondientes
se construyen usando funciones armónicas esf́ericas y esferoidales, respectivamente, excepto por una constante de proporcionalidad por
determinarse v́ıa las condiciones de frontera sobre la superficie de esferasr = a, esferoides prolatosξ = ξ0 y oblatosζ = ζ0, donde
las fuentes de corriente eléctricas se distribuyen. Los negativos de los gradientes de los potenciales escalares conducen a los campos de
induccíon magńetica respectivos en el interior (r ≤ a, ξ ≤ ξ0, ζ ≤ ζ0) y en el exterior (r ≥ a, ξ ≥ ξ0, ζ ≥ ζ0). La ley de Gauss en su forma
de condicíon de frontera determina la constante de normalización para los potenciales externos, mientras que la ley de Ampère determina las
distribuciones de corriente eléctrica sobre la superficie de las esferas y esferoides.

Descriptores:Campos magńeticos y fuentes superficiales cuadrupolares; campos magnético de gradiente constante; embobinados de gradi-
ente; arḿonicos esf́ericos y esferoidales.

PACS: 41.20.Gz

1. Introduction

The question “Which coil windings with electric currents and
on which surfaces will produce constant gradient magnetic
fields?” formulates the problem of interest in this article. An
exact answer is expressed in the proper magnetostatic mathe-
matical language in its Title; with a summary of the hypothe-
sis and method for the quantitative construction of its answer
in the Abstract; a detailed analysis of the successive steps in
the respective sections of the article, including the illustrative
graphic results of Fig. 1 for the coil windings on a sequence
of prolate spheroids, spheres and oblate spheroids, produc-
ing pure quadrupole fields inside and outside; an Appendix
leading the reader from the coordinate transformations to the
needed spheroidal harmonic funtions; and a discussion of the
contents with didactic observations.

The problem itself has been of interest in different fields
of basic science and of its applications. Here the illustration
is restricted to its relevance in neutral atom traps [1] and nu-
clear magnetic resonance imaging [2]. In fact, Ref. 1 with
the title “Magnetostatic traps for charged and neutral parti-

cles” analyzes the dynamics of cold neutral atoms and their
loss mechanisms in a quadrupole magnetostatic trap. The
complementary use of three pairs of converging and mutu-
ally orthogonal laser beams in a magneto-optic trap, MOT,
was behind the investigations of Chu, Cohen-Tannoudji and
Williams recognized by the Nobel Prize in Physics 1997 [3]
“for development of methods to cool and trap atoms with
laser light”, and of Cornell, Ketterle and Wieman who shared
the same prize in 2001 [4] “for the achievement of Bose-
Einstein condensation in dilute gases of alkali atoms and for
early fundamental studies of the properties of the conden-
sates”. Related advances in other fields of physics include
lowering the achievable and measurable temperatures from
microkelvins to nanokelvins, producing atom interferometry,
and atom lasers. By the same token, the Nobel Prize in Phys-
iology or Medicine 2003 [5] was awarded to Lauterbur and
Mansfield for their discoveries concerning “magnetic reso-
nance imaging”. Specifically, in the early 1970’s Lauterbur
discovered the possibility to create a two-dimensional picture
by introducing constant gradients in the magnetic field; and
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Mansfield discovered that the use of such gradients gave sig-
nals that rapidly and effectively could be analyzed and trans-
formed to an image, and he also showed how extremely rapid
imaging could be achieved by very fast gradient variations.
By 2003 more that 60 million investigations with MRI per
year were performed worldwide. Reference 2, with the ti-
tle “Theory of Gradient Coil Design Methods for Magnetic
Resonance Imaging”, focuses on the importance of constant
gradient magnetic fields as the necessary condition to per-
form space localization of the magnetic resonance signals.
It is a very recent review on the methods to design gradient
coils developed in the last two decades; some of its references
illustrating the latest methods of design for cylindrical [6],
hemispherical [7-8], planar [9-10], and open geometries [11]
are cited as points of comparison. It also recognizes that the
search for the optimum coil windings is still an open one.

The reader is advised that this is a teaching article in mag-
netostatics providing an answer to the opening question in
this section. The answer for spheres is implicit in an ear-
lier teaching article “The multipole expansion outside and in-
side”, covering the electrostatic and magnetostatic situations
-inlcuding magnetic vector and scalar potentials- and giving
examples of traps for charged particles and for neutral parti-
cles with a magnetic dipole moment [12]. The general theo-
rem:2`- multipole fields inside and outside a sphere are pro-
duced by2`- multipole sources on the surface of the sphere,
applied to the special case of`=2, gives the explicit answer
for the quadrupole magnetic fields and sources in a sphere.
Next, the answers for the prolate and oblate spheroids are
constructed step by step.

The quadrupole nature of the magnetic field is based on
the following reasoning. Since it is a constant gradient field,
it must be a linear function in the x,y,z coordinates. Conse-
quently, it is derivable from a quadratic potential in the same
coordinates with̀ =2. The potential may be chosen at will
as a scalar potential or a vector potential [12-15]. In fact, in-
side and outside the spheroids the magnetic induction field
is solenoidal and irrotational, allowing it to be expressed in
the alternative formsBR = ∇ × ~AR or ~BR = −∇φR for
R = i, e the internal and external regions, respectively. Both
potentials statisfy the Laplace equation and therefore must
be harmonic functions, with multipolaritỳ=2 in the specific
case under discussion. Here we choose the scalar potential
because its use is familiar to most readers.

In this article, we take as the starting point the following
target constant gradient magnetic induction fields, with a gra-
dient parameterG, in the interior of spheres and spheroids:

~Bi (~r) = G
(
−îx− ĵy + 2k̂z

)
, (1.1)

~Bi (~r) = G
(
îz + k̂x

)
, (1.2)

~Bi (~r) = G
(
ĵz + k̂y

)
, (1.3)

~Bi (~r) = G
(
−îx + ĵy

)
, (1.4)

~Bi (~r) = G
(
−îx + ĵy

)
, (1.4)

~Bi (~r) = G
(
îy + ĵx

)
. (1.5)

The reader may easily ascertain that they are solenoidal
∇ · ~B = 0, curl-less∇× ~B = 0, and consequently harmonic
∇2 ~B = 0 [12-15].

The problem of our interest is to evaluate the electric cur-
rent distributions or coil windings, on the surfaces of spheres
r = a, prolateξ = ξ0 and oblateζ = ζ0 spheroids, that may
generate the magnetic induction fields in Eqs. (1.1-1.5).

The first step is to recognize that the following scalar
magnetic potentials:

φi (~r) =
1
2
G

(
x2 + y2 − 2z2

)
, (1.6)

φi (~r) = −Gxz, (1.7)

φi (~r) = −Gyz, (1.8)

φi (~r) =
1
2
G

(
x2 − y2

)
, (1.9)

φi (~r) = −Gxy. (1.10)

lead to the respective magnetic induction fields of Eqs. (1.1-
1.5) via ~B = −∇φ. The reader may also establish the har-
monic character of the potentials by evaluating∇2φ = 0, and
that their degreè=2 determines its quadrupole character.

In Sec. 2, the internal magnetic potentials of Eqs. (1.6-
1.10) are rewritten in terms of spherical and spheroidal har-
monic functions with̀ =2, i.e. quadrupole harmonics, with
m=0, 1, 2 involvingcos(mϕ) and sin(mϕ) functions with
well-defined parities. The Appendix contains the transforma-
tion equations among cartesian, prolate and oblate spheroidal
coordinates; their scale factors and unit vectors; the Laplace
operator, the Laplace equation, and its solutions in the respec-
tive coordinates. The scalar magnetic potentials outside the
spheroids are constructed from the inside ones with the re-
placements of Legendre polynomials by Legendre functions
of the second kind, regular at infinity,P `

m (ξ) → Q`
m (ξ) and

P `
m (iζ) → Q`

m (iζ), respectively, and a proportionality fac-
tor to be determined by the continuity of the normal deriva-
tives at the surface of the spheroidsξ = ξ0 and ζ = ζ0.
In the case of spheres the corresponding radial factors are
r2/a3 → a2/r3 [12].

In Sec. 3, the evaluation of the negative gradient of the
potentials yields the respective magnetic induction fields in-
side and outside the spheres and spheroids. Gauss’s law in
its boundary condition form requires that the normal compo-
nents are continuouŝn ·

(
~Be − ~Bi

)
= 0 at r = a, ξ = ξ0

and ζ = ζ0, corresponding to the non existence of mag-
netic charges. On the other hand, Ampere’s law connects
the discontinuities in the tangential components with the sur-
face electric current distribution,̂n×

(
~Be − ~Bi

)
= 4π ~K/c

in Sec. 4. The field lines for the electric current per unit
length ~K on the spheres and spheroids are also evaluated in
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Sec. 4, and displayed graphically and discussed in Sec. 5;
some didactic observations and additional references are also
included in the last section.

2. Scalar magnetic potentials inside and out-
side

The scalar magnetic potentials in Eqs. (1.6-1.10) and the
quadrupole spheroidal harmonic functions of Eqs. (A.18-
A.23) are recognized to have the same space dependencies
when the transformation Eqs. (A.1) are used. Here we rewrite
them in the general compact forms:

φm
2 (r < a, ϑ, ϕ)=Bi

0

r2

a
Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
,

φm
2 (ξ < ξ0, ϑ, ϕ)=Bi

0fPm
2 (ξ) Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
, (2.1)

φm
2 (ζ < ζ0, ϑ, ϕ)=Bi

0fPm
2 (iζ)Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
,

in the spherical, prolate and oblate spheroidal coordinates for
the interior of the respective spheres and spheroids,r = a,
ξ = ξ0 and ζ = ζ0. Instead of theG coefficient in
Eqs. (1.1-1.10) as a measure of the constant gradient of the

magnetic induction fields, we introduce theBi
0 coefficient as

a measure of the strength of the field itself. From here on both
functionscos (mϕ) andsin (mϕ) are treated at the same time
and on the same footing.

The companion potentials for the exterior are written
next by using an appropriateBe

0 strength coefficient, and the
replacementsr2/a3 → a2/r3 [12], Pm

2 (ξ) → Qm
2 (ξ), and

Pm
2 (iζ) → Qm

2 (iζ), Eqs. (A.24), guaranteeing that the po-
tentials vanish forr →∞, ξ →∞, andζ →∞:

φm
2 (r ≥ a, ϑ, ϕ) = Be

0

a4

r3
Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
,

φm
2 (ξ ≥ ξ0, ϑ, ϕ) = Be

0fQm
2 (ξ) Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
, (2.2)

φm
2 (ζ ≥ ζ0, ϑ, ϕ) = Be

0fQm
2 (iζ) Pm

2 (cos ϑ)

×
(

cos (mϕ)
sin (mϕ)

)
.

3. The magnetic induction fields inside and
outside: continuity of their normal compo-
nents at the surfaces

The magnetic induction fields inside and outside the spheres
and spheroids are evaluated as the negative gradients of the
respective potentials in Eqs. (2.1) and (2.2):

~B (r ≤ a, ϑ, ϕ)=−Bi
0

a

[(
r̂2rPm

2 (cos ϑ)+ϑ̂r
dPm

2 (cos ϑ)
dϑ

)(
cos (mϕ)
sin (mϕ)

)
+ ϕ̂

rm

sin ϑ
Pm

2 (cos ϑ)
(− sin (mϕ)

cos (mϕ)

)]
, (3.1)

~B (r≥a, ϑ, ϕ)=−Be
0a

4

r4

[(
−r̂3Pm

2 (cosϑ)+ϑ̂
dPm

2 (cos ϑ)
dϑ

)(
cos (mϕ)
sin (mϕ)

)
+ϕ̂

m

sin ϑ
Pm

2 (cosϑ)
(− sin (mϕ)

cos (mϕ)

)]
, (3.2)

~B (ξ ≤ ξ0, ϑ, ϕ) = −Bi
0f

[(
ξ̂

hξ

dPm
2 (ξ)
dξ

Pm
2 (cos ϑ) +

ϑ̂

hϑ
Pm

2 (ξ)
dPm

2 (cosϑ)
dϑ

) (
cos (mϕ)
sin (mϕ)

)

+ϕ̂
m

hϕ
Pm

2 (ξ)Pm
2 (cos ϑ)

(− sin (mϕ)
cos (mϕ)

)]
, (3.3)

~B (ξ ≥ ξ0, ϑ, ϕ) = −Be
0f

[(
ξ̂

hξ

dQm
2 (ξ)
dξ

Pm
2 (cos ϑ) +

ϑ̂

hϑ
Qm

2 (ξ)
dPm

2 (cos ϑ)
dϑ

) (
cos (mϕ)
sin (mϕ)

)

+ϕ̂
m

hϕ
Qm

2 (ξ) Pm
2 (cos ϑ)

(− sin (mϕ)
cos (mϕ)

)]
, (3.4)

~B (ζ ≤ ζ0, ϑ, ϕ) = −Bi
0f

[(
ζ̂

hζ

dPm
2 (iζ)
dζ

Pm
2 (cos ϑ) +

ϑ̂

hϑ
Pm

2 (iζ)
dPm

2 (cos ϑ)
dϑ

) (
cos (mϕ)
sin (mϕ)

)

+ ϕ̂
m

hϕ
Pm

2 (iζ)Pm
2 (cos ϑ)

(− sin (mϕ)
cos (mϕ)

)]
, (3.5)
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~B (ζ ≥ ζ0, ϑ, ϕ) = −Be
0f

[(
ζ̂

hζ

dQm
2 (iζ)
dζ

Pm
2 (cos ϑ) +

ϑ̂

hϑ
Qm

2 (iζ)
dPm

2 (cos ϑ)
dϑ

) (
cos (mϕ)
sin (mϕ)

)

+ϕ̂
m

hϕ
Qm

2 (iζ)Pm
2 (cos ϑ)

(− sin (mϕ)
cos (mϕ)

)]
. (3.6)

Gauss’s law requires that the normal components of the
magnetic induction field at the surfacesr = a, ξ = ξ0 and
ζ = ζ0 are continuous, which determine the relationships be-
tween the coefficientsBe

0 andBi
0:

−3Be
0 = 2Bi

0, (3.7)

Be
0

dQm
2 (ξ)
dξ

|ξ=ξ0 = Bi
0

dPm
2 (ξ)
dξ

|ξ=ξ0 , (3.8)

Be
0

dQm
2 (iζ)
dζ

|ζ=ζ0 = Bi
0

dPm
2 (iζ)
dζ

|ζ=ζ0 . (3.9)

4. Discontinuities of the tangential compo-
nents of the magnetic induction fields at the
surfaces leading to the distribution of the
surface electric current

Ampere’s law leads to the connection between the surface
electric current distribution on the sphere and the spheroids
in terms of the discontinuities in the tangential components
of the magnetic induction fields:

4π

c
~K (r=a, ϑ, ϕ)=r̂×

(
~Be− ~Bi

)
=

(
Be

0−Bi
0

)
[

ϕ̂

hϑ

dPm
2 (cos ϑ)

dϑ

(
cos (mϕ)
sin (mϕ)

)
− ϑ̂

hϕ
mPm

2 (cos ϑ)
(− sin (mϕ)

cos (mϕ)

)]
, (4.1)

4π

c
~K (ξ = ξ0, ϑ, ϕ) = ξ̂ ×

(
~Be − ~Bi

)

=
(
Be

0Q
m
2 (ξ0)−Bi

0P
m
2 (ξ0)

)
[

ϕ̂

hϑ

dPm
2 (cosϑ)

dϑ

(
cos (mϕ)
sin (mϕ)

)
− ϑ̂

hϕ
mPm

2 (cosϑ)
(− sin (mϕ)

cos (mϕ)

)]
, (4.2)

4π

c
~K (ζ = ζ0, ϑ, ϕ) = ζ̂ ×

(
~Be − ~Bi

)

=
(
Be

0Q
m
2 (iζ0)−Bi

0P
m
2 (iζ0)

)
[

ϕ̂

hϑ

dPm
2 (cos ϑ)

dϑ

(
cos (mϕ)
sin (mϕ)

)
− ϑ̂

hϕ
mPm

2 (cos ϑ)
(− sin (mϕ)

cos (mϕ)

)]
. (4.3)

The reader may notice the common formalϑ andϕ de-
pendence of the linear current density~K (ϑ, ϕ) on the sphere
and spheroids, taking into account the different scale fac-
tors and unit vectors involved, Eqs. (A.4-A.6). The factors
in Eqs. (4.2) and (4.3) depending on the external and in-
ternal Legendre functions when combined with Eqs. (3.8)
and (3.9) can be rewritten in terms of their respective Wron-
skians, Eqs. (A.25-A.26).

Next, we concentrate on the evaluation of the field lines
for the ϑ and ϕ dependent linear current distributions of
Eqs. (4.1)-(4.3), which depend only on the common angular
factor.

For m=0, the lines are parallel circles with the distribu-
tion

ϕ̂

hϑ

dP2 (cos ϑ)
dϑ

hϑdϑ = 3ϕ̂ sin ϑ cos ϑdϑ (4.4)

eastward in the northern hemisphere and westward in the
southern hemisphere, vanishing at the equator and also at the

north and south poles, and with maximum intensities at
ϑ=45◦ andϑ = 135◦.

In general, the lines of the current distribution share the
same direction of~K at every point. Their differential form

d~̀ = êϑhϑdϑ + êϕhϕdϕ (4.5)

leads to the respective differential equations [13],

Kϕhϑdϑ = Kϑhϕdϕ (4.6)

for the distribution currents or coil windings in Eq. (4.1-4.3),
for the other values ofm.

Form=1, theϕ̂ andϑ̂ components are respectively

1
hϑ

dP 1
2 (cos ϑ)

dϑ

(
cos ϕ

sinϕ

)
hϑdϑ = 3

× (
cos2 ϑ− sin2 ϑ

)(
cosϕ

sin ϕ

)
dϑ, (4.7)
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− 1
hϕ

P 1
2 (cos ϑ)

(− sin ϕ

cos ϕ

)
hϕdϕ = −3

× sin (ϑ) cos (ϑ)
(− sin ϕ

cos ϕ

)
dϕ, (4.8)

leading to the lines via the respective differential equations

−cos (2ϑ)
sin (2ϑ)

dϑ = − sin ϕ

cos ϕ
dϕ, (4.9)

−2
cos (2ϑ)
sin (2ϑ)

dϑ =
cos ϕ

sin ϕ
dϕ. (4.10)

For a line passing through a pointϑ = ϑ0, ϕ = ϕ0 their
respective solutions are:

sin (2ϑ) cos ϕ = sin (2ϑ0) cos ϕ0, (4.11)

sin (2ϑ) sin ϕ = sin (2ϑ0) sin ϕ0. (4.12)

These sets of lines have the same shape differing by 90◦

in longitudinal position. The currents vanish at the equator
ϑ = 90◦, and at meridiansϕ = 90◦ and 270◦.

Similarly, for m=2 theϕ̂ andϑ̂ components are

1
hϑ

dP 2
2 (cosϑ)
dϑ

(
cos (2ϕ)
sin (2ϕ)

)
hϑdϑ

= 6 sin ϑ cosϑdϑ

(
cos (2ϕ)
sin (2ϕ)

)
, (4.13)

− 1
hϕ

P 2
2 (cos ϑ) 2

(− sin (2ϕ)
cos (2ϕ)

)
hϕdϕ

=−3 sin2 ϑ2
(− sin (2ϕ)

cos (2ϕ)

)
dϕ; (4.14)

with the differential equations for the lines

cos ϑ

sin ϑ
dϑ = − sin (2ϕ)

cos (2ϕ)
dϕ, (4.15)

cos ϑ

sin ϑ
dϑ =

cos (2ϕ)
sin (2ϕ)

dϕ. (4.16)

Their solutions for lines passing throughϑ = ϑ0, ϕ = ϕ0

are

sin2 ϑ cos (2ϕ) = sin2 ϑ0 cos (2ϕ0) , (4.17)

sin2 ϑ sin (2ϕ) = sin2 ϑ0 sin (2ϕ0) . (4.18)

These sets of lines also have the same shape differing
by 45◦ in longitudinal positions. The currents vanish for
ϕ = 45◦, 135◦, 225◦ and 315◦ and ϕ=0◦, 90◦, 180◦ and
270◦, respectively.

5. Graphic results and discussion

Figure 1 illustrates graphically the electric current distribu-
tion in windings on the surfaces of a pair of prolate spheroids,

spheres and a pair of oblate spheroids, in the successive
columns producing the constant gradient magnetic induction
fields of Eqs. (1.1-1.5) in the successive rows. The readers
may identify visually their characteristics, already described
with words in the previous section. They may also recognize
that the last pair for the sphere, also shares the same shapes
with the previous pair, differing only in positions and orien-
tations.

While the first configuration is the most familiar and sim-
plest with rotational symmetry around the polar axis, the
other four are its natural companions. The first one can be
approximated with a pair of Maxwell coils [2], in analogy
with the production of an almost uniform magnetic induction
field with a pair of Helmholtz coils [13-15]. The authors are
now examining the possibilities of approximating the other
four configurations with the corresponding sets of four coils
on spheres or spheroids, especially for their interest in the
area of nuclear magnetic resonance imaging [2].

Since this is a teaching article, it is appropriate to include
a few didactic observations and additional references on the
physical problem and its methods of solution, which may be
useful for upper level undergraduate and graduate courses of
physics and engineering.

A. If the sources are known, the Biot-Savart’s
law is the natural tool to evaluate the magnetic induc-
tion field [2,9-10]. The same results may also be ob-
tained using the alternative routes of the vector [6,8] or
scalar [7] magnetic potential.

B. In the present manuscript, the aim is to
find the possible sources of the target magnetic fields
Eqs. (1.1-1.5). Section 4 illustrates how Ampere’s law
in its boundary condition form leads to the sources
in Eqs. (4.1-4.3) and their respective components
in Eqs. (4.4), (4.7-4.8), (4.13-4.14), and illustrated
graphically in Fig. 1, for the respective spheroids and
spheres.

C. The interested readers may compare the sim-
plicity and harmonicity of the solution constructed in
this article with those solutions reviewed in Ref. 2.
Their difference resides in the pure quadrupolarity
shared by fields and sources in the spherical and
spheroidal geometries versus the pure quadrupolarity
of the target field and the need of a large number of
harmonic components in the other geometries.

D. Here we complement the bibliography of the
spherical and spheroidal multipole harmonic functions,
and of the imaging process itself.

i) Our didactic reference [12] has its illustra-
tive counterparts in the later research literature:
“Spherical Gradient Coil Research for Ultrafast
Imaging” [16], restricted to the z-spherical gra-
dient coil, equivalent of Eq. (4.4); and “Spheri-
cal Magnetic Moments System of Currents” [17],
with the same contents as the first half of Sec. 3
in Ref. 12.
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FIGURE 1. Surface current distrubutions or coil windings on a sequence of prolate spheroids, spheres and oblate spheroids in successive
columns, and according to Eqs. (4.4), (4.11-4.12) and (4.17-4.18) in successive rows.

ii) Concerning the spheroidal geometries
and others, our didactic articles “Harmonic Ex-
pansions of the Coulomb Potential in Cylindrical,
Parabolic and Spheroidal Coordinates” [18] and
“Complete Pure Dipole Spheroidal Electrostatic
Fields and Sources” [19] have their research

counterparts in “Using Prolate Spheroidal Mag-
netization Distributions for Magnetic Model-
ing” [20], “Separation of the Magnetic Fields into
External and Internal Parts at the Surface of Pro-
late Spheroid” [21], “Application of Spheroidal
Functions in Magnetostatics” [22], and “Gener-
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ating Homogeneous Magnetostatic Field Inside
Prolate and Oblate Ellipsoidal Coil” [23], respec-
tively.

iii) We remind the reader about the limitation by
choice of our work to the magnetostatics of the
constant gradient magnetic fields and their spher-
ical and spheroidal coil windings. References 1
and 2 illustrate the importance of such fields in
the areas of neutral atom traps and magnetic reso-
nance imaging. The interested readers are invited
to read the respective Nobel Prize lectures cited
in the second paragraph in order to appreciate the
advances in both areas. For the readers with spe-
cific interests in the imaging process itself we add
the illustrative references “Fast Spheroidal Mul-
tipole Imaging of Elementary Magnetic Sources
on the Axis” [24] and “Perturbative Analytical
Solutions of the Magnetic Forward Problem for
Realistic Volume Conductors” [25].

E. The Appendix is included in order to make
the article self-contained. Its reading allows under-
standing the geometry of the respective coordinates
and their connections, the structure of their scale fac-
tors and unit vectors, which determine the structure of
the Laplace operators, as well as the separability and
integrability of the Laplace equations, leading to the
well-behaved spheroidal harmonic functions inside and
outside the respective spheroids.

F. For the readers who feel more confortable
using the magnetic vector potential, it is straight-
forward to construct it as the counterparts replacing
Eqs. (1.6-1.10), with the corresponding modifications
in Secs. 2 and 3. The treatment of Sec. 4 remains the
same.

Appendix

Prolate and oblate spheroidal coordinates and
spheroidal harmonic functions

This Appendix starts from the transformation equations from
spheroidal to Cartesian coordinates, to obtain their inverses,
the scale factors and unit vectors, the Laplace operators, and
the solutions of the Laplace equation needed in the main body
of the article [26-28].

1. Transformation equations:

x = f
√

ξ2 − 1 sin ϑ cos ϕ = f
√

ζ2 + 1 sin ϑ cos ϕ

y = f
√

ξ2 − 1 sin ϑ sin ϕ = f
√

ζ2 + 1 sin ϑ sinϕ

z = fξ cos ϑ = fζ cosϑ (A.1)

2. The inverse transformations

x2 + y2

f2 (ξ2 − 1)
+

z2

f2ξ2
= 1 =

x2 + y2

f2 (ζ2 + 1)
+

z2

f2ζ2

z2

f2 cos2 ϑ
− x2 + y2

f2 sin2 ϑ
= 1 =

x2 + y2

f2 sin2 ϑ
− z2

f2 cos2 ϑ

ϕ = tan−1 y

x
(A.2)

allow to identify prolate spheroids with focii at
(x = 0, y = 0, z = ±f) for fixed values ofξ ∈ [1,∞) and
eccentricity1/ξ, confocal two-sheet hyperboloids with real
axis along thez-axis for fixed values ofϑ ∈ [0, π] and
eccentricity1/ cos ϑ; confocal oblate spheroids with focii
at (x = f cos ϕ, y = f sin ϕ, z = 0) for fixed values of
ζ ∈ [0,∞) and eccentricity1/

√
ζ2 + 1, confocal one-sheet

hyperboloids with real axis along thexy plane for fixed val-
ues ofϑ ∈ [0, π] and eccentricity1/ sin ϑ; common meridian
half planes with a common edge at thez-axis for fixed values
of ϕ ∈ [0, 2π]. Both sets of coordinates become spherical co-
ordinates in the respective limits:ξ → ∞, f → 0, fξ → r;
ζ → ∞, f → 0, fζ → r. The respective hyperboloids
become circular cones.

3. The scale factors and unit vectors follow from the eval-
uation of the displacement vector,

d~r = îdx + ĵdy + k̂dz

= f

[(
î cosϕ + ĵ sin ϕ

) ξ√
ξ2 − 1

sin ϑ + k̂ cos ϑ

]
dξ

+ f
[√

ξ2 − 1 cos ϑ
(
î cos ϕ + ĵ sin ϕ

)
− k̂ξ sin ϑ

]
dϑ

+ f
√

ξ2 − 1 sinϑ
(
−î sin ϕ + ĵ cos ϕ

)
dϕ

= f

[(
î cosϕ + ĵ sin ϕ

) ζ√
ζ2 + 1

sin ϑ + k̂ cosϑ

]
dζ

+ f
[√

ζ2 + 1 cos ϑ
(
î cos ϕ + ĵ sin ϕ

)
− k̂ζ sin ϑ

]
dϑ

+ f
√

ζ2 + 1 sin ϑ
(
−î sin ϕ + ĵ cosϕ

)
dϕ

=ξ̂hξdξ+ϑ̂hϑdϑ+ϕ̂hϕdϕ

=ζ̂hζdζ+ϑ̂hϑdϑ+ϕ̂hϕdϕ (A.3)

Consequently,

hξ = f

√
ξ2 − cos2 ϑ

ξ2 − 1
, hϑ = f

√
ξ2 − cos2 ϑ,

hϕ = f
√

ξ2 − 1 sinϑ, (A.4)
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hζ = f

√
ζ2 + cos2 ϑ

ζ2 + 1
, hϑ = f

√
ζ2 + cos2 ϑ,

hϕ = f
√

ζ2 + 1 sin ϑ, (A.5)

ξ̂ =
ξ sin ϑ

(
î cos ϕ + ĵ sin ϕ

)
+ k̂

√
ξ2 − 1 cos ϑ

√
ξ2 − cos2 ϑ

,

ϑ̂ =

√
ξ2 − 1 cos ϑ

(
î cosϕ + ĵ sin ϕ

)
− k̂ξ sin ϑ

√
ξ2 − cos2 ϑ

,

ϕ̂ =
(
−î sin ϕ + ĵ cosϕ

)
,

ζ̂ =
ζ sin ϑ

(
î cosϕ + ĵ sin ϕ

)
+ k̂

√
ζ2 + 1 cos ϑ

√
ζ2 + cos2 ϑ

,

ϑ̂ =

√
ζ2 + 1 cos ϑ

(
î cosϕ + ĵ sin ϕ

)
− k̂ζ sin ϑ

√
ζ2 + cos2 ϑ

. (A.6)

Each set of unit vectors
(
ξ̂, ϑ̂, ϕ̂

)
and

(
ζ̂, ϑ̂, ϕ̂

)
is an or-

thonormal right-handed triad.
4. The Laplace operator becomes

∇2 =
1

f2 (ξ2 − cos2 ϑ)

×
[

∂

∂ξ

(
ξ2 − 1

) ∂

∂ξ
+

1
sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ

]

+
1

f2 (ξ2 − 1) sin2 ϑ

∂2

∂ϕ2
,

∇2 =
1

f2 (ζ2 + cos2 ϑ)

×
[

∂

∂ζ

(
ζ2 + 1

) ∂

∂ζ
+

1
sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ

]

+
1

f2 (ζ2 + 1) sin2 ϑ

∂2

∂ϕ2
. (A.7)

5. The Laplace equation takes the respective forms{
1

f2 (ξ2 − cos2 ϑ)

[
∂

∂ξ

(
ξ2 − 1

) ∂

∂ξ
+

1
sinϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ

]

+
1

f2 (ξ2 − 1) sin2 ϑ

∂2

∂ϕ2

}
φ (ξ, ϑ, ϕ) = 0,

{
1

f2 (ζ2 + cos2 ϑ)

[
∂

∂ζ

(
ζ2 + 1

) ∂

∂ζ
+

1
sin ϑ

∂

∂ϑ
sinϑ

∂

∂ϑ

]

+
1

f2 (ζ2 + 1) sin2 ϑ

∂2

∂ϕ2

}
φ (ζ, ϑ, ϕ) = 0. (A.8)

6. Solution of the Laplace equations. Both equations ad-
mit factorizable solutions

φ (ξ, ϑ, ϕ) = Ξ (ξ)Θ (ϑ)Φ (ϕ) , (A.9)

φ (ζ, ϑ, ϕ) = Z (ζ)Θ (ϑ)Φ (ϕ) . (A.10)

The common angular factors satisfy the same differential
ordinary equations as those in spherical coordinates

d2Φ(ϕ)
dϕ2

=−m2Φ(ϕ) , (A.11)

[
1

sinϑ

d

dϑ
sinϑ

d

dϑ
− m2

sin2 ϑ

]
Θ(ϑ)

=− ` (` + 1) Θ (ϑ) , (A.12)

satisfying the same boundary conditions with the respective
integer eigenvaluesm = 1, 2, . . . , ` and` = 0, 1, 2, . . .

The respective spheroidal coordinate ordinary differential
equations become

[
d

dξ

(
ξ2−1

) d

dξ
− m2

ξ2−1

]
Ξ (ξ)=` (`+1)Ξ (ξ) , (A.13)

[
d

dζ

(
ζ2+1

) d

dζ
+

m2

ζ2+1

]
Z (ζ)=` (`+1) Z (ζ) , (A.14)

involving the same separation constants with appropriate
signs.

The linearly independent solutions inϕ are chosen to
have well-definded parities

Φm (ϕ) =
(

cos (mϕ)
sin (mϕ)

)
, (A.15)

while those inϑ are identified as associated Legendre poly-
nomials,

Pm
` (cos ϑ) = sinm ϑ

dm

d (cos ϑ)m P` (cos ϑ) . (A.16)

Let us recall that Eq. (A.12) can be rewritten, after the
change of variableη = cos ϑ, in the form

[
d

dη

(
1− η2

) d

dη
− m2

1− η2

]
Pm

` (η)

= −` (` + 1)Pm
` (η) (A.17)

The reader may recognize that Eq. (A.13) is the same
as the last one for the interval1 < ξ < ∞ . Its solutions are
therefore associated Legendre polynomialsPm

` (ξ) or associ-
ated Legendre functions of the second kindQm

` (ξ). In turn,
after the change of variablesη → iζ or ξ → iζ, Eq. (A.17) or
(A.13) become Eq. (A.14). Consequently, the latter admits
solutionsPm

` (iζ) andQm
` (iζ). The connection between the

prolate and oblate spheroidal harmonic functions is via the
analytic continuationξ → iζ.
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In particular the quadrupolè=2 harmonic functions of
our interest are:

P2 (ξ)P2 (cos ϑ) =
3ξ2 − 1

2
3 cos2 ϑ− 1

2
, (A.18)

P 1
2 (ξ)P 1

2 (cos ϑ)
(

cos ϕ

sinϕ

)

= 3ξ
√

ξ2 − 1 3 sin ϑ cosϑ

(
cos ϕ

sin ϕ

)
, (A.19)

P 2
2 (ξ)P 1

2 (cos ϑ)
(

cos ϕ

sinϕ

)

= 3
(
ξ2 − 1

)
3 sin2 ϑ

(
cos (2ϕ)
sin (2ϕ)

)
, (A.20)

in the interior of prolate spheroids, with the replacements

P2 (iζ) =
3ζ2 + 1

2
, (A.21)

P 1
2 (iζ) = 3ζ

√
ζ2 + 1, (A.22)

P 2
2 (iζ) = 3

(
ζ2 + 1

)
, (A.23)

in the interior of oblate spheroids.

The respective harmonic functions for the outside involve
the Legendre functions:

Q2 (ξ) =
1
2
P2 (ξ) ln

(
ξ + 1
ξ − 1

)
− 3ξ

2
,

Qm
2 (ξ) =

(
ξ2 − 1

)m
2 dmQ2 (ξ)

dξm
, (A.24)

for m = 0, 1, 2, respectively, for the prolate spheroids; and
their counterparts withξ → iζ, ξ2−1 → ζ2+1 for the oblate
spheroids.

The linear independence of the Legendre polynomials
and Legendre function of the second kind is expressed by
their Wronskians:

Pm
` (ξ)

dQm
` (ξ)
dξ

−dPm
` (ξ)
dξ

Qm
` (ξ)=− 1

ξ2−1
, (A.26)

Pm
` (iζ)

dQm
` (iζ)

d (iζ)
−dPm

` (iζ)
d (iζ)

Qm
` (iζ)=

1
ζ2+1

. (A.27)

1. V. Gomeret al., Hyperfine Interactions109(1997) 281.

2. S.S. Hidalgo-Tobon,Concepts in Magnetic Resonance36A
(2010) 223.

3. http://nobelprize.org/nobelprizes/physics/laureates/1997/

4. http://nobelprize.org/nobelprizes/physics/laureates/2001/

5. http://nobelprize.org/nobelprizes/medicine/laureates/2003/

6. H. Sanchez Lopez, F. Liu, M. Poole, and S. Crozier,IEEE
Trans. on Magnetics45 (2009) 767.

7. D. Green, J. Leggett, and R. Bowtell,Magnetic Resonance in
Medicine54 (2005) 656.

8. M. Poole and R. Bowtell,Concepts in Magnetic Resonance31B
(2007) 162.

9. V. Vech, H. Zhao, G.J. Galloway, D. M. Doddrell, and I.M. Br-
ereton,Concepts in Magnetic Resonance27B (2005) 17.

10. V. Vech, H. Zhao, D.M. Doddrell, and I.M. Brereton, G.J. Gal-
loway,Concepts in Magnetic Resonance27B (2005) 25.

11. C.H. Moon, H.W. Park, M.H. Cho, and S.Y. Lee,Meas. Sci.
Technol.11 (2000) N89.
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