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Comparative study between toroidal coordinates and the magnetic dipole field
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There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we
evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross
sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of
the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative
criteria to evaluate the accuracy of the approximation.
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Existe cierta semejanza entre las coordenadas toroidales y el campo dipolar magnético producido por una espira circular. En este trabajo se
evaĺua hasta que punto las primeras pueden ser empleadas como una aproximación del segundo. Mientras que los toros de las coordenadas
toroidales tienen secciones transversales circulares, los del campo de una espira circular son ovoides cercanos a elipses. Sin embargo para
razones de aspecto grandes, los centros de los segundos se desplazan del eje con mayor rapidez que los primeros. Haciendo una comparación
entre toros con razones de aspecto semejantes, se encuentran criterios cuantitativos para evaluar la precisión de la aproximación.
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PACS: 03.50.De; 02.30.Jr; 41.20.Gz; 52.55.Fa

1. Introduction

Orthogonal systems of coordinates are often chosen accord-
ing to the symmetries in a given physical problem. Among
these, the toroidal coordinates [1,2] are useful to describe tori
with circular cross section. While many problems are nowa-
days solved numerically, and such tools seem to be falling in
disuse, it is still interesting to be able to write down some re-
sults in terms of analytical approximations. Mukhovatov and
Shafranov, for instance [3], used them in order to draw some
important properties of the equilibria in tokamaks. This sys-
tem allows to separate the Grad-Shafranov equation, which
models the magnetohydrodynamic equilibrium of toroidal
axisymmetric plasmas.

On the other hand, toroidal coordinates show a significant
resemblance with the dipole magnetic field lines produced by
a circular current loop, which can be expressed in terms of el-
liptic integrals, as shown in text books [4,5]. Since toroidal
coordinates are the result of rotating the so called bipolar co-
ordinates around their axis of symmetry, one may be mistak-
enly lead to believe that they actually describe the field lines
of a magnetic dipole. However, the toroidal magnetic field
surfaces in this case do not have circular cross sections, as
toroidal coordinates do, but rather ovoid shapes. Therefore,
the toroidal coordinates will only be a good approximation
for large aspect ratios, in which the major radius of the torus
is much greater than its minor radius. The purpose of this pa-
per is to compare them in order to evaluate quantitatively the
limit in which one system can be approximated by the other,
and establish the accuracy of such approximation.

In Secs. 2 and 3 we shall remind the expressions for the
toroidal coordinates and the azimuthal component of the vec-
tor potential for a dipole magnetic field, produced by a cir-
cular loop current, respectively, in order to establish the no-
tation. In Sec. 4 we shall show how they can be compared,
and give quantitative criteria in order to evaluate the accuracy
with which toroidal coordinates can be used to approximate
the dipole field. Conclusions will be drawn in Sec. 5.

2. Toroidal coordinates [2]

Toroidal coordinates (η, ξ, ϕ) emerge as a rotation around the
z axis of the two dimensional bipolar coordinates Their rela-
tionship with the rectangular coordinates (x, y, z) is given by

x =
Ro sinh η cosϕ

cosh η − cos ξ
,

y =
Ro sinh η sin ϕ

cosh η − cos ξ
,

z =
Ro sin ξ

cosh η − cos ξ
. (1)

Figure 1 shows the graphical representation of this system.
If we defineρ2 = x2 +y2, instead of the first two expres-

sions in Eq. (1) we can write

ρ =
R0 sinh η

cosh η − cos ξ
, (2)

so the set of equations for (ρ, z) describe the cross sections
for any arbitrary toroidal angleϕ.
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We are particularly interested in the set of surfacesη=ct.
(0 ≤ η ≤ ∞), which describe tori with circular cross sec-
tions

ρ2 + z2 + R2
o = 2Roρ coth η (3)

with radii a = Ro cschη (minor radii) centred atR = Ro

cothη (major radii) away from thez axis. In the limit
η → 0 the radii of the circles tend to infinity and the cir-
cles degenerate into thez axis, while in the limitη → ∞,
R → Ro anda →0. The aspect ratio of the torii is defined
asA≡R/a=cosh η. It is often more useful to use the inverse
aspect ratioε = a/R = sechη, which is small for thin torii
(large values ofη.)

On the other hand, the set of surfacesξ = ct. (0≤ξ≤2π),
represent spheres

ρ2 + z2 −R2
o = 2Roz cot ξ , (4)

centred on thez axis atRo cot ξ, with radii Ro| csc ξ|. The
spheres intersect on thex, y plane atρ= Ro.

The set of half planes defined byϕ= ct. (0 ≤ ϕ ≤ 2π).
represent the azimuthal, or toroidal angle around thez axis.

3. The dipole magnetic field produced by the
current loop [5]

Finding the magnetic field produced by a circular current
loop of radiusRo is an elementary problem of magnetostat-
ics, which is solved by using Ampére’s law. Although it is in-
deed straightforward to compute it in cylindrical coordinates,
we start from the expression in spherical coordinates, as ob-
tained in Ref. 5 for the sake of clarity and brevity. Assum-
ing that the loop lies on thex, y plane, centred at the origin,
the magnetic field can be written as the curl of the azimuthal
component of the vector potential in terms of spherical coor-
dinates (r, θ, ϕ) as

B = ∇× [Aϕ (r, ϕ) eϕ] . (5)

For a circular loop carrying a currentI we get

Aϕ (r, θ) =
µo

4π

4IRo√
R2

o + r2 + 2Ror sin θ

×
[(

2− k2
)
K(k)− 2E(k)
k2

]
, (6)

whereK(k) andE(k) are the complete elliptic integrals

K(k) =

π
2∫

0

dθ√
1− k2 sin2 θ

,

and

E(k) =

π
2∫

0

√
(1− k2 sin2 θ)dθ, (7)

with

k =

√
4Ror sin θ

R2
o + r2 + 2Ror sin θ

, (8)

as shown in Ref. 5.
Sincer2 = ρ2 + z2, andρ = r sin θ, we can rewrite (6)

and (8) in terms of the cylindrical coordinates (ρ, ϕ, z) as

Aϕ (ρ, z) =
µoI

2π

√
(Ro + ρ)2 + z2

ρ

×
{

R2
o + ρ2 + z2

(Ro + ρ)2 + z2
K (k)− E (k)

}
, (6a)

k =

√
4R0ρ

(R0 + ρ)2 + z2
. (8a)

It is useful to writeAϕ in terms of the stream function
ψ as Aϕ = ρ−1ψ, sinceψ is a measure of the magnetic
flux

∫
B · dS, where the surface of integration would be a

ring betweenRo and ρ, lying on the planez = 0. Since
∇ϕ = ρ−1eϕ, the magnetic field will be given by

B (ρ, z) = ∇×
(

ψ (ρ, z)
ρ

eϕ

)

= ∇× (ψ (ρ, z)∇ϕ) = ∇ψ (ρ, z)×∇ϕ. (9)

Therefore, making use of (6a),

ψ (ρ, z) =
µoI

2π

√
(Ro + ρ)2 + z2

×
{

R2
o + ρ2 + z2

(Ro + ρ)2 + z2
K (k)− E (k)

}
. (10)

4. Comparison between toroidal coordinates
and the magnetic flux function

SinceB · ∇ψ = 0, as can be seen from (9),ψ can be used as
a flux function, describing tori of nearly elliptic ovoidal cross
section, similar to those represented byη=sech(a/R)=ct.,
in the case of the toroidal coordinates.

In Fig. 2 some of the circular cross-sections from the
toroidal coordinates are plotted as dashed circles, along
with surfaces of constantψ. Since the latter are not cir-
cular, but resemble ellipses, we need to choose an ade-
quate way to compare them. For this purpose, we define
εη=a/R=a/(Ro coth η), andεψ as the ratio of the semiaxis
of the ellipses defined byψ = ct. and their centres,Rψ, away
from thez axis on thex, y plane. The three cases compared
in Fig. 2, with a dot marking their intersection, are shown in
bold in Table I. We have furthermore normalised the coordi-
natesρ andz to Ro, keeping in mind thatR will be different
for each circle. As expected, surfaces of constantψ andη
with similar values ofεη andεψ tend to match when they are
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FIGURE 1. Graphical representation of the toroidal coordinates
system (1) on theX − Z plane (ϕ = 0). The toroids are generated
by rotating the graph around theZ axis.

FIGURE 2. Comparison between toroidal coordinates (dashed) and
curves of constant values ofψ (solid), where the inverse aspect
ratio of the toroidal case,εη = a/Ro = sec hη, is close to the
inverse aspect ratio of the loop current magnetic fieldεψ, defined
as the ratio of the inner major radius of the ellipse and its major ra-
dius. The dots mark the point of intersection of the matching pairs
εη =.04, εψ=0.0399; εη=.14173,εψ=0.13891, andεη=.26877,
εψ=0.25587.

FIGURE 3. Displacement of the major radius, normalised to the
position of the current loop,Ro, as a function of the inverse aspect
ration ε. Rη = Ro coth η shows the evolution of the displace-
ment for toroidal coordinates, whileRψ red in the electronic ver-
sion shows the one of the toroids that arise from the flux coordinate
ψ, obtained from the circular current loop.

FIGURE 4. Comparison betweenψ andη matching pairs of co-
ordinates with common values ofε. In order to have a proper
comparison, we plotψn and ηn, which have been normalised
to 1 for the pair of surfaces withε=0.02. Their relationship is
ψn = 0.9878η1.14

n .

small, up toεη, εψ ∼ .04. However, as they grow, the ma-
jor radius of the toroidal coordinate tori shifts outwards to
R = Ro coth η, while Rψ shifts faster, as can be seen in
Fig. 3. The deformation of theψ surfaces can also be ob-
served in Fig. 2.

It can also be seen that the inverse aspect ratio grows more
slowly for the family of curvesψ. In order to have a better un-
derstanding of this, we need a way to compare directlyψ and
η. Choosing theεη, εψ = .02 pair of surfaces as a reference,
we normalise the values ofψ andη to 1. The normalised
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FIGURE 5. Normalised values ofψn andηn vs. ε = εψ ∼ εη.
Predictably, the difference grows withε The values ofψn are rep-
resented by dots (red in the electronic version), while those ofηn

are shown by squares. Some of the data used are given in Table I.

TABLE I. Using the set of surfaces withεη=.02067,εψ=0.02065 in
order to normaliseη andψ to 1, we give the values for other pairs
of surfaces such thatεη andεψ are close, up to two significant fig-
ures, and plot them in Figs. 3 and 4. The cases shown in bold are
shown in Fig. 2.

εη ηn εψ ψn
ηn−ψn

ψn
× 100%

0.02067 1 0.02065 1 0

0.04001 0.85547 0.0399 0.8347 2.5

0.09325 0.67004 0.09227 0.62667 6.9

0.14173 0.57783 0.13891 0.52678 9.7

0.1868 0.51661 0.18127 0.46236 11.7

0.22903 0.47104 0.22009 0.41579 13.3

0.26877 0.43491 0.25587 0.37985 14.5

0.30624 0.40511 0.28901 0.35083 15.5

functionsηn andψn are plotted in Fig. 4, where the com-
mon parameter for each point is the value ofεη∼εψ. It
is seen that their dependence is linear, for small values of
ε. By fitting them, it is found that they can be related as
ψn = 0.9878η1.14

n .
The accuracy with which the magnetic field of the cir-

cular loop can be approximated by the toroidal coordinates,
can be appreciated in Fig. 5. Table I shows eight pairs of
surfaces, chosen in such a way thatεη andεψ have similar
values. The way in whichηn andψn differ is shown in terms
of percentage.

5. Conclusions

A comparison between tori from toroidal coordinates and
the magnetic field produced by a circular current loop shows
that they can be used interchangeably with a rather good ap-
proximation up to inverse aspect ratios in the order of 0.04
(ε−1=25), where they differ by 2.5%. While the normalised
values of tori with comparable aspect ratios differ only up
to 15.5%, when the inverse aspect ratio grows up to 0.3
(ε−1=3.3), the main problem with the approximation is that
the shift in the major radii of both systems differ significantly,
as seen in Fig. 3.
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