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Comparative study between toroidal coordinates and the magnetic dipole field
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There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we
evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross
sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of
the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative
criteria to evaluate the accuracy of the approximation.
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Existe cierta semejanza entre las coordenadas toroidales y el campo dipolétiotagroducido por una espira circular. En este trabajo se

evalla hasta que punto las primeras pueden ser empleadas como una apxihedsegundo. Mientras que los toros de las coordenadas
toroidales tienen secciones transversales circulares, los del campo de una espira circular son ovoides cercanos a elipses. Sin embargo pa
razones de aspecto grandes, los centros de los segundos se desplazan del eje con mayor rapidez que los primeros. Haciendo@ma comparac
entre toros con razones de aspecto semejantes, se encuentran criterios cuantitativos para evaluanldg@ia@proximaoin.

Descriptores: Magnetositica; coordenadas toroidales; tokamak.

PACS: 03.50.De; 02.30.Jr; 41.20.Gz; 52.55.Fa

1. Introduction In Secs. 2 and 3 we shall remind the expressions for the
toroidal coordinates and the azimuthal component of the vec-
qu potential for a dipole magnetic field, produced by a cir-

ing to the symmetries in a given physical problem. AmongCUIar loop current, respectively, in order to establish the no-

these, the toroidal coordinates [1,2] are useful to describe tofftion- In Sec. 4 we shall show how they can be compared,

with circular cross section. While many problems are nowa—and give quantitative criteria in order to evaluate the accuracy

days solved numerically, and such tools seem to be falling i|¥v'th which toroidal coordinates can be used to approximate

disuse, it is still interesting to be able to write down some re-the dipole field. Conclusions will be drawn in Sec. 5.

sults in terms of analytical approximations. Mukhovatov and

Shafranov, for instance [3], used them in order to draw som@.  Toroidal coordinates [2]

important properties of the equilibria in tokamaks. This sys-

tem allows to separate the Grad-Shafranov equation, whichoroidal coordinatesy £, ¢) emerge as a rotation around the
models the magnetohydrodynamic equi”brium of toroidalz axis of the two dimensional bipOIar coordinates Their rela-

Orthogonal systems of coordinates are often chosen accor

axisymmetric plasmas. tionship with the rectangular coordinates ¢, =) is given by
On the other hand, toroidal coordinates show a significant R, sinhncos ¢
resemblance with the dipole magnetic field lines produced by r= coshn — cos ¢’

a circular current loop, which can be expressed in terms of el-

liptic integrals, as shown in text books [4,5]. Since toroidal = M7

coordinates are the result of rotating the so called bipolar co- coshn — cos ¢

ordinates around their axis of symmetry, one may be mistak- R,siné

enly lead to believe that they actually describe the field lines Z= coshn — cos &’ @)

of a magnetic dipole. However, the toroidal magnetic field ) ] ] )
surfaces in this case do not have circular cross sections, as Figure 1showsthe graphical representation of this system.
toroidal coordinates do, but rather ovoid shapes. Therefore, fwe definep® = 2 ﬂ/,zv instead of the first two expres-
the toroidal coordinates will only be a good approximationSions in Eq. (1) we can write

for large aspect ratio:?‘, in yvhich th_e major radius of the Forus Ry sinhn

is much greater than its minor radius. The purpose of this pa- p= coshy) —cos’ (2)

per is to compare them in order to evaluate quantitatively the

limit in which one system can be approximated by the otherso the set of equations fop,(z) describe the cross sections
and establish the accuracy of such approximation. for any arbitrary toroidal angle.
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We are particularly interested in the set of surfagest.  with
(0 < n < o0), which describe tori with circular cross sec- b \/ 4R,rsind

. 8
tions R2+ 7124 2R,rsinf’ ®)

2 2 2
+ z° + R, = 2R,pcoth 3 .
p P K @) as shown in Ref. 5.

with radii e = R, cschy (minor radii) centred ai? = R, Sincer? = p% + 22, andp = rsin 6, we can rewrite (6)
cothy (major radii) away from thez axis. In the limit  and (8) in terms of the cylindrical coordinatgs ¢, z) as

n — 0 the radii of the circles tend to infinity and the cir-

cles degenerate into theaxis, whlle_ in the I|m|t_r_]_—> o0, oI\ (Ro + )% + 22

R — R, anda —0. The aspect ratio of the torii is defined Ay (p,2) ===

asA=R/a=coshn. Itis often more useful to use the inverse 2m P
aspect ratic = a/R = sechn, which is small for thin torii R2+ 02 + 22
(large values ofy.) “NRBa oo (k) —E(k)p, (6a)
On the other hand, the set of surfages ct. (0<¢<27), (Ro+p)” +2
represent spheres
0>+ 22— R2=2R,zcot &, 4) L — 4Rop (8a)

. : ) (Ro+p)*+22
centred on the axis atR, cot &, with radii R,|csc|. The

spheres intersect on they plane atp= R,,. It is useful to write A, in terms of the stream function
The set of half planes defined lpyz ct. 0 < ¢ < 27). Y asA, = p~ !4, sincey is a measure of the magnetic
represent the azimuthal, or toroidal angle around:thgis. flux [ B -dS, where the surface of integration would be a

ring betweenR, and p, lying on the planez = 0. Since
Ve = p~le,, the magnetic field will be given by

B(p,z) =V x (WQD)

Finding the magnetic field produced by a circular current P
loop of radiusR, is an elementary problem of magnetostat- =V x (¥(p,z2) Vo) =V (p,z) x V. (9)
ics, which is solved by using Angpe’s law. Although itisin-
deed straightforward to compute it in cylindrical coordinates, ~ Therefore, making use of (6a),
we start from the expression in spherical coordinates, as ob- I
tained in Ref. 5 for the sake of clarity and brevity. Assum- P (p,z) = Ho
ing that the loop lies on the, y plane, centred at the origin, 2
the magnetic field can be written as the curl of the azimuthal R% 4+ p? + 22
component of the vector potential in terms of spherical coor- X (RJr—zz
; ot p) +2
dinates {, 0, ) as

3. The dipole magnetic field produced by the
current loop [5]

(Ro + P)2 + Z2
(k) - E (k)} . (10)

B=Vx[A4,(r,¢)e,]. (5) 4. Comparison between toroidal coordinates

. . and the magnetic flux function
For a circular loop carrying a currefitwe get

SinceB - Vi = 0, as can be seen from (9),can be used as
Lo AIR, ) S ) o .

= a flux function, describing tori of nearly elliptic ovoidal cross

section, similar to those representedspy sech(a/R) =ct.,

in the case of the toroidal coordinates.
, (6) In Fig. 2 some of the circular cross-sections from the
toroidal coordinates are plotted as dashed circles, along
with surfaces of constanp. Since the latter are not cir-
cular, but resemble ellipses, we need to choose an ade-

A, (r,0)

B E\/Rg—kr? + 2R,rsinf

y [(2 — k) K(k) — 2E(k)
k2

whereK (k) and E(k) are the complete elliptic integrals

5 guate way to compare them. For this purpose, we define
K(k) = / do 7 enza/R.:a/(Ro cgth n), ande,;, as the r'atio of the semiaxis
V1 —k2gin%0 of the ellipses defined by = ct. and their centres?,,, away
0 from the z axis on ther, y plane. The three cases compared
and in Fig. 2, with a dot marking their intersection, are shown in
z bold in Table I. We have furthermore normalised the coordi-
D) natesp andz to R, keeping in mind thaf? will be different
E(k) = / V(1 = k?sin”0)do), (") for each circle. As expected, surfaces of constamndn
0 with similar values o,, ande,, tend to match when they are
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FIGURE 3. Displacement of the major radius, normalised to the

position of the current loopR,, as a function of the inverse aspect
ratione. R, = R, cothn shows the evolution of the displace-
§=3.u‘/2 ] ment for toroidal coordinates, whilB,, red in the electronic ver-
sion shows the one of the toroids that arise from the flux coordinate
1, obtained from the circular current loop.
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FIGURE 1. Graphical representation of the toroidal coordinates
system (1) on the&X — Z plane (o = 0). The toroids are generated
by rotating the graph around tieaxis. 08 . u
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C FIGURE 4. Comparison betweeth andn matching pairs of co-
C ordinates with common values ef In order to have a proper
02— . . .
C comparison, we plot), and n,, which have been normalised
C to 1 for the pair of surfaces wite=0.02. Their relationship is
03 - b = 0.9878n1 14
I I A T A Y small,uptogn,gww_04_ However, as they grow, the ma-

i 00 leliﬂ LI jor radius of the toroidal coordinate tori shifts outwards to
R = R, cothn, while Ry, shifts faster, as can be seen in

FIGURE 2. Comparison between toroidal coordinates (dashed) andrig, 3. The deformation of the) surfaces can also be ob-
curves of constant values af (solid), where the inverse aspect garved in Fig. 2.

ratio of the toroidal cases;, = a/R, = sec hn, is close to the | Iso b hatthe i .
inverse aspect ratio of the loop current magnetic figld defined tcan also be seen that the inverse aspectratio grows more

as the ratio of the inner major radius of the ellipse and its major ra-Slowly for the family of curves). In order to have a better un-
dius. The dots mark the point of intersection of the matching pairsderstanding of this, we need a way to compare diregtiynd

e, =.04,£,-0.0399;¢,-.14173,¢,-0.13891, and:,-.26877, 7. Choosing the,, ¢, = .02 pair of surfaces as a reference,
€4=0.25587. we normalise the values af andn to 1. The normalised
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FIGURE 5. Normalised values of),, andn, vS. € = ey ~ &y.
Predictably, the difference grows withThe values of),, are rep-
resented by dots (red in the electronic version), while thosg,of
are shown by squares. Some of the data used are given in Table lLyalues of tori with comparable aspect ratios differ only up

TABLE |. Using the set of surfaces with—.02067 £,,—0.02065 in

order to normalise andi to 1, we give the values for other pairs

of surfaces such that, ande,, are close, up to two significant fig-
ures, and plot them in Figs. 3 and 4. The cases shown in bold are
shown in Fig. 2.

En n €y ¥n ezt 5 100%
0.02067 1 0.02065 1 0
0.04001 0.85547 0.0399  0.8347 25
0.09325 0.67004 0.09227 0.62667 6.9
0.14173 057783 0.13891 0.52678 9.7
0.1868 0.51661 0.18127 0.46236 11.7
0.22903 0.47104 0.22009 0.41579 13.3
0.26877 0.43491 0.25587 0.37985 14.5
0.30624 0.40511 0.28901 0.35083 15.5
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functionsn,, and,, are plotted in Fig. 4, where the com-
mon parameter for each point is the valuesgfve,. It

is seen that their dependence is linear, for small values of
e. By fitting them, it is found that they can be related as
ty, = 0.9878n 114,

The accuracy with which the magnetic field of the cir-
cular loop can be approximated by the toroidal coordinates,
can be appreciated in Fig. 5. Table | shows eight pairs of
surfaces, chosen in such a way thatande,, have similar
values. The way in which,, and,, differ is shown in terms
of percentage.

5. Conclusions

A comparison between tori from toroidal coordinates and
the magnetic field produced by a circular current loop shows
that they can be used interchangeably with a rather good ap-
proximation up to inverse aspect ratios in the order of 0.04
(e~ 1=25), where they differ by 2.5%. While the normalised

to 15.5%, when the inverse aspect ratio grows up to 0.3
(¢7'=3.3), the main problem with the approximation is that
the shift in the major radii of both systems differ significantly,
as seenin Fig. 3.
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