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The generating function of a canonical transformation
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An elementary proof of the existence of the generating function of a canonical transformation is given. A shorter proof, making use of the
formalism of differential forms is also given.
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Se da una prueba elemental de la existencia de unafugeineratriz de una transformaicarbnica. Se da tambn una prueba &s corta,
usando el formalismo de formas diferenciales.
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1. Introduction 2. Canonical transformations

. o .. Inorder to present the ideas in a simple way, it is convenient
One of the main reasons Why. the Ham|'lton|.an formalism i o consider firstly the case where there is only one degree of
more useful than the Lagrangian formalism is that the set O}reedom which greatly simplifies the derivations
coordinate transformations that leave invariant the form o ' '
the Hamilton equations is much wider than the set of coordi- 1 Systems with one degree of freedom
nate transformations that leave invariant the form of the La-
grange equations. Furthermore, each of the so-called canonive shall consider a system with one degree of freedom, de-
cal transformations leaves invariant the form of the Hamiltonscribed by a Hamiltonian functioi (¢, p,t). This means
equations and can be obtained from a single real-valued funchat the time evolution of the phase space coordinatasd
tion of 2n + 1 variables, where is the number of degrees of p is determined by the Hamilton equations
freedom of the system, which is therefore called the generat-
ing function of the transformation. dg = a—H, dp = —8—H. Q)
dt Op dt dq
The proof of the existence of a generating function forwe want to find the coordinate transformations,
an arbitrary canonical transformation given in most standard)=Q(q, p, t), P=P(q,p,t), that maintain the form of the

textbooks is usually based on the calculus of variations (se¢4amilton equations (1). That is, we want that Egs. (1) be
e.g, Refs. 1 to 6), which allows one to obtain the basic rela-equivalent to

tions quickly. The aim of this paper is to give a stralghtfor— iQ 0K qP oK
ward, elementary derivation of the existence of the generating — = —_— =, @)
function of a canonical transformation, not based on the cal- dt op dt 9Q

culus of variations. One of the advantages of the proof givenwhere K’ may be the original Hamiltonia®/ expressed in
here is that it allows one to see clearly the assumptions interms of the new coordinates or another function. (The last
volved, by contrast with the more diffuse proof usually givenpossibility is relevant since it turns out that the new Hamilto-
in the textbooks, and to realize that the canonical transfornian can be made equal to zero by means of a suitable trans-
mationsare notthe most general transformations that leaveformation.)

invariant the form of the Hamilton equations. In Sec. 2, the Assuming that the transformatio®) = Q(q,p,1),
definition of a canonical transformation is briefly reviewed in P = P(q, p, t) is differentiable and can be inverted (that is, it
order to derive the basic equations that lead to the existende possible to findy andp in terms of@, P, andt and, there-

of the generating function of the transformation. In Sec. 3 wefore, H can be viewed also as a function@f P, andt), mak-

point out some of the frequent errors contained in the prooféng use repeatedly of the chain rule and of Egs. (1) and (2) we
given in some of the standard textbooks. For those readers afind that

guainted with the formalism of (exterior) differential forms, 0K dQ 0Q0H 0QO0H 0Q

a considerably shorter proof is given in the appendix. The 9P dt  dq op Op oq ' ot ®3)
simplicity of this latter proof may serve as an invitation to

learn the language of differential forms for those not already — 2Q (aHaQ + 8H8P) (4)
familiar with it. 9q \0Q 0p = OP Op
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for any pair of functionsf, g, if and only if Eq. (9) holds. In
fact, making use of the chain rule, one can readily show that

_0Q (0HOQ oHOPY 0Q o
op \0Q dq = 0P dq) " o 0f99 9199 _ 1) py (W@_Wﬁg) (11)
OH (0QOP Q0P 20 0q Op Op dq ’ 0Q OP OPIQ
~ 9P <8q&p B apaq) o Thus, restricting ourselves to coordinate transformations
OH 20 satisfying Eq. (9), but allowing them to involve the time ex-
= ﬁ{Q,P} + T (6) plicitly, Egs. (6) and (8) yield
where we have made use of the definition of the Poisson 9Q = _M, or = M (12)
brackets ot op ot Q
= 9f 99 _ g@ 7 Now, it turns out that Egs. (9) and (12) are necessary and suf-
{f.9 )
9q dp  Op Iq ficient conditions for the local existence of a functiBrsuch
In a similar way, we obtain that
PAQ — Kdt — pdq + Hdt = dF, (13)
0K OH oP . . .
90 = %{@ Py——r (8)  as can be seen writing the left-hand side of the last equation
as

Now we have two possibilities: either the Hamilto- 0Q 0Q aQ
nian K is essentially the original Hamiltoniadl, ex- (Paq - ) dg + Pa*pdp + (P8t + (H — K)) dt
pressed in terms of the new variables [thatAS(Q(q, p, t),

P(q,p,t),t)=H(q,p,t)], or K differs from H. In the first and applying the standard criterion for a linear (or Pfaffian)
case, Egs. (6) and (8) will hold, independent of the Hamilto-differential form to be exact. For instance, by considering the
nian H, if and only if coefficients ofdg anddt (recalling thatg, p, andt are treated

as three independent variables), we have

{Q.Pr=1 (9)

0 0 0 0
| _ | | <pQ+<H_K))_( Q_p>
and the coordinate transformation does not involve the time, dq ot ot dq
Q = Q(g¢,p), P = P(q,p). Then, Eq. (9) isthe necessary  gppQ 9PIQ = O(H — K)

and sufficient condition for thiocal existence of a function g ot ot g dq

F such that

_ _OPOH-K) 0QO(H — K)+8(H7K)7O
 9q OP Oq oQ dqg

If ¢ and@ are functionally independent, then the function
appearing in Eq. (13) can be expressed in termg, @J,

andt (in a unique way), and from Eqg. (13) it follows that

PdQ — pdq = dF. (10)

(That is, the functionf” may not be defined in all the phase
space, we can only ensure its existence in some neighbor-
hood of each point of the phase space.) In fact, writing th
left-hand side of Eq. (10) in the equivalent form

oF oF oF
(Pa@ —p> dg + Paﬁdp, P=ag P"=ap "TR=%0 (14)
dq op
and, necessarily)> F//9q0Q # 0 (otherwiseq andp would
one finds that the condition not be independent). Conversely, given a functit(y, Q, t)
9 00 9 0Q suc_h thaﬁQF/agaQ # 0, Egs. (14) can be _Iocally inyerted
9q ( 8p> = (P 94 - p) to find Q and P in terms ofq, p, andt¢. In this way, F' is a

generating function of a canonical transformation.
is equivalent to Eq. (9) [1]. If ¢ and@ are functionally dependent (that i@, can be

Even though more general transformations are also possXPressed as a function @tndt only, org can be expressed
ble (see below), attention is restricted to the transformationdS @ function of andt only), the function/” appearing in
satisfying Eq. (9), also when the coordinate transformatiorEd- (13) can be written in infinitely many ways in termsyof
involves the time explicitly. The coordinate transformations®; andt, and the first two equations in (14) make no sense
satisfying Eq. (9) are calledanonical transformationsOne (§|nce_,e.g, keepingg andt constant in the partial differentia-
good reason to consider only canonical transformations 0N With respect t@, would make( also constant). In such

that the Poisson brackets (7) are invariant under these trand-case, the variablgsandc (as well asP andg) are neces-
formations, in the sense that sarily functionally independent (otherwigeandp would be
dependent). Then, writing Eq. (14) in the equivalent form
ofog 0f0g _Of 0g  Of Og
dq0p Opdg  9QOP  0PIQ’ PdQ — Kdt + qdp + Hdt = dF’, (15)
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whereF’ = F + pq, it follows that the generating function In place of an equation of the form (13), in this case one finds
I’ can be expressed in a unique way as a functioy op, the relation
andt, and the canonical transformation is determined by
OF OF OF' PAQ-Kdt = 2(p°+¢*)~"/? [pdg— Hdt—d(pq/2)]. (17)
and, necessarily)? I’ /0pdQ # 0. Conversely, a given func-
tion F'(p, Q,t) such thab? F’ /0pdQ + 0, defines a canoni-
cal transformation by means of the first two equations in (16). 2
In a similar way, one can consider generating functions de- Q= (t — arctan q) , P 1(p2 + q2).
pending on(q, P, t), or (p, P, t) (seee.g, Refs. 1 to 6). p 2

It should be clear, from the derivation above, that the co- S
ordinate transformations satisfying condition (9) are not thd \°W {Q, P} = —2(t — arctang/p), which is also a con-

2 2 -
most general coordinate transformations that leave mvanar'?[tant of motion ifH = (1/2)(p +4a ), as abov‘?- Fgrther
ore,dQ/dt = 0, dP/dt = 0, which can be written in the

the form of the Hamilton equations and, by contrast to wha . S .
g y orm (2) with a new Hamiltoniar = 0. This is not strange,

is claimed in some textbooke.g, Refs. 3 and 4), the Pois- " the Hamilton—Jacobi method finds at f
son brackef{ @, P} needs not be a (trivial) constant. (By a since in the Hamilton—Jacobl method one finds a franstorma-
gon leading to a new Hamiltonian equal to zero, but this is

trivial constant we mean a function whose value is the sam
usually done with the aid of canonical transformations (the

at all points of its domain or, equivalently, a function whose luti t the Hamilton—Jacobi i th i
partial derivatives are all identically equal to zero.) A simpleSo ution ot theé Hamiiton—Jacobl equation Is the genera 'ng
function of a canonical transformation to a new set of vari-

example is given by the transformation ; L .
P g y P ables corresponding to a Hamiltonian equal to zero). For this
() = arctan 1—?, P =+/p?+q° transformation we obtain the relation

P =

A second example, related to the previous one, is given
by the coordinate transformation

One readily finds that the Poisson bracké}l, P} is equal
to (p?> + ¢?)~'/2, which is not a trivial constant, but is a
constant of the motioiif the Hamiltonian is, for instance,
H = (1/2)(p® + ¢*) (corresponding to a harmonic oscil- [cf. Egs. (13) and (17)].

lator). Then, the Hamilton equations (1) yield/dt = p, The most general coordinate transformation that pre-
anddp/dt = —gq; therefore, we haved@/dt = 1 and serves the form of the Hamilton equations (1) corresponds
dP/dt = 0, which can be expressed as the Hamilton equato {@, P} being a constant of the motion. Indeed, making
tions (2) if the transformed Hamiltonian is chosenias= P. use of the definition of the Poisson bracket (7), Egs. (6), (8),
| the chain rule, and Egs. (1)

PdQ = -2 <t — arctan Z) [pdq — Hdt — d(pq/Q)]

Oy~ 2Q008 OP00Q_0000P 0P00Q_000 (U, 0K
ot T ggotop  Opotdg  Opotdg  Oq ot dp  dq Op ’ oQ

oP 0 OH 0K 0Q 0 (0H 0K oP 0 OH 0K
+ S (“arteri+ 5p) - S (Ggie - 8@) -G (~ap 1@ P+ 5p)
_o{Q, P} (OHOQ  OHOP\ 0{Q,P} (OHOP 0H0Q
 Op 9Q Oq oP aq dq OP Op 3Q 5‘p
s (o.p) (2Q20H 0P 0 OH _0Q00H 0P 0 oH
’ dq Op0Q  Op OqOP  Op 9q0Q  Oq Op OP
0Q 0 OK 0P 0 0K 0Q 0 OK 9P 0 0K _ 0{Q,P}dp 09{Q,P}dq

dq Op 0Q + Op Oqg OP ~ Op 9q 0Q  Oq dp OP op dt dqg dt

o (fa ) 28)) o) (r2)

Now, according to Eq. (11) we have, for instance,
_ 9Q 0 OH _0Q 0 0H\ _ 0 oH
{Q’(Q}_{QJ%<3Q3P8Q aPaQaQ)—‘QJ’apaQ

and
OH oP 0 9H 0P 0 oH o OH
{P }ww( -

P mwwwmw)m}ww’
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therefore By analogy with the case where the number of degrees
{Q’ } {R é?H} =0 of freedom is 1, the canonical transformations deénedby
oQ opr the conditions
and, similarly, i i i
Y {Q.Q* =0, {P,R}=0, {Q\R}=0. (23)
{Q, 90 } {P, ZI;} =0, Then, Egs. (20) and (22) yield
. ) ) Q" O(H — K) oP, O(H-K)
thus showing thafQ, P} is a constant of motion (cf. Ref. 1). % = ap T To (24)
(A shorter proof is given in the appendix.) o .
[cf. Egs. (12)]. As is well known, Egs. (23) imply that
2.2. fSystems with an arbitrary number of degrees of 8@1@% _ap, Q" B
reedom 9¢" 0 ogm o
When the number of degrees of freedom is greater than 1, the oQ% oP, 0P, 0Q* ;
existence of a generating function of any canonical transfor- g™ Op;  Og™ Op; = O, (25)
mation can be demonstrated following essentially the same N ! Jk
steps as in the preceding subsection. We start assuming that 0Q" 0B, 0P, 9Q
the set of Hamilton equations Opm Opj  Opm Op;

d¢* OH dp; OH

(as a matter of fact, Eqgs. (25) are equivalent to Eqgs. (23)

a ~ op i o (18)  [1,4]). Indeed, assuming that Egs. (23) hold, we have
i k
(i =1,2,...,n), is equivalent to the set gfm 6@ =~ {Q", P} — 8Pk QT QF}
W _oKk dh_ _OR (19) ~ LQ’“ 9Q' OP, an%
dt — 9P a —9Q =907 \ o7 9p; ~ Op; 00
where thg new coordinat@i andP; are fun(_:tions oty ps, _ P, (0Q0QF  8Q' HQF
and possibly also of the time. Then, by virtue of the chain T 90m \Bad o On. Do
rule and Egs. (18) and (19) we obtain (here and in what fol- 1 4 ¢ oPj by o4
lows there is summation over repeated indices) _o0Q° (8@’“ % B MW)
J m . m .
OK Q' 0Q'0H 0Q 0H _ Q' Od \O™ Op;  0q™ Op;
P, dt dq¢i dp; Op; g8 Ot o ( 9Q* P, 9P, 8@’“)
0Q' (OH 0Q*  0H 0P Op; \Oq™ 9¢/  0g™ Og’
= dqi <5Qk Op; aPk Ip; ) and, in a similar manner,
0Q' (01 0Q*  oH 0P, aQ% 0Q" _ 0@ (36?'“ op, _ O 3Qk>
B op; (3Qk g 8Pk @q]> Opm  O¢7 \Opm Op;  Opm Op;
an an an an GQZ (8@’“ @ _ GPk an>
- 3@’“ (W dp;  Op; I/ ) Opi \Opm 04’ Opm 04/ )
0Q' 0P, 9Q' 0P\ _ 0Q OF: _ OF; (5P e 0% _ 0QF 3Pk>
+ a5, op <8qﬂ Ip; 5';0] an> ot oqm 3p] g™ 9¢)  9q™ d¢’
. a@l P (0P, 0Q"  9Q" 9Py
= an {Qi Q"+ {Ql Py} + (20) 8qﬂ Oq™ Op;  Og™ Op;
with the Poisson brackets being now defined by OP; O, 8@? _ oQ* %
of 99 of o Opm 820; Opm O¢7  Opm O¢
g g
(19 = 5000~ opog (21) 0P, (0P, 0QF  9Q* 0P,
9q7 \Opm Op;  Opm Op;
and, similarly, . o
and this set of relations implies Egs. (25).
oK ok oH OPF; Equations (24) and (25) are necessary and sufficient con-
C8Q1 aQk {7, Q7+ aTDk.{P“ Py (22) " gitions for the local existence of a functidhsuch that

[cf. Egs. (6) and (8)].

P

dQ’
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as can be readily verified writing the left-hand side of the last  Since Eqg. (26) does not necessarily hold [sedqy,

equation in terms of the original variables Eqg. (17)], in the case of a non-canonical transformation that
b 00 Nasep 00 o (p oQ o)) a preserves the form of the Hamilton equations, the integrals
j aqi Di q 7 api D ot to

/ (pidq’ — Hdt)

t1

and applying again the standard criterion for the local exact-
ness of a linear differential form.

If the 2n variablesq®, Q° are functionally independent and .
2

(which is not necessarily the case), Eq. (26) implies fhat )
can be expressed as a functiongdf Q?, andt, in a unique /(PidQ’ — Kdi)
way, and t1
OF OF OF do not coincide nor are simply related. However, the actual
P = 20" Pi= " ag H-K= T (27)  path followed by the system in phase space corresponds to

stationary values of both functionals (this is analogous, for
The independence of thén variables ¢, p; requires instance, to the fact that the point= 0 is a local minimum
that det(9%F/9q'0Q7)#0. Conversely, given a function for the functionsf(z) = z* andg(z) = 1 — cos z, despite
F(¢*,Q',t) satisfying this condition, Egs. (27) define a lo- the fact that these functions are not the same).
cal canonical transformation.
_ For _the canonical transformations such that the;S_ej?Z Acknowledgements
is functionally dependent, one can employ generating func-
tions that depend on other combinations of old and new varithe author would like to thank the referees for helpful com-
ables; some or all of theg® can be replaced by their conju- ments.
gatesp; and, similarly, some or all of th@’ can be replaced
by their conjugate®;, giving a total of22" possibilities (not .
only the four cases considereslg, in Ref. 3). Appendix

_ _ A. Derivation using exterior forms
3. Comparison with other treatments
' Making use of the properties of the contraction (or interior
The presence of the combinationgdg’ — Hd¢ and  product) of a vector field with a differential form (se=g,

P,dQ'—Kdt in Eq. (26) is not accidental. It is related to Refs. 7 to 11), one finds that there is only one vector field of
the fact that one obtains the Hamilton equations looking fokhe form

the path in phase spacg, = ¢'(t), p; = p;(t), along which X — 9 LAl 3_ 4 B-i (A1)
the integral ot Oqt " Op;
‘2 ‘ whose contraction with the 2-form
[t~ ma (28) |
w=dp; Ndq" —dH N dt (A.2)

ty

has a stationary value (usually a minimum) when compareés equal to zero (that iSXJ w = 0). In fact, making use of
with neighboring paths with the same end points in phasehe expressions (A.1) and (A.2), one finds that w = 0 is
space fort = ¢; andt = t,. Since the addition of the dif- equivalent to
ferential ofanydifferentiable functionf’(¢*, p;, t) to the inte-
grand in (28) changes the value of the integral by a term that Al = , = ——.
is the same for all the paths with the same end points in phase Ipi 9q'
space fort = t; andt = t,, it is right to say that if Hence, the integral curves & correspond to the solutions
of the Hamilton equations (18).

Equations (19) are then equivalent to the condition

[which is Eq. (26)] then the Hamilton equations (18) will be X~/ €2 = 0, where

equivalent to Egs. (19). What is wrong to say is that the O =dP, AdQ' — dK Adt. (A.3)

converse is also true (see,g, Refs. 2, 5, and 6), or that

P,dQ? — Kdt andp;d¢’ — Hdt can only differ by a triv-  If we restrict ourselves to canonical transformations, then

ial constant factor and the differential of a function (seg, Q = w, or, equivalentlyd(P;dQ! — K dt—p;dq‘+ Hdt) = 0,

Refs. 3 and 4) if Egs. (18) are equivalent to (19). which implies the local existence of a functidhsuch that
Eventhough Eq. (26) implies that there exists a functionaEq. (26) holds. However, there is an infinite number of

relation amongF, ¢, ¢*, andt, another frequent error is to 2-forms 2 of the form (A.3), that do not differ by a triv-

conclude that this implies that thi® variablesq?, Q?, are ial multiplicative constant fronv such that, simultaneously,

functionally independent (see.g, Refs. 4 to 6). XJw = 0andXJ = 0[11].

OH B OH

PdQ' — Kdt = p;d¢’ — Hdt + dF,
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Only in the case of systems with one degree of freedom, any two such 2-forms must be relgted lfy, where f is
some, nowhere vanishing, real-valued function [11]. Among other things, ftom fw it follows that {Q, P} = f [with
the Poisson brackets defined by Eq. (7)]. Sincand(2 are both closed (that is, their exterior derivatives are equal to zero),
equation? = fw implies thatf must obey the condition

df Aw=0, (A.4)
that is
(9 o Oy, O _oH _9H _(0f9H _0foH  Of
0= <8qdq+8pdp+ atdt)/\(dp/\dq 8qdq/\dt apdp/\dt) = <8q 3y 9p dq + gD dp A dg A dt.

By virtue of the Hamilton equations (1), this equation holds if and onfyif a constant of the motion, that3sf = 0 (see the
examples at the end of Sec. 2.1).
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