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An elementary proof of the existence of the generating function of a canonical transformation is given. A shorter proof, making use of the
formalism of differential forms is also given.
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1. Introduction

One of the main reasons why the Hamiltonian formalism is
more useful than the Lagrangian formalism is that the set of
coordinate transformations that leave invariant the form of
the Hamilton equations is much wider than the set of coordi-
nate transformations that leave invariant the form of the La-
grange equations. Furthermore, each of the so-called canoni-
cal transformations leaves invariant the form of the Hamilton
equations and can be obtained from a single real-valued func-
tion of 2n + 1 variables, wheren is the number of degrees of
freedom of the system, which is therefore called the generat-
ing function of the transformation.

The proof of the existence of a generating function for
an arbitrary canonical transformation given in most standard
textbooks is usually based on the calculus of variations (see,
e.g., Refs. 1 to 6), which allows one to obtain the basic rela-
tions quickly. The aim of this paper is to give a straightfor-
ward, elementary derivation of the existence of the generating
function of a canonical transformation, not based on the cal-
culus of variations. One of the advantages of the proof given
here is that it allows one to see clearly the assumptions in-
volved, by contrast with the more diffuse proof usually given
in the textbooks, and to realize that the canonical transfor-
mationsare not the most general transformations that leave
invariant the form of the Hamilton equations. In Sec. 2, the
definition of a canonical transformation is briefly reviewed in
order to derive the basic equations that lead to the existence
of the generating function of the transformation. In Sec. 3 we
point out some of the frequent errors contained in the proofs
given in some of the standard textbooks. For those readers ac-
quainted with the formalism of (exterior) differential forms,
a considerably shorter proof is given in the appendix. The
simplicity of this latter proof may serve as an invitation to
learn the language of differential forms for those not already
familiar with it.

2. Canonical transformations

In order to present the ideas in a simple way, it is convenient
to consider firstly the case where there is only one degree of
freedom, which greatly simplifies the derivations.

2.1. Systems with one degree of freedom

We shall consider a system with one degree of freedom, de-
scribed by a Hamiltonian functionH(q, p, t). This means
that the time evolution of the phase space coordinatesq and
p is determined by the Hamilton equations

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
. (1)

We want to find the coordinate transformations,
Q=Q(q, p, t), P=P (q, p, t), that maintain the form of the
Hamilton equations (1). That is, we want that Eqs. (1) be
equivalent to

dQ

dt
=

∂K

∂P
,

dP

dt
= −∂K

∂Q
, (2)

whereK may be the original HamiltonianH expressed in
terms of the new coordinates or another function. (The last
possibility is relevant since it turns out that the new Hamilto-
nian can be made equal to zero by means of a suitable trans-
formation.)

Assuming that the transformationQ = Q(q, p, t),
P = P (q, p, t) is differentiable and can be inverted (that is, it
is possible to findq andp in terms ofQ, P , andt and, there-
fore,H can be viewed also as a function ofQ, P , andt), mak-
ing use repeatedly of the chain rule and of Eqs. (1) and (2) we
find that

∂K

∂P
=

dQ

dt
=

∂Q

∂q

∂H

∂p
− ∂Q

∂p

∂H

∂q
+

∂Q

∂t
(3)

=
∂Q

∂q

(
∂H

∂Q

∂Q

∂p
+

∂H

∂P

∂P

∂p

)
(4)
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− ∂Q

∂p

(
∂H

∂Q

∂Q

∂q
+

∂H

∂P

∂P

∂q

)
+

∂Q

∂t
(5)

=
∂H

∂P

(
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

)
+

∂Q

∂t

=
∂H

∂P
{Q,P}+

∂Q

∂t
, (6)

where we have made use of the definition of the Poisson
brackets

{f, g} ≡ ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (7)

In a similar way, we obtain

∂K

∂Q
=

∂H

∂Q
{Q,P} − ∂P

∂t
. (8)

Now we have two possibilities: either the Hamilto-
nian K is essentially the original HamiltonianH, ex-
pressed in terms of the new variables [that is,K

(
Q(q, p, t),

P (q, p, t), t
)
=H(q, p, t)], or K differs from H. In the first

case, Eqs. (6) and (8) will hold, independent of the Hamilto-
nianH, if and only if

{Q,P} = 1 (9)

and the coordinate transformation does not involve the time,
Q = Q(q, p), P = P (q, p). Then, Eq. (9) is the necessary
and sufficient condition for thelocal existence of a function
F such that

PdQ− pdq = dF. (10)

(That is, the functionF may not be defined in all the phase
space, we can only ensure its existence in some neighbor-
hood of each point of the phase space.) In fact, writing the
left-hand side of Eq. (10) in the equivalent form

(
P

∂Q

∂q
− p

)
dq + P

∂Q

∂p
dp,

one finds that the condition

∂

∂q

(
P

∂Q

∂p

)
=

∂

∂p

(
P

∂Q

∂q
− p

)

is equivalent to Eq. (9) [1].
Even though more general transformations are also possi-

ble (see below), attention is restricted to the transformations
satisfying Eq. (9), also when the coordinate transformation
involves the time explicitly. The coordinate transformations
satisfying Eq. (9) are calledcanonical transformations. One
good reason to consider only canonical transformations is
that the Poisson brackets (7) are invariant under these trans-
formations, in the sense that

∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
=

∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q
,

for any pair of functionsf, g, if and only if Eq. (9) holds. In
fact, making use of the chain rule, one can readily show that

∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
= {Q,P}

(
∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
. (11)

Thus, restricting ourselves to coordinate transformations
satisfying Eq. (9), but allowing them to involve the time ex-
plicitly, Eqs. (6) and (8) yield

∂Q

∂t
= −∂(H −K)

∂P
,

∂P

∂t
=

∂(H −K)
∂Q

. (12)

Now, it turns out that Eqs. (9) and (12) are necessary and suf-
ficient conditions for the local existence of a functionF such
that

PdQ−Kdt− pdq + Hdt = dF, (13)

as can be seen writing the left-hand side of the last equation
as

(
P

∂Q

∂q
− p

)
dq + P

∂Q

∂p
dp +

(
P

∂Q

∂t
+ (H −K)

)
dt

and applying the standard criterion for a linear (or Pfaffian)
differential form to be exact. For instance, by considering the
coefficients ofdq anddt (recalling thatq, p, andt are treated
as three independent variables), we have

∂

∂q

(
P

∂Q

∂t
+ (H −K)

)
− ∂

∂t

(
P

∂Q

∂q
− p

)

=
∂P

∂q

∂Q

∂t
− ∂P

∂t

∂Q

∂q
+

∂(H −K)
∂q

=−∂P

∂q

∂(H −K)
∂P

−∂Q

∂q

∂(H −K)
∂Q

+
∂(H −K)

∂q
=0.

If q andQ are functionally independent, then the function
F appearing in Eq. (13) can be expressed in terms ofq, Q,
andt (in a unique way), and from Eq. (13) it follows that

P =
∂F

∂Q
, p = −∂F

∂q
, H −K =

∂F

∂t
, (14)

and, necessarily,∂2F/∂q∂Q 6= 0 (otherwiseq andp would
not be independent). Conversely, given a functionF (q, Q, t)
such that∂2F/∂q∂Q 6= 0, Eqs. (14) can be locally inverted
to find Q andP in terms ofq, p, andt. In this way,F is a
generating function of a canonical transformation.

If q andQ are functionally dependent (that is,Q can be
expressed as a function ofq andt only, orq can be expressed
as a function ofQ andt only), the functionF appearing in
Eq. (13) can be written in infinitely many ways in terms ofq,
Q, andt, and the first two equations in (14) make no sense
(since,e.g., keepingq andt constant in the partial differentia-
tion with respect toQ, would makeQ also constant). In such
a case, the variablesp andQ (as well asP andq) are neces-
sarily functionally independent (otherwiseq andp would be
dependent). Then, writing Eq. (14) in the equivalent form

PdQ−Kdt + qdp + Hdt = dF ′, (15)
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whereF ′ ≡ F + pq, it follows that the generating function
F ′ can be expressed in a unique way as a function ofQ, p,
andt, and the canonical transformation is determined by

P =
∂F ′

∂Q
, q =

∂F ′

∂p
, H −K =

∂F ′

∂t
(16)

and, necessarily,∂2F ′/∂p∂Q 6= 0. Conversely, a given func-
tion F ′(p,Q, t) such that∂2F ′/∂p∂Q 6= 0, defines a canoni-
cal transformation by means of the first two equations in (16).
In a similar way, one can consider generating functions de-
pending on(q, P, t), or (p, P, t) (see,e.g., Refs. 1 to 6).

It should be clear, from the derivation above, that the co-
ordinate transformations satisfying condition (9) are not the
most general coordinate transformations that leave invariant
the form of the Hamilton equations and, by contrast to what
is claimed in some textbooks (e.g., Refs. 3 and 4), the Pois-
son bracket{Q,P} needs not be a (trivial) constant. (By a
trivial constant we mean a function whose value is the same
at all points of its domain or, equivalently, a function whose
partial derivatives are all identically equal to zero.) A simple
example is given by the transformation

Q = arctan
q

p
, P =

√
p2 + q2.

One readily finds that the Poisson bracket{Q, P} is equal
to (p2 + q2)−1/2, which is not a trivial constant, but is a
constant of the motionif the Hamiltonian is, for instance,
H = (1/2)(p2 + q2) (corresponding to a harmonic oscil-
lator). Then, the Hamilton equations (1) yielddq/dt = p,
and dp/dt = −q; therefore, we have,dQ/dt = 1 and
dP/dt = 0, which can be expressed as the Hamilton equa-
tions (2) if the transformed Hamiltonian is chosen asK = P .

In place of an equation of the form (13), in this case one finds
the relation

PdQ−Kdt = 2(p2+q2)−1/2
[
pdq−Hdt−d(pq/2)

]
. (17)

A second example, related to the previous one, is given
by the coordinate transformation

Q =
(

t− arctan
q

p

)2

, P =
1
2
(p2 + q2).

Now {Q,P} = −2(t − arctan q/p), which is also a con-
stant of motion ifH = (1/2)(p2 + q2), as above. Further-
more,dQ/dt = 0, dP/dt = 0, which can be written in the
form (2) with a new HamiltonianK = 0. This is not strange,
since in the Hamilton–Jacobi method one finds a transforma-
tion leading to a new Hamiltonian equal to zero, but this is
usually done with the aid of canonical transformations (the
solution of the Hamilton–Jacobi equation is the generating
function of a canonical transformation to a new set of vari-
ables corresponding to a Hamiltonian equal to zero). For this
transformation we obtain the relation

PdQ = −2
(

t− arctan
q

p

) [
pdq −Hdt− d(pq/2)

]

[cf. Eqs. (13) and (17)].
The most general coordinate transformation that pre-

serves the form of the Hamilton equations (1) corresponds
to {Q,P} being a constant of the motion. Indeed, making
use of the definition of the Poisson bracket (7), Eqs. (6), (8),
the chain rule, and Eqs. (1)

∂

∂t
{Q,P} =

∂Q

∂q

∂

∂t

∂P

∂p
+

∂P

∂p

∂

∂t

∂Q

∂q
− ∂Q

∂p

∂

∂t

∂P

∂q
− ∂P

∂q

∂

∂t

∂Q

∂p
=

∂Q

∂q

∂

∂p

(
∂H

∂Q
{Q,P} − ∂K

∂Q

)

+
∂P

∂p

∂

∂q

(
−∂H

∂P
{Q,P}+

∂K

∂P

)
− ∂Q

∂p

∂

∂q

(
∂H

∂Q
{Q,P} − ∂K

∂Q

)
− ∂P

∂q

∂

∂p

(
−∂H

∂P
{Q, P}+

∂K

∂P

)

=
∂{Q,P}

∂p

(
∂H

∂Q

∂Q

∂q
+

∂H

∂P

∂P

∂q

)
− ∂{Q,P}

∂q

(
∂H

∂P

∂P

∂p
+

∂H

∂Q

∂Q

∂p

)

+ {Q, P}
(

∂Q

∂q

∂

∂p

∂H

∂Q
− ∂P

∂p

∂

∂q

∂H

∂P
− ∂Q

∂p

∂

∂q

∂H

∂Q
+

∂P

∂q

∂

∂p

∂H

∂P

)

− ∂Q

∂q

∂

∂p

∂K

∂Q
+

∂P

∂p

∂

∂q

∂K

∂P
+

∂Q

∂p

∂

∂q

∂K

∂Q
− ∂P

∂q

∂

∂p

∂K

∂P
= −∂{Q,P}

∂p

dp

dt
− ∂{Q,P}

∂q

dq

dt

+ {Q, P}
({

Q,
∂H

∂Q

}
+

{
P,

∂H

∂P

})
−

{
Q,

∂K

∂Q

}
−

{
P,

∂K

∂P

}
.

Now, according to Eq. (11) we have, for instance,
{

Q,
∂H

∂Q

}
= {Q, P}

(
∂Q

∂Q

∂

∂P

∂H

∂Q
− ∂Q

∂P

∂

∂Q

∂H

∂Q

)
= {Q,P} ∂

∂P

∂H

∂Q

and {
P,

∂H

∂P

}
= {Q,P}

(
∂P

∂Q

∂

∂P

∂H

∂P
− ∂P

∂P

∂

∂Q

∂H

∂P

)
= −{Q,P} ∂

∂Q

∂H

∂P
;
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therefore {
Q,

∂H

∂Q

}
+

{
P,

∂H

∂P

}
= 0

and, similarly,
{

Q,
∂K

∂Q

}
+

{
P,

∂K

∂P

}
= 0,

thus showing that{Q, P} is a constant of motion (cf. Ref. 1).
(A shorter proof is given in the appendix.)

2.2. Systems with an arbitrary number of degrees of
freedom

When the number of degrees of freedom is greater than 1, the
existence of a generating function of any canonical transfor-
mation can be demonstrated following essentially the same
steps as in the preceding subsection. We start assuming that
the set of Hamilton equations

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
(18)

(i = 1, 2, . . . , n), is equivalent to the set

dQi

dt
=

∂K

∂Pi
,

dPi

dt
= − ∂K

∂Qi
, (19)

where the new coordinatesQi andPi are functions ofqi, pi,
and possibly also of the time. Then, by virtue of the chain
rule and Eqs. (18) and (19) we obtain (here and in what fol-
lows there is summation over repeated indices)

∂K

∂Pi
=

dQi

dt

∂Qi

∂qj

∂H

∂pj
− ∂Qi

∂pj

∂H

∂qj
+

∂Qi

∂t

=
∂Qi

∂qj

(
∂H

∂Qk

∂Qk

∂pj
+

∂H

∂Pk

∂Pk

∂pj

)

− ∂Qi

∂pj

(
∂H

∂Qk

∂Qk

∂qj
+

∂H

∂Pk

∂Pk

∂qj

)
+

∂Qi

∂t

=
∂H

∂Qk

(
∂Qi

∂qj

∂Qk

∂pj
− ∂Qi

∂pj

∂Qk

∂qj

)

+
∂H

∂Pk

(
∂Qi

∂qj

∂Pk

∂pj
− ∂Qi

∂pj

∂Pk

∂qj

)
+

∂Qi

∂t

=
∂H

∂Qk
{Qi, Qk}+

∂H

∂Pk
{Qi, Pk}+

∂Qi

∂t
, (20)

with the Poisson brackets being now defined by

{f, g} ≡ ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (21)

and, similarly,

− ∂K

∂Qi
=

∂H

∂Qk
{Pi, Q

k}+
∂H

∂Pk
{Pi, Pk}+

∂Pi

∂t
(22)

[cf. Eqs. (6) and (8)].

By analogy with the case where the number of degrees
of freedom is 1, the canonical transformations aredefinedby
the conditions

{Qi, Qk} = 0, {Pi, Pk} = 0, {Qi, Pk} = δi
k. (23)

Then, Eqs. (20) and (22) yield

∂Qi

∂t
= −∂(H −K)

∂Pi
,

∂Pi

∂t
=

∂(H −K)
∂Qi

(24)

[cf. Eqs. (12)]. As is well known, Eqs. (23) imply that

∂Qk

∂qm

∂Pk

∂qj
− ∂Pk

∂qm

∂Qk

∂qj
= 0,

∂Qk

∂qm

∂Pk

∂pj
− ∂Pk

∂qm

∂Qk

∂pj
= δj

m, (25)

∂Qk

∂pm

∂Pk

∂pj
− ∂Pk

∂pm

∂Qk

∂pj
= 0

(as a matter of fact, Eqs. (25) are equivalent to Eqs. (23)
[1,4]). Indeed, assuming that Eqs. (23) hold, we have

∂Qi

∂qm
=

∂Qk

∂qm
{Qi, Pk} − ∂Pk

∂qm
{Qi, Qk}

=
∂Qk

∂qm

(
∂Qi

∂qj

∂Pk

∂pj
− ∂Qi

∂pj

∂Pk

∂qj

)

− ∂Pk

∂qm

(
∂Qi

∂qj

∂Qk

∂pj
− ∂Qi

∂pj

∂Qk

∂qj

)

=
∂Qi

∂qj

(
∂Qk

∂qm

∂Pk

∂pj
− ∂Pk

∂qm

∂Qk

∂pj

)

− ∂Qi

∂pj

(
∂Qk

∂qm

∂Pk

∂qj
− ∂Pk

∂qm

∂Qk

∂qj

)

and, in a similar manner,

∂Qi

∂pm
=

∂Qi

∂qj

(
∂Qk

∂pm

∂Pk

∂pj
− ∂Pk

∂pm

∂Qk

∂pj

)

− ∂Qi

∂pj

(
∂Qk

∂pm

∂Pk

∂qj
− ∂Pk

∂pm

∂Qk

∂qj

)
,

∂Pi

∂qm
=

∂Pi

∂pj

(
∂Pk

∂qm

∂Qk

∂qj
− ∂Qk

∂qm

∂Pk

∂qj

)

− ∂Pi

∂qj

(
∂Pk

∂qm

∂Qk

∂pj
− ∂Qk

∂qm

∂Pk

∂pj

)
,

∂Pi

∂pm
=

∂Pi

∂pj

(
∂Pk

∂pm

∂Qk

∂qj
− ∂Qk

∂pm

∂Pk

∂qj

)

− ∂Pi

∂qj

(
∂Pk

∂pm

∂Qk

∂pj
− ∂Qk

∂pm

∂Pk

∂pj

)
,

and this set of relations implies Eqs. (25).
Equations (24) and (25) are necessary and sufficient con-

ditions for the local existence of a functionF such that

PidQi −Kdt− pidqi + Hdt = dF, (26)
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as can be readily verified writing the left-hand side of the last
equation in terms of the original variables
(

Pj
∂Qj

∂qi
−pi

)
dqi+Pj

∂Qj

∂pi
dpi+

(
Pi

∂Qi

∂t
+(H −K)

)
dt

and applying again the standard criterion for the local exact-
ness of a linear differential form.

If the 2n variablesqi, Qi are functionally independent
(which is not necessarily the case), Eq. (26) implies thatF
can be expressed as a function ofqi, Qi, andt, in a unique
way, and

Pi =
∂F

∂Qi
, pi = −∂F

∂qi
, H −K =

∂F

∂t
. (27)

The independence of the2n variables qi, pi requires
that det(∂2F/∂qi∂Qj) 6=0. Conversely, given a function
F (qi, Qi, t) satisfying this condition, Eqs. (27) define a lo-
cal canonical transformation.

For the canonical transformations such that the setqi, Qi

is functionally dependent, one can employ generating func-
tions that depend on other combinations of old and new vari-
ables; some or all of theqi can be replaced by their conju-
gatespi and, similarly, some or all of theQi can be replaced
by their conjugatesPi, giving a total of22n possibilities (not
only the four cases considered,e.g., in Ref. 3).

3. Comparison with other treatments

The presence of the combinationspidqi − Hdt and
PidQi−Kdt in Eq. (26) is not accidental. It is related to
the fact that one obtains the Hamilton equations looking for
the path in phase space,qi = qi(t), pi = pi(t), along which
the integral

t2∫

t1

(pidqi −Hdt) (28)

has a stationary value (usually a minimum) when compared
with neighboring paths with the same end points in phase
space fort = t1 andt = t2. Since the addition of the dif-
ferential ofanydifferentiable functionF (qi, pi, t) to the inte-
grand in (28) changes the value of the integral by a term that
is the same for all the paths with the same end points in phase
space fort = t1 andt = t2, it is right to say that if

PidQi −Kdt = pidqi −Hdt + dF,

[which is Eq. (26)] then the Hamilton equations (18) will be
equivalent to Eqs. (19). What is wrong to say is that the
converse is also true (see,e.g., Refs. 2, 5, and 6), or that
PidQi − Kdt and pidqi − Hdt can only differ by a triv-
ial constant factor and the differential of a function (see,e.g.,
Refs. 3 and 4) if Eqs. (18) are equivalent to (19).

Even though Eq. (26) implies that there exists a functional
relation amongF , Qi, qi, andt, another frequent error is to
conclude that this implies that the2n variablesqi, Qi, are
functionally independent (see,e.g., Refs. 4 to 6).

Since Eq. (26) does not necessarily hold [see,e.g.,
Eq. (17)], in the case of a non-canonical transformation that
preserves the form of the Hamilton equations, the integrals

t2∫

t1

(pidqi −Hdt)

and
t2∫

t1

(PidQi −Kdt)

do not coincide nor are simply related. However, the actual
path followed by the system in phase space corresponds to
stationary values of both functionals (this is analogous, for
instance, to the fact that the pointx = 0 is a local minimum
for the functionsf(x) = x4 andg(x) = 1 − cosx, despite
the fact that these functions are not the same).
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Appendix

A. Derivation using exterior forms

Making use of the properties of the contraction (or interior
product) of a vector field with a differential form (see,e.g.,
Refs. 7 to 11), one finds that there is only one vector field of
the form

X =
∂

∂t
+ Ai ∂

∂qi
+ Bi

∂

∂pi
(A.1)

whose contraction with the 2-form

ω ≡ dpi ∧ dqi − dH ∧ dt (A.2)

is equal to zero (that is,X ω = 0). In fact, making use of
the expressions (A.1) and (A.2), one finds thatX ω = 0 is
equivalent to

Ai =
∂H

∂pi
, Bi = −∂H

∂qi
.

Hence, the integral curves ofX correspond to the solutions
of the Hamilton equations (18).

Equations (19) are then equivalent to the condition
X Ω = 0, where

Ω ≡ dPi ∧ dQi − dK ∧ dt. (A.3)

If we restrict ourselves to canonical transformations, then
Ω = ω, or, equivalently,d(PidQi−Kdt−pidqi+Hdt) = 0,
which implies the local existence of a functionF such that
Eq. (26) holds. However, there is an infinite number of
2-forms Ω of the form (A.3), that do not differ by a triv-
ial multiplicative constant fromω such that, simultaneously,
X ω = 0 andX Ω = 0 [11].
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Only in the case of systems with one degree of freedom, any two such 2-forms must be related byΩ = fω, wheref is
some, nowhere vanishing, real-valued function [11]. Among other things, fromΩ = fω it follows that {Q, P} = f [with
the Poisson brackets defined by Eq. (7)]. Sinceω andΩ are both closed (that is, their exterior derivatives are equal to zero),
equationΩ = fω implies thatf must obey the condition

df ∧ ω = 0, (A.4)

that is

0 =
(

∂f

∂q
dq +

∂f

∂p
dp +

∂f

∂t
dt

)
∧

(
dp ∧ dq − ∂H

∂q
dq ∧ dt− ∂H

∂p
dp ∧ dt

)
=

(
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
+

∂f

∂t

)
dp ∧ dq ∧ dt.

By virtue of the Hamilton equations (1), this equation holds if and only iff is a constant of the motion, that isXf = 0 (see the
examples at the end of Sec. 2.1).
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