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The large number of published articles in physics journals under the title “Comments on· · · ” and “Reply to · · · ” is indicative that the
conceptual understanding of physical phenomena is very elusive and hard to grasp even to experts, but it has not stopped the development
of Physics. In fact, from the history of the development of Physics one quickly becomes aware that, regardless of the state of conceptual
understanding, without quantitative reasoning Physics would have not reached the state of development it has today. Correspondingly,
quantitative reasoning and problem solving skills are a desirable outcome from the process of teaching and learning of physics. Thus,
supported on results from published research, we will show evidence that a well structured problem solving strategy taught as a dynamical
process offers a feasible way for students to learn physics quantitatively and conceptually, while helping them to reach the state of anAdaptive
Experthighly skillful on innovation and efficiency, a desired outcome from the perspective of aPreparation for Future Learningapproach
of the process of teaching and learning Physics effectively.
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El gran ńumero de artı́culos publicados en revistas de fı́sica bajo el t́ıtulo “Comentarios sobre· · · ” y “R éplica a· · · ” es indicativo de que la
comprensíon conceptual de los fenómenos f́ısicos es muy escurridiza y difı́cil de entender incluso para los expertos, pero ello no ha detenido
el desarrollo de la F́ısica. De hecho, de la historia del desarrollo de la Fı́sica ŕapidamente nos damos cuenta de que, independientemente
del estado de comprensión conceptual, sin el razonamiento cuantitativo la Fı́sica no hubiese alcanzado el estado de desarrollo que tiene
actualmente. En consecuencia, tanto razonamiento cuantitativo como habilidades en la resolución de problemas son resultados deseables
a obtener del proceso de enseñanza y aprendizaje de la Fı́sica. Aśı, con apoyo en resultados de investigaciones publicadas, mostraremos
evidencias de que cualquier estrategia para la resolución de problemas presentada como un proceso dinámico ofrece una forma viable para
que los estudiantes aprendan fı́sica tanto cuantitativa como conceptualmente, mientras que al mismo tiempo los ayuda a alcanzar el estado de
unexperto adaptablealtamente calificado en la innovación y la eficiencia, un resultado deseado desde la perspectiva del enfoque del proceso
de ensẽnanza y aprendizaje de la Fı́sica con efectividad en función de unaPreparacíon para el aprendizaje futuro.

Descriptores: Resolucíon de problemas en fı́sica; aprendizaje de fı́sica; ensẽnanza de la fı́sica; razonamiento cuantitativo.

PACS: 01.40.gb; 01.40.Ha; 01.40.Fk

1. Introduction

From the perspective of aPreparation for Future Learning
approach of the process of teaching and learning physics ef-
fectively, a contemporary view encourage addressing the pro-
cess so that students becomeadaptive experts[1,2], who are
individuals highly efficient in applying (transferring) what
they know to tackle new situations and are also extremely
capable of innovation in the sense of being able to inhibit in-
adequate blocking “off the top of the head processes” or “to
break free of well-learned routines” so that they can move to
new learning episodes by finding, perhaps ingenious, ways to
approach first time situations.

In this regard, it is undeniable thatPhysics Education Re-
search(PER) and psychological research on learning and in-
struction have made available a good deal of teaching strate-
gies which are helpful in reaching the aforementioned goal
(a few such strategies are listed in Ref. 3 and some of them
have been reviewed elsewhere [4-6]). Nevertheless, some
controversial debates in relation to the effectiveness of some
of theseResearch-Based Instructional Strategies(RBIS) can
also be found in the literature [7-15].

Nobel Prize winner Professor Carl Wieman has also
called for cautiousness when measuring RBIS teaching out-

comes as one could create illusions about what students ac-
tually learn [16]. As mentioned in an article about transfer:
“standard methods of investigating transfer have tended to
depend on success-or-failure measures of participants’ be-
havior on transfer tasks designed with very specific perfor-
mance expectations on the part of the investigator. These
methods have failed to identify the productive knowledge
that students often do bring to bear on the tasks given to
them” [17]. In this regard, Professor Sobel is more emphatic
“Yes, in a special (possibly grant-supported) program, with
smaller groups, with highly motivated instructors and stu-
dents, with less content, students might do well, but that’s
not the real world” [9]. Or as warned by Professors Reif and
Allen “Because nominal expertise does not necessarily im-
ply good performance, one must be cautious in interpreting
cognitive studies of novices and experts for which ’experts’
have been chosen on the basis of nominal criteria. Data about
such experts must be interpreted cautiously to avoid mislead-
ing conclusions about thought processes leading to good per-
formance” [18].

In this panorama, of particular concern considering the
intrinsically quantitative nature of physics is the fact that in
physics classes students should actually be trained to apply
what they have learned in their math classes and the afore-
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mentioned opinions might be a result of the fact that many
of the published papers on teaching and learning physics
seem to overemphasize the importance of teaching concep-
tual physical aspects [19-23], and to deemphasize the sig-
nificance of standard mathematical reasoning [24], which
are crucial for understanding physical processes, and which
are not stressed, or even taught, because, rephrasing a pas-
sage from a recent editorial, they interfere with the students’
emerging sense of physical insight [12]. A view which is fur-
ther stressed in a physics textbook instructor manual ([25],
page 1-9): “the author believes that for students struggling
to grasp many new and difficult concepts, too high a level of
mathematics detracts from, rather than aids, thephysicswe
want them to learn. There is ample time in upper division
courses for a more formal and rigorous treatment. It’s coun-
terproductive to burden students with unfamiliar and fright-
ening mathematical baggage during their first exposure to
the subject.” And these kind of opinions seems to be re-
flected in outcomes obtained from the application of the rel-
atively recently developed CLASS survey, which measures
student’s beliefs about physics and learning physics, show-
ing a decrease of roughly15% (out of 397) after instruction
on student’s beliefs about problem solving in physics and a
decrease of12% (out of 41) after instruction on student’s be-
liefs about the connection between physics and mathematics
(see respectively Tables I and V of [26]. Both courses were
calculus-based Physics I. In relation to Table I (N=397), the
authors of the study mention that “These are typical results
for a first semester course—-regardless of whether it is a tra-
ditional lecture-based course or a course with interactive en-
gagement in which the instructor does not attend to student’s
attitudes and beliefs about physics.”

Moreover, controversial outcomes coming from some
highly publicized RBIS [27-30] hardly help physics instruc-
tors in finding suitable advice about how to approach the
teaching of physics in the most efficient way and an answer
to the question of how much time should be spent on intu-
itive, conceptual reasoning and how much time in developing
quantitative reasoning.

In view of the aforementioned facts, the aim of this pa-
per is to begin a discussion on how the process of teaching
and learning physics viadynamic problem solving strategies
can help to tackle not only the conceptual but also the quanti-
tative reasoning deficiencies persistently reported in the lit-
erature regarding the performance of students in introduc-
tory and upper-division physics courses [31-36,18,37-39]. It
is obvious that both conceptual and quantitative reasoning
are desired skills students should acquire and develop in our
physics courses in order to foster in them their willingness
to explore more complex scientific or engineering problems
with confidence:a preparation for future learning.

The rest of the paper is organized as follows. Recalling
events from the history of physics, in the next section,Con-
ceptual versus quantitative understanding, we argue that in
spite of conceptual gaps in some key physical ideas the de-
velopment of physics did not stop because of the quantitative

nature of physics. We also present in this section an empiri-
cal result showing how a student changes his/her wrong ini-
tial (conceptual) intuition by using quantitative analysis when
solving a problem about electrical circuits. The next section
discusses some of the needs for teaching students the use and
application of structural problem solving strategies. The fol-
lowing section, before presenting the conclusions, develops
the central theme in the article: promoting deep approaches
to learning viaDynamic problem solving strategies. An illus-
trative example is also discussed in this section.

2. Conceptual versus quantitative under-
standing

From a practical point of view, the conceptual understanding
of the principles of physics is a difficult and in some cases a
very elusive task. This is confirmed by the large body of re-
search dealing with “Student ideas about· · · ”, “Student un-
derstanding of· · · ”, “Students misconceptions about· · · ”,
“students’ misunderstanding of· · · ” and so forth.

For instance, in a study [40] performed in a rather highly
suitable and exceptionally favorable teaching environment, it
was found that students answered correctly some conceptual
questions on the nature of sound propagation in the same pro-
portion before and after receiving instruction on the subject.
In that study, in addition to active teaching instruction, stu-
dents also watched at their own pace video-lectures on the na-
ture of sound propagation by an experienced instructor, Pro-
fessor Paul Hewitt. After the pre-instruction test, the students
were told that each one of the test questions will be answered
in these video-lectures. Similar results on students perfor-
mance have also been reported from a study about why the
seasons change. Students maintained their conceptual mis-
conceptions about the subject even after watching a video that
clearly explained the phenomena [6].

Perhaps more dramatic is the repeatedly reported case in
which students respond to conceptual questions about the be-
havior of physical quantities the same way as students did at
the beginning of the 80’s [36].

Should we be surprised by these findings? Not, at all. As
mentioned by Ambrose and collaborators “It is important to
recognize that conceptual change occurs gradually and may
not be immediately visible. Thus, students may be moving in
the direction of more accurate knowledge even when it is not
yet apparent in their performance” [6]. In fact, this is also ob-
served in well trained physicists. For example, great debates
about the proper understanding of the concept of physics have
taken place among brilliant physicists. To be specific, in this
regard one could refer to the conceptual debates in statistical
and quantum physics and the electromagnetic theory [41-47];
the controversies between Lorentz and Einstein on the con-
ceptual understanding and the meaning of the principles of
special relativity [48]; and in other areas [49,50]]. What is
even more relevant to PER is the fact that many of these con-
troversies persist still today among expert physicists who in-
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vest a great deal of their time thinking about and working
with these matters [51-58]. Additionally, the large number
of “Comment on· · · ” and “Reply to· · · ” articles in physics
journals are also a reminder of the difficulty of understanding
and applying the concepts of physics.

Nevertheless, in spite of the aforementioned controver-
sies on the conceptual understanding of physical principles,
the development of physics has not stopped. One could argue
that the reason for it is rooted in the fact that “nature is too
subtle to be described from any single point of view. To ob-
tain an adequate description, you have to look at things from
several point of views, even though the different viewpoints
are incompatible and can not be viewed simultaneously” [59].
And, as a matter of fact, physics is fortunately a combination
of two basic compatible viewpoints “physical reasoning” and
“quantitative reasoning”.

Correspondingly, in spite of debates on the nature and
significance of the concepts of physics, the intrinsic quanti-
tative nature of physics is what has propelled the develop-
ment of physics, helped by the sometimes questionedScien-
tific Method[60,61]. While the scientific method helps us to
organize and test systematically every single hypothesis (en-
hancing our conceptual understanding) [62,63], quantitative
reasoning helps us to be precise in which body of knowledge
(mathematical models of the physical world) needs to be fur-
ther developed: thosede accordor that are consistent with
observations and experiments [60,64,65].

To make the point clearer, one could think about the kind
of progress physics would have reached had not Kepler strug-
gled to fit the orbit of Mars to an elliptical one, stopping
because of his lack of understanding (provided by Newton
around 80 years later) of why the orbits of the planets were
following the laws he was uncovering. Or think about the
course of knowledge had Galileo given up his view of do-
ing experiments and finding mathematical explanations for
them in favor of the Catholic Inquisition’s conceptual ideas
about the universe. Or think about the current state of de-
velopment in physics had Planck (because of lacking the re-
spective conceptual understanding) restrained himself from
introducing (in 1900) the Planck’s constant to resolve the ul-
traviolet catastrophe. Or think about Einstein not continuing
the development of his Theory of General Relativity because
of the lack of conceptual understanding for not keeping in his
theory the cosmological constant leading to a static universe.

But, have expert physicists today overcome the concep-
tual understanding undermining those developments? The
answer in no. To be explicit in one case, one could see how
physicists are still trying to understand quantum mechanics
at its deepest conceptual level, a problem which arose more
than one hundred years ago, at the beginning of the last cen-
tury, with the introduction of Planck’s constant. Yet, in spite
of the conceptual shortcoming, the mathematical formula-
tion of quantum mechanics and its refinements have allowed
physics, regardless of the conceptual gap, to progress to lev-
els that in today’s world at many physics and engineering re-

search centers, researchers are making conclusive observa-
tions about the nano-scale world for unanimated matter.

Thus, in each one the aforementioned cases, and of the
many others that can be cited, there is no doubt that it was
the quantitative analysis undertaken by the scientist involved
that raised further the value of scientific knowledge, even
when at the time it was hard to provide satisfactory concep-
tual explanations of the phenomena (such explanations came
much later, after further developments of the mathematical
understanding of each phenomena). Without them one would
be talking today about “philosophical or scriptural proclama-
tions” rather than scientific ones. Consequently, each one of
these facts speak about the necessity of having our students
of science and engineering to become properly acquainted
with quantitative reasoning in their early training, even if they
are lacking deep conceptual understanding. In this way they
will be able to further deepen their understanding as they ar-
rive to study upper division courses. In terms of the teach-
ing and learning of physics, an empirical example of how
quantitative reasoning can help students to accurately rea-
son conceptually, even though the students’ initial intuition
might be wrong, can be seen in data from a post-test written
examination given to students enrolled in a first year intro-
ductory physics course at the University of Maine (UMaine).
The formulation of the problem is shown in Fig. 1. At the
start, answering the question intuitively, one student wrote
that the brightness of bulb A should decrease. Then the stu-
dent went on to explain why it would happen that way as
follows: “The brightness should decrease because the bright-
ness of the bulb depends on the current of the circuit. So
when the switch is open to find the current of the two light
bulbs in series you would use the formulaItotal = Vtotal/Rtotal.
So let sayV = 12 v and each bulb acts as a resistor with 2
Ω of impedance. When it’s open there are two resistors in
the circuits soI = 12/(2 + 2) = 3 A compared to when it’s
closed we simplify it to a series circuits so theRtotal of the
parallel would be 1Ω so1Ω + 2Ω = 3Ω asRtotal. V = 12
v so12/3 = 4 A so when the switch is thrown there’s more
current and the bulb is brighter”.

Analysis of this and other students’ answers of this study
will be published elsewhere [68]. Here we should only no-
tice how the use of quantitative reasoning helped the student
to correct his/her initial (wrong) intuition to the correct re-
sult that after closing the switch bulb A becomes brighter.
Thus, this example provides evidence that the learning with
emphasis on equations and stressing the conceptual physical
meaning of the respective symbols in the equation is a very
feasible task. In particular, proper guidance and additional
training in applying physical equations with understanding
will help this student to reason analytically, using symbols,
instead of resorting to numerical values (though we are not
against this practice, specially in more difficult situations),
which is more useful when dealing with situations on which
physical intuition might fail [69] (assuming that resistance of
bulbA is known, a non-intuitive question regarding the cir-
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FIGURE 1. The circuit contains an ideal battery, three identical
light bulbs and a switch. Initially the switch is open. After the
switch closes, does the brightness of bulb A increase? Explain.
This question was given as a post-test written examination to a to-
tal of 23 students at the University of Maine this year (2011). Only
two students attempted to answer the question quantitatively. The
others applied rather unsuccessfully aCase Based Reasoningap-
proach [66], trying to answer the question recalling from memory
some classification patterns devised for conceptual understanding
of this type of problems [67].

cuit of Fig. 1 would be to ask about values for the resistance
of bulbsB andC in order to have a maximum power in that
section of the circuit when closing the switch. This is a kind
of open-ended problem which has multiple solutions.)

From the cognitive point of view, the helpfulness of
quantitative reasoning in conceptual understanding can be
grounded in the assumption that “...the use of mathematics
in physics presupposes measurements. Measurements trans-
form difficult to relate perceptual quantities into a common
numerical ontology that supports precise comparisons and re-
lations” [70].

Thus, while “guiding students through a process of con-
ceptual change is likely to take time, patience, and creativ-
ity” [6], students needs to becomes acquainted in applying
what they have been learning quantitatively, so they can read-
ily use that knowledge appropriately in their more advanced
courses. To make this possibility a reality one needs to de-
vote time to approaching the process of teaching and learn-
ing physics with emphasis on equations and the meaning, not
only of the equation but also of each one of the symbols in
the equation (for example, the meaning and consequences of
y = y0 + mx whenm represents a constant acceleration are
different from the situation on which it (m) might represents
a constant speed. In each case, the symbols,y, y0 and x,
might have different meanings too. For instance, in the case
of m representing constant acceleration,x could represent ei-
ther position, theny andy0 should represent the square of a
velocity, or time, theny andy0 should represent a speed). In
this way, one could minimize PER findings on students be-

ing proficient in manipulating formulas without understand-
ing the meaning of the symbols in the equation [71]. Cor-
respondingly, as pointed out by Professor Hewitt [72] “Isn’t
teaching emphasis on symbols and their meanings in an in-
troductory [physics] course a worthwhile effort?”

3. On why a problem solving strategy is
needed

Another worrying outcome from the learning and instruction
of physics and science research literature is the observed lack
of ability by students to apply a structured reasoning method-
ology that could, among other things, help them to identify
the nature of a problem as well as the principles and quan-
titative models to solve it. An example can be found in a
study [22] reporting that out of 22 students solving a set of
six physics problems, 9 “Analyzes the situation based on re-
quired variables. Proceeds by choosing formulas based on the
variables in a trial and error manner.”, 6 “Proceeds by trying
to use the variables in a random way.”, 2 “Proceeds by trying
to ’fit’ the given variables to those examples.”, and 5 “Plans
and carries out solution in a systematic manner based on that
analysis.” Similar observations can be drawn from the analy-
sis of interview excerpts reported in other studies [35,17,71].

This lack of a structural way of reasoning is also observed
in the responses to the circuit question presented in the pre-
vious section (see Fig. 1). In relation to the same question,
another student reasoned as follows: “No, Decrease. Adding
more resistance drop the current. Using the #’s I used, power
decreases∴ Brightness goes Down.” Writing the answer the
student wrote Brightness= P = IR2 (she/he wrote the fol-
lowing numbers next to every circuit elementV = 6 v for
the battery and 2Ω at each bulb). The student continued
with A + B =4 Ω and A + (1/B + 1/C) =3 Ω. Then
she/he wroteV = IR; V/R = I =⇒ 6v/4 Ω = 1.5 A;
V/R = I =⇒ 6v/3Ω = 2 A; P = IR2 = 1.5 ·(4)2 = 24 W
and2 · (3)2 = 18 W.

In addition, several studies have shown how initial
thought processes block students’ thinking preventing them
from going beyond a circular way of reasoning [73,74]. To
mention an example, in analyzing the interview of a student
solving a physics problem it is reported that “Dee-Dee was
very unwilling to give up her qualitative ideas about force
and motion, even though she has already written down the
correct algebraic form of Newton’s second law. Her qualita-
tive and quantitative dynamics knowledge appear to be asso-
ciated (she articulated them very close together in time), but
they have not been reconciled into a consistent knowledge
structure” [21].

Thus, in all of the mentioned cases we can observe in
most of the students the lack of a structured and systematic
reasoning strategy which could guide them to further analyze,
verify, and make sense of the solution procedure they use
when solving a problem. Additionally, this fact has also been
reported in many studies comparing novice and expert rea-
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soning abilities [69,18,75,39]. The most common observed
behavior in students is the plugging of numbers in equations
without much hesitation. As a matter of fact, in a study [76]
on which students were asked to write down self-reflections
on problem-solving one of them wrote “Instead of learning
the material and then doing the assignments, I would just try
to search for equations in the text that would solve the prob-
lem, and if I couldn’t figure it out, just guess.” Other student
wrote “The way I approach physics problems is by looking
for a formula to follow. I will start a problem, look in my
notes for a formula, look on the discussion board for a for-
mula, look on the formula sheet for a formula, and lastly,
look in the book for a formula. This is probably exactly I
will approach some problems in Computer Science. If I need
to implement a function, I will need to find the syntax for
the function and a little excerpt saying what inputs it has and
what outputs it has.”

Unfortunately, that behavior is encouraged in some in-
structional settings [77] and throughout the summary of equa-
tions at the end of each chapter on commonly used textbooks.
And it is further stressed by the way illustrative examples
are worked out in those textbooks [72,78,79]. Correspond-
ingly, the problem solving methodologies commonly found
in many textbooks have been heavily criticized in PER litera-
ture [80,4]. And we agree with such criticism because what is
preached and mostly illustrated in commonly recommended
textbooks for introductory physics is a mechanical and static
problem solving methodology: find an equation, plug in the
numbers, and get the answer, taking away the joy of finding
and exploring the different ways of solving a problem and the
making sense not only of the solution procedure but also of
the obtained answer.

More disappointing, textbooks examples end when the
answer to the problem is found. At most, in some few cases,
there is a checking for dimensional consistency of the result,
and in very rare cases one can find a discussion about the
feasibility of the obtained result. But in general, there is no
further exploration of the solution procedure (i.e. whether
or not it is a logically applicable to the situation at hand)
and no advice is given to students on how they can be cer-
tain that the followed solution procedure is correct (as a mat-
ter of fact, many wrong solution procedures found in text-
books have been reported in the literature without being cor-
rected by textbook writers [81,84]). More importantly, no
advise is given to students regarding the fact that some incor-
rect solution procedures can lead to a correct solution [79]
or that some solution procedures can be applied or transfered
to solve other problems in different contexts (just to men-
tion one example, the computation of the gravitational and
the electrical field of a mass and a charge distribution respec-
tively share some similarities, but that is not mentioned in
most commonly used textbooks. Additional examples on this
matter are mentioned in Ref. 85).

Correspondingly, students don’t get trained in developing
a sense of solving problems by analogy. And they might even
think that the mathematics used in physics is different from

the mathematics they learn in their calculus classes [86]. Fur-
thermore, in most commonly used textbooks, physics equa-
tions are not fully discussed to properly connect the physi-
cal or conceptual meaning of each symbol with the place the
symbol has in the equation (i.e. why and what does it mean
that the symbol is multiplying? or why and what does it mean
that it appear as a negative exponential factor? What happens
if the value of a symbol increases?, and so on). This lack
of further analyzing the significance of the symbols in equa-
tions might explain difficulty of students reasoning in situ-
ations involving multivariable equations [32,87-89]. More-
over, the inadequacy of text-book worked-out examples to
enhance students learning has been made evident in a study
by Chi and collaborators [90]. In the study it was found that
the textbook worked-out examples did not provide any clue
for students make generalizations of the underlying domain
theory, a necessary training in order to help students to de-
velop important skills to successfully transfer and apply the
acquired knowledge in more complex contexts.

Accordingly, the need for explicitly incorporating on the
teaching of physics a well structureddynamic problem solv-
ing strategy(introduced and explained in the next section) is
thus justified. As a matter of fact, in the same way as theSci-
entific Methodcan be used to decide among competing theo-
ries, adynamic problem solving strategyis a means by which
students can guide their thoughts in deciding on the plausi-
bility or reasonability of each one of the steps taken when
solving a (physics) problem. Furthermore, adynamic prob-
lem solving strategyhelps students to make sense of what
they are learning by fitting it into what they already know or
believe. Via the questioning of intermediated results and ask-
ing questions about what is being done, students can detect
flawed/wrong conceptual and/or computational procedures.
As students gradually make reflections on what is being done
while solving a problem, they start to create or strengthen
their own “mental library” of what works and what does not
work. As quoted by the Nobel Laureate in Economic Sci-
ences (1978) Herbert Simon (cited in Ref. 6) “Learning re-
sults from what the student does and think and only from what
the student does and think. The teacher can advance learning
only by influencing what the student does to learn.”

Thus, introducing high school and university students
to a dynamic problem solving strategywill enhance and
strengthen their argumentative thinking skills and will also
help them to organize their reasoning skills by focusing their
mental effort. It additionally could help to internalize early
in students the fact that,

(i) the process for solving scientific problems requires cre-
ative thought, the use of available resources (books,
computers, articles, etc.), and personal interaction with
peers and colleagues.

(ii) There may be no simple answer to questions that have
been posed. In some cases the outcome of a calcula-
tion can be contrary to what is expected by physical
intuition. In other instances an approximation that ap-
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pears feasible turns out to be unjustified, or one that
looks unreasonable turns out to be adequate.

(iii) There might be several competing “correct” answers
based on available knowledge and the careful and judi-
cious application of adynamic problem solving strat-
egyis necessary to pick the correct one. And

(iv) the full understanding of a problem and its solution re-
quires both the quantitative formulation of the problem
and the conceptual meaning of the symbols that ap-
pear in the equation(s) describing the problem quanti-
tatively.

In short, the learning of adynamic problem solving strat-
egywould be the starting point to generate a culture of rea-
soning and of making sense in the classroom, a necessary
condition in “preparation for future learning” [91,92,1,2].

4. A dynamic problem solving strategy

An important issue to be resolved in PER is the lack of an
integrative theoretical framework that can make sense of the
richness of the large amount of empirical results collected
via the manyResearch Based Instructional Strategies(RBIS)
generated in the field (for a partial listing of RBIS see [3]).
In this regards, some obstacles need to be overcome. In ad-
dition to controversial outcomes mentioned in the introduc-
tion of this article concerning some RBIS, important ongoing
debates alluding to fundamental issues associated with the
psychology of learning physics [93,94] indicate that we are
still far from reaching such a theoretical framework. Un-
til then, inspired by the scientific method framework, we
find it plausible to enhance the teaching and learning of
physics viadynamic problem solving strategiesin order to
strengthen students’ quantitative problem solving skills, a ne-
cessity which is further stressed by the occurrence of some
disasters [95,96].

In general terms, adynamic problem solving strategy, not
to be confused withmodes of reasoning(see below), could
be constructed from the following steps [79]:

(1) understand and describe the problem;

(2) provide a qualitative description of the problem;

(3) plan a solution;

(4) carry out the plan;

(5) verify the internal consistency and coherence of the
equations used and the applied procedures; and

(6) check and evaluate the obtained solution.

One step more or one step less, the aforementionedprob-
lem solving strategylooks similar, you might rightly won-
der, to any other problem solving strategy commonly found
in textbooks and which have been heavily criticized in PER

literature [80]. In fact, as mentioned earlier we agree with
those criticism. For one additional reason, once introduced,
the strategy is not consistently applied in the textbook il-
lustrative examples, much less in the student and instructor
companion manuals. For another, the steps of the problem
solving strategy are presented as rigid steps which need to
be followed in the particular order they are written and ap-
plied without connection or interaction between them (cer-
tainly such an inflexible problem solving strategy can only
be of limited value). And finally, for another additional rea-
son, textbooks end of chapter problems are constructed and
organized in such a way that students only need to find the
right equation to plug-and-chug some numbers to get the an-
swer to the problem. Correspondingly, consequences of such
strategies are reflected in the findings of PER studies ([80]
and references there in).

On the other hand, a study comparing a typical text-
book problem solving strategy with a consistently and co-
herently applied one reports the overwhelming advantage of
the later in relation to the former [97]. To be specific, the
authors of the comparative study propose a prescriptive theo-
retical model of effective human problem solving according
to which the problem solving process embraces three major
stages:

1) generation of an initial problem description (including
qualitative analysis) which is helpful in the construc-
tion of a problem solution;

2) obtaining the solution using appropriated methods;

3) evaluation and improvement of the solution. General
comments on the nature and significance of each stage
are given in Ref. 75.

In the referred work [97], Professors Heller and Reif dis-
cussed further details of the controlled study they performed
comparing the quantitative problem solving performance of
three groups: one guided by their proposed problem solv-
ing strategy, other group guided by typical textbooks problem
solving directions, and a comparison group working without
any external guidance. In addition to showing the remark-
able superiority of the participants trained according to the
authors methodology, three major lessons can be drawn from
the study:

a) that participants guided by a problem solving strategy
performed better than those who did not have any guid-
ance;

b) that “completeness and explicitness of procedures for
constructing initial problem description”, missing from
textbooks problem solving strategies, are crucial for at-
taining better problem solving performance; and
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c) that the participants implemented any systematic prob-
lem solving procedure fairly easily once they became
familiar with it, but to get to that level, the procedure
needs to be applied constantly, consistently and coher-
ently because “human subjects tend to be fallible and
distractable, prone to forget steps in a procedure or to
disregard available information.”

The authors comment that after the resistance was overcome,
some participants remarked that the steps “really work” and
that the problems seemed suddenly “easy” to solve, show-
ing in turn that students beliefs could be changed via a well
designed and applied problem solving strategy, while at the
same time strengthening their computational skills (similar
results are reported in a study in mathematics [98]. The au-
thor mentions that “Compared with the students who had re-
ceived traditional mathematics instruction, the students who
had received problem-solving instruction displayed greater
perseverance in solving problems, more positive attitudes
about the usefulness of mathematics, and more sophisticated
definitions of mathematical understanding.”)

At this point one now turns to the topic of this section
trying to answer the question: what, then, makes adynamic
problem solving strategy?

First, the implementation of the methodology is not an
inflexible static process (i.e. there is not a specific order for
implementing the considered steps and one can avoid some
of the steps or even add a new one). For instance, working
via inductive reasoning one could start from the answer to
an unknown problem (i.e. an observed natural phenomena)
and work backward to provides a well posed problem whose
solution is the observed answer. Students can be trained in
this process via well designed worked out exercises by pre-
senting them with a careful and detailed backward analysis of
the followed solution process. More importantly, verification
of a solution procedure via backward analysis in addition to
helping students build confidence in the obtained solution, it
also guides them to organize information in their memory by
making connections with prior knowledge, a condition which
increases the accessibility of useful knowledge.

Thus, going back and forth in the application of ady-
namic problem solving strategyprovides the required feed-
back that experts apply when dealing with the solution of new
situations. This flexibility helps to avoid getting trapped or
stuck by top-of-the-head thoughts, preformed convictions, or
intuitions that don’t help in going forward [73,74]. One just
continue developing and applying (mentally and/or in writ-
ing) thought processes until a solution is found, further ana-
lyzed and reconciled with intuitions. We can either change
the wrong intuition (i.e. as one student did when solving the
exercise of Fig. 1) or strengthen the correct one. Additional
guidelines on what sort of analysis should be included can
be extracted from the work of Professors Polya [99], Schoen-
feld [100,101], and Reif [102]. This way of building under-
standing can be contrasted with the mechanical way in which
textbook’s illustrative examples are worked out.

Second, proper application of adynamic problem solv-
ing strategyrequires the consistent use of any applicable
mode of reasoning: deductive and/or inductive reasoning;
reasoning via analogy and/or via counterexamples; reasoning
by reductio ad absurdum; and many others, including rule,
case, model, and collaborative-collective modes of reason-
ing. These modes of reasoning are rarely mentioned in com-
monly used introductory physics textbooks. Nevertheless, in
their mathematics courses students might have already stud-
ied some of these modes of reasoning (i.e. when proving by
inductive reasoning the convergence of a sequence), and it is
in their physics courses where they should have the opportu-
nity to further explore such modes of reasoning from different
perspectives, and became acquainted with them.

Third, a very important skill in applying adynamic prob-
lem solving strategyis the ability to ask questions. Ques-
tioning, particularly at the higher cognitive levels, is an es-
sential aspect of problem solving. By asking questions while
solving a problem one becomes engaged in a process of self-
explaining components of the underlying theory being ap-
plied to solve the problem and that were not explicitly ex-
posed when learning the theory. Asking questions also help
in the detection of “comprehension failures” and to take ac-
tion to overcome them. As put by Chi and collaborators
“Good students ask very specific questions about what they
don’t understand. These specific questions can potentially be
resolved by engaging in self-explanations” [90].

Thus, at each step of adynamic problem solving strategy
one needs to stop and ask ourselves about the significance of
what has been done so far, trying to find meaningful associ-
ations between the new knowledge being applied and related
concepts one already might know. Examples of questions
to be asked constantly include: how this knew knowledge
is related to what I already know?; in which context I have
seen this problem before?; in which context could I use this
piece of knowledge?; how these seemingly disparate discrete
pieces of knowledge be functionally and causally related?;
does the principles to be applied can be used in this situa-
tion?; is this approach the right one? How can I be certain of
it? Are you sure you can do that? Fortunately, the education
research literature has provided a good deal of research on
how one can help students develop the habit of asking ques-
tions [103-107]. But, students will not get the benefit of this
process unless they are explicitly taught in using them. In
this sense, being an intrinsic part of adynamic problem solv-
ing strategy, teaching it will develop on students the habit of
asking questions, a process throughout which students could
build new useful knowledge that they can then use in further
developments as they engage themselves in productive think-
ing and learning, not only within the teaching and learning
environment but also outside it.

We finalize this section in the hope of have made it clear
that the delivery of instruction following adynamic problem
solving strategywill create the habit on students to look at
problems carefully and from multiple perspectives, choosing
to be more mindful about the making of sense of each solu-
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tion procedure as they engage themselves in the exploration
of alternatives ways to solve a problem and to find explana-
tions. The development of such way of thinking certainly
requires time, effort, practice, self-reflection, and feedback
(from peers and the instructor). This is how experts become
experts, developing new intuition to cope properly with situ-
ations where there is no right answer.

4.1. Illustrative example

In general, most problem solving strategies found in the lit-
erature only mention checking the feasibility of the obtained
final result. Since some wrong procedures could lead to right
results, we have found it necessary to include an additional
step (step 5 mentioned at the beginning of this section) in
constructing adynamic problem solving strategyso faulty
reasoning schemes could be detected [79].

To illustrate the aforementioned thoughts, one could men-
tion the fallacious application of the idea ofseparation of
variable (borrowed from solving partial differential equa-
tions [108]) to prove in two dimensions the constant accel-
eration kinematic relationshipsv2

x = v2
0x + 2ax(x − x0)

and v2
y = v2

0y + 2ay(y − y0) (here ~a = axx̂ + ayŷ,
~v = vxx̂ + vyŷ, and~r = xx̂ + yŷ represent respectively
the acceleration, the velocity, and the displacement of a parti-
cle, while~v0 = v0xx̂+v0yŷ, and~r0 = x0x̂+y0ŷ represents
respectively initial velocity and initial position of the particle.
x̂ andŷ are orthogonal unit vectors).

Starting fromd~v = ~adt, dot product both sides of this
equation by~v and rearrange terms in the form

d(v2/2) = ~a·~vdt = ~a·d~r,

which after integration, considering~a = constant, yields
v2 = v2

0 + 2~a·(~r − ~r0). This equation can be written in
the form

v2
x− v2

0x− 2ax(x−x0) = −(v2
y − v2

0y − 2ay(y− y0)). (1)

So far, there is nothing wrong in any of the given steps (in
passing, let’s mention that by asking questions according to
adynamic problem solving strategya student could gain con-
ceptual understanding about the obtained relationship: when
it is applicable?, why time dependence isn’t explicit? Can it
be applied to free fall?, can it be applied to projectile motion?
if so, under which conditions?, etc.)

The faulty reasoning starts when a student, wrongly in-
voking theseparation of variabletechnique, considers that
Eq. (1) is in that form and, according to the technique, the
student proceeds to write thatv2

x − v2
0x − 2ax(x − x0) = α

andv2
y − v2

0y − 2ay(y− y0) = −α, with α = constant. Now,
considering that at~r = ~r0, ~v = ~v0, thenα = 0 and the proof
is obtained, the student think.

Thus, by means of following typical textbook problem
solving strategy, the student, without questioning any of the
solution steps, will consider that the proof is correct because
the obtained answer is correct, and to show that that it is so

the student could point to any introductory physics textbook
on which the same result is obtained by other procedures.

At this point one needs to mention that it is really hard to
convince students that despite leading to the correct answer,
a solution procedure could be mistakenly wrong. How, the
student might wonder, can it be that a wrong solution proce-
dure could yield the right response?. That does not make any
sense!

How a dynamic problem solving strategycan be helpful
in making explicit the faulty reasoning? The trick is on the
step 5 mentioned at the beginning of this section: once a solu-
tion procedure path has been established, one needs to verify
the consistency of each given step (a missing step from any
textbook problem solving strategy). And this can be attained
by working backward after the solution is obtained and by
asking questions and each step, wondering and justifying the
rightfulness of each one.

In this case, before calling for the separation of variable,
the student needs to ask about whether the technique is ap-
plicable or not to the situation at hand. Since the method
of separation of variable comes from a differential equation
context, a first question to ask, following adynamic problem
solving strategy, is how to write Eq. (1) so it looks like a
differential equation. This can be achieved by writing down
the definition for each velocity component in the equation,
namelyvx = dx/dt andvy = dy/dt. After doing so it turns
out that the working equation is actually a nonlinear first or-
der differential equation on which the time variablet is com-
mon to both sides of the equation, making it impossible to
apply the separation of variable procedure (which requires
that each side of the Eq. (1) be a function of only indepen-
dent variables each to another. In this case both sides of the
equation turns out to be dependent of the timet variable).

Another way to settle the issue following adynamic prob-
lem solving strategyis to wonder whether a counter example
can be built to rule out the use of the separation of variable
in this case. It turns out that recalling basic calculus a very
simple algebraic problem can be posed to see if the technique
is or not applicable: solve(2x− x2) = −(2y − y2).

Applying the proposed separation of variables, instead of
an infinite set of solutions, only a finite set of solution will be
found (namelyx = 0 andy = 0 or y = 2; x = 2 andy = 0
or y = 2).

Nevertheless, in spite of the evidence, some students
might be still reluctant to accept the wrongness of their solu-
tion procedure and can start to mention inexistent theoretical
frameworks, like aseparation of coordinateswithout being
able to provide any reference to backup such a reasoning. In
this situation, only self-reflection and careful analysis of the
quantitative procedure will be the way to solve the dilemma.

Episodes like this are not difficult to find in PER litera-
ture [71], and they can be described as “reasoning to obtain
the desired result”, something that brings to memory what is
called Einstein’s biggest mistake [109,110], which is asso-
ciated to the introduction by Einstein of a cosmic repulsion
term in order to model, in spite of the mathematical evidence,
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a static universe. Could this be called Einstein’s conceptual
misunderstanding? or Is it simple a case in which a good
thought blocks a better one? [73,74]

5. Concluding remarks

In the understanding that physics is essentially a quantitative
based subject, in this article we have largely argue that the
teaching of solving problems in introductory physics courses
via adynamic problem solving strategycan help students to
develop quantitative reasoning skills (necessary in the short
term), while enhancing their capabilities to develop concep-
tual understanding via the analysis of the equation(s) repre-
senting physical phenomena followed by the correct interpre-
tation of the physical meaning of each symbol in the respec-
tive equation(s) [111] (for instance, as mentioned earlier, the
meaning and consequences ofy = y0 + mx whenm repre-
sents a constant acceleration are different from the situation
on which it might represents a constant speed. In each case,
the other symbols,y0 andx, might have different meanings
too. For instance, in the case ofm representing constant ac-
celeration,x could represent either position, theny andy0

should represent the square of a velocity, or time, theny and
y0 should represent a speed).

This view of enhancing the teaching and learning of intro-
ductory physics courses viadynamic problem solving strate-
giesis de accord with the finding that ”Good students (those
who have greater success at solving problems) tend to study
example-exercises in a text by explaining and providing jus-
tifications for each action. That is, their explanations refine
and expand the conditions of an action, explicate the con-
sequences of an action, provide a goal for a set of actions,
relate the consequences of one action to another, and explain
the meaning of a set of quantitative expressions” [90].

Our proposal is further reinforced by the fact that teach-
ing directly or indirectly (i.e. via scaffolding tutoring) spe-

cific problem-solving strategies does improve students’ sci-
entific critical thinking and reasoning skills [91,112-114]. As
mentioned in a study “When students used the procedural
specification, they did so properly and obtained correct an-
swers - although they did not always implemented all steps
explicitly and resorted to some shortcuts” [115]. All of that is
in agreement with the fact that learning to approach problems
in a systematic way starts from learning the interrelationships
among conceptual knowledge, mathematical skills and logi-
cal reasoning [116]. And it is in physics courses where stu-
dents can strengthen their quantitative reasoning skills and
even become acquainted with innovative non-standard ways
of solving problems [117,118].

Thus, since the process of teaching and learning can
rarely be done in a completely closed and controlled envi-
ronment, a well learneddynamic problem solving strategy
will equipped students with reasoning capabilities for them
to properly address advice (easily found on the Internet and
in some articles [24]) encouraging to memorize results and to
ignore the mathematical analysis leading to them.

In other words, considering that “it is not possible to
expect novice students to become more successful problem
solvers by simply telling them the principles which govern
the way experts sort physics problems” [90], a well struc-
tured problem solving strategy taught as a dynamical process
offer a feasible way for students to learn physics quantita-
tively and conceptually, while helping them to reach the state
of anAdaptive Experthighly skillful on innovation and effi-
ciency:a preparation for future learning.
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44. G. Bacciagaluppi and A. Valentini,Quantum Theory at the
Crossroads: Reconsidering the 1927 Solvay Conference(Cam-
bridge University Press, 2009). Available at http://arxiv.org/abs
/quant-ph/0609184v2.

45. D. Lindley, Boltzmanns Atom: The Great Debate That
Launched A Revolution In Physics(Free Press, 2001).

46. K.L. Caneva,The British Journal for the History of Science13
(1980) 121-138.

47. E.T. Whittaker,A history of the theories of aether and elec-
tricity : from the age of Descartes to the close of the nine-
teenth century.(Longmans, Green and CO. 1910). Available at
http://www.archive.org/details/historyoftheorie00whitrich,

48. M. Janssen,Physics in Perspective (PIP)4 (2002) 421-446.

49. M. Lange,Am. J. Phys.79 (2011) 380-388.

50. M. Bunge,Am. J. Phys.34 (1966) 585-596.

51. R.H. Swendsen,Am. J. Phys.79 (2011) 342-348.

52. A. Hobson, by N.G. van kampen [am. j. phys. 76 (2008) 989-
990].Am. J. Phys.77 (2009) 293-293.

53. N.G. van Kampen,Am. J. Phys.76 (2008) 989-990.

54. R. Baierlein,Am. J. Phys.74 (2006) 193-195.
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