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Modeling an urban highway: A statistical physics
point of view for a nonphysical system
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Nowadays, methodologies coming from studying physical systems are being applied to the description of a wide variety of complex systems.
In particular, one can study thermodynamical methods to describe the overall behavior of many systems, independent of the precise micro-
scopic construction. In this paper, a real Mexican highway is studied as a cellular automata system using available official data released by
the Mexican Government. The system studied is the Cuernavaca bypass, which was modified in 2016. Official data allows to compare the
highway before and after the modifications. As more complex thermodynamic variables such as entropy are difficult to define and measure
in discrete traffic models, it is shown how other more simple variables such as the standard deviation can be enough to have a complete
analysis of the system. More specifically, it is shown how standard deviation can be seen as a measure of order. Results from the study of
the highway show how, taking a minimal measure such as ordering the transit of heavy trucks can reduce up to 32% the travel time from one
end to another. Otherwise, travel times stays practically constant with respect to the original system.
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1. Introduction

Nowadays physics are contributing to methodologies, which
have been successfully used for decades to address problems
of many bodies, describing phenomena of social, economic
and biological systems. In general, the methodologies of
physics are being applied to the description of a wide vari-
ety of complex systems. Among those, a cellular automaton-
based description has become the most fruitful due to its the
relative simplicity and flexibility.

For instance, a few decades ago Sznajd-Weron [1,2] pro-
posed an Ising model to model the decision-making processes
in parliaments. The idea is straightforward, members of the
parliament raise their hands driven by the interactions with
their neighbors and an external pressure, due to public opin-
ion or to a decision of the party to which they belong. For
Sznajd, the parliamentary dynamics seemed similar to the be-
havior of magnetic particles interacting with each other and
with the presence of an external field.

On the other hand, in a pioneering work, Montroll
et al. [3] show how thermodynamics could describe non-

physical systems and addressed, in particular, the example
of vehicular traffic. The cited work illustrates how the stan-
dard deviation of an average quantity can be associated with
the entropy of the system. Nowadays, one can study thermo-
dynamics to describe the overall behavior of many systems,
independent of the precise microscopic construction of each
system using simple models, which are more amenable to ef-
ficient simulation, and potentially to statistical analysis. The
fact that the dynamics of cellular automata (CA) can be im-
plemented in the form of intuitive rules has allowed to include
rather complex aspects of the behavior of the part in a rather
simple way [4].

CA are recognized as a simple modeling paradigm, which
offers to graduate students an alternative method to the com-
monly used analytical approach, in order to study many com-
plex systems. In this type of models attention is paid explic-
itly to each individual integrating the studied system and to
the interactions among these generated by the the mutual in-
fluence [4]. Space is discrete and consists of a regular grid
of cells, where each cell is in a particular state belonging a
finite set of states. All cell states are updated synchronously
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in discrete time steps. Updating obeys a finite set of local
interaction rules that can have a probabilistic influence. The
new state of a cell is determined by the actual state of the
cell itself and its neighbor cells. This local interaction allows
to capture micro-level dynamics and propagates it to macro-
level behavior. Thus, CA can be viewed as discrete approxi-
mations to particles dynamics and transport phenomena.

The aim of this work is multiple. Our general objective is
to study a real highway as a cellular automata system using
available official data released by the Mexican Government
while using statistical physics tools. The highway studied is
the Cuernavaca bypass: 27.3 kilometers crossing the southern
Mexican city of Cuernavaca. The highway is not only impor-
tant in a local metropolitan context, but also in the transport
of goods between the Pacific Ocean and Mexico City. The
bypass was modified, adding lanes to the existing ones and
modifying the topology of the highway. However, questions
have arisen in present times about its functionality, mainly
because of construction problems finishing in a meters-wide
crack in the middle of the highway. In that sense, the main
question to be answered in the present work is: do the mod-
ifications to the Cuernavaca bypass improve the mobility of
vehicles compared to the original highway?

The model used is based in the Nagel-Schreckenberg
model [5], where the cells of the highway can be occupied or
not by a vehicle. As space and time is discrete, so it is speed.
A maximum speed is imposed. To study the system, basic
tools such as the standard deviation of the speed are used to
describe the behavior of vehicles on a highway. Indeed this
macroscopic measure can be used to detect phase transitions
in the system when other macroscopic variables such as en-
tropy or temperature do not appear as “organically”.

In Sec. 2, the studied highway and its modifications are
presented. Then, in Sec. 3 the model used is presented.
Available data processed and used to analyze the system is
presented in Sec. 4. A short introduction to the different
phases that are found in traffic systems and how they can be
linked with physics is done in Sec. 5. Also, in the latter sec-
tion the methods to use the standard deviation as a measure
of order are presented. Finally, results and conclusions are
shown in Sec. 6 and 7 respectively.

2. Characteristics of the Highway

The idea of the Cuernavaca bypass is to have a highway that,
we previously said, allows to cross in a North-South direction
the city, thus having a double objective: to allow local traffic
of Cuernavaca to have a quick way to transport themselves
within the city, and to allow the transportation of vehicles
going from Mexico City to the Pacific shore. In that sense,
the bypass is part of a larger highway with ends at Mexico
City and Acapulco. Governmental modifications only con-
sider the 14.5 kilometers of the bypass crossing Cuernavaca.
However, as the metropolitan zone receives local traffic from
other counties surrounding Cuernavaca, the studied system

is extended by 12.8 kilometers to the south, resulting in a total
of 27.3 kilometers. Governmental modifications are exposed
in Sec. 2.2.

The North-South sense of the highway is called D1. Be-
fore the modifications, the road was composed of two lanes.
The South-North sense is designated as D2. Originally, D2
was also a two lanes road for the first 26 km. In the last
1.3 km, an additional lane was added to the right of the high-
way.

2.1. Topographical elements

Along the highway, two different topographical elements re-
duce the maximum speed of vehicles. First, dangerous curves
at the geographical north of the system diminish maximum
speed to approx.vmax = 100 km/h in both senses, D1 and
D2. These curves are located along the first (last) two and a
half kilometers of D1 (D2) and two kilometers after (before).
The curves can be located in Fig. 1. In the northern part of
the highway, a humanoid face is delimited by the road. Dan-
gerous curves are here the chin and the nose of that face.

The mountains surrounding Cuernavaca at the north cre-
ate a continuous slope which affects heavy transportation
when driving north. Slope has such an importance that their
maximum speed is diminished to approx.vmax = 60 km/h.
The effect on the slow vehicles by the slope is only modeled
at the northern third of the bypass, and only applies to D2.

FIGURE 1. Map of the Cuernavaca’s bypass. The modification
goes from the northern end to the point where the white window
starts. Obtained from Google Maps; Map Data:c©2018 Google,
INEGI.
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FIGURE 2. Official scheme of the modifications made to the Cuernavaca bypass (in Spanish).

2.2. Modifications done to the highway

The modifications done by the Mexican Government can be
summed up in two: the addition of three lanes to each sense,
resulting in a highway of ten lanes taking into account both
senses, and the creation of an “express pass” in the four mid-
dle lanes (two lanes in each sense) where no ramp allowing
any car to enter or exit exists. A scheme of this is presented
in Fig. 2. This results in the distinction of three different
systems for analyzing in each direction:

• D1 Original - two lanes during 27.3 km with 11 ramps;

• D1 Express Pass - two lanes during 27.3 km with
5 ramps;

• D1 Local Traffic - three lanes during 14.5 km and two
lanes during the last 12.8 km with 12 ramps;

• D2 Original - two lanes during 16 km and three lanes
during the last 1.3 km with 10 ramps;

• D2 Express Pass - two lanes during 27.3 km with
5 ramps;

• D2 Local Traffic - two lanes during first 12.8 km and
three lanes during last 14.5 km with 10 ramps.

3. Model

An already studied CA model [5-8] has been used to ana-
lyze the Mexico City-Cuernavaca highway. However, the
past studies focused on the non urban part of the highway
where only one ramp is present.

Even if, without a doubt, there are more complex and ac-
curate traffic models [9-13], the model used here was chosen
because of two reasons: the simplicity of the model makes it
a minimal one. In that sense, there are only a small number
of parameter to adjust and the rules it follows makes it very
intuitive and straightforward to use. Also, the results it re-
produces are in accord with the highways observed in daily
life [8,14].

NaSch model with anticipation parameter

A CA model based in the Nagel-Schreckenber (NaSch)
model [5] and modified to have an anticipation parameter [8]
is used. The modifications are fully detailed in [7,8,15]. A
discrete array ofL cells and open boundaries is used. Each
cell is considered to have a length of 7.5 m, and is rather
used by a vehicle or not. Each vehicle has a discrete position
x ∈ {0, 1, . . . , L} and speedv ∈ {0, 1, . . . , vmax}. The time
step is considered to be 1 second.

Two types of vehicles are used: a fast one representing
common 3/5-doors cars in good conditions, and a slow one
representing heavy vehicles such as trucks or buses. Fast ve-
hicles are denoted as type 2 vehicles. They have a maximum
speed ofvmax = 5 cells/s = 135 km/h and a length of one
cell. Slow vehicles are denoted as type 1, having a maximum
speed ofvmax = 3 cells/s = 81 km/h and a length of two
cells.

Having two vehiclesi andp (being the latter in front of
the former) on the same lane, with positionsxi, xp and speeds
vi, vp respectively, then the distance or empty cells between
them is defined asdi := xp − xi − lp. Wherelp is the length
of vehiclep. The positionsxi andxp are considered as the
cell number. So, if the vehiclep is in celln, thenxp = n. In
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the case of slow vehicles, their position is considered to be as
the front cell.

Wolfram studied Cellular Automata during the second
half of the twentieth century and for the first decade of this
century [16]. The goal was to create a framework where a
model based in discrete space and time could create complex
(in the most basic sense of the word) behaviors with simple
rules. In that sense, each discrete part of the space, or “cell”,
follows the exact same rules as the others with the exact same
order. An interesting feature of Cellular Automata (then de-
fined by the space and the set of rules) is their scalability.
“Complexity” can be escalated not only by the number of
rules but also with how the rules make cells interact between
themselves.

Modern computational tools allow implementing a set of
rules in two different ways: parallel and serial. The former
refers to parallel computation using GPUs and CPUs. Serial
implementation, as the names suggest, refers to the execution
of tasks by an only set of processors in a specific order. Nagel
and Schreckenberg [5] follow a serial order.

As said before, the highway studied here is composed by
a discrete space. Only the right set of rules are needed in
order to model a proper behavior of the cars in it. In order
to do so, Nagel and Schreckenberg [5] decomposed how a
driver-car works in four different actions. Intuitively, drivers
want to go as fast as possible. However, they are limited by
different factors like a maximum speed limit, other cars, or
random incidents (sun glare, people crossing, etc.). Drivers
thus need to find how much they can accelerate taking into
account all these elements. Nonetheless, other elements are
involved here. There is not one unique kind of driver, but a
whole spectrum. A set of different driving styles is allowed,
but only one is chosen and fixed. Car crashes are not allowed.
The decomposition of the driver-car is thus put into four rules
as in [5,14].

R1 – Acceleration If vi < vmax, the speed of
the cari is increased by one unit.

vi ← min(vi + 1, vmax). (1)

R2 – Randomization If vi > 0, the speed of
the cari is randomly decreased by one unit with prob-
ability R.

vi ← max(vi − 1, 0) with probability R. (2)

R3 – Deceleration If vi > ds
i , with ds

i = di +
d(1 − α)vpe, whereα ∈ [0, 1] and dxe denotes the
smallest following integer fromx, then the speed of
vehiclei is decreased.

vi ← min(vi, d
s
i ). (3)

R4 – Movement The vehiclei is moved for-
ward with the new speed computed by R1-3.

xi ← xi + vi. (4)

The first three rules modify the speed independently of
the position. The fourth rule gives the new position of the
vehiclei considering the new speed. R1 and R3 assure that
all vehicles will go to the maximum speed available and will
slow down when needed to avoid a crash. The second rule has
a stochastic parameter to model random deceleration while
driving. In comparison with the NaSch model [5], we com-
mute R2 and R3 to avoid accidents.

The deceleration rule (R3) involves a parameterα to
model different types of driving.α is calledanticipatory
driving parameterset. Whenα = 1 the speed of the vehi-
cle ahead is not considered. This case can be compared to a
very aggressive style of driving when the vehicle behind will
be very close to the one ahead. Getting closer to0 then means
a very cautious way of driving, leaving big distances between
one car and another.

Merging into other lanes

When expanding the model to several lanes, each one of them
follows the same set of rules. The possibility from the vehi-
cles to merge into other lanes is available with considerations.

Mexico’s laws prohibit a vehicle to pass another one by
the right lane. This creates a distinction of lanes, being the
extreme left lane as the one where vehicles with greater speed
drive and the extreme right one where slow drivers are found.

In that sense, a prohibition to right-pass for all types of
vehicle is imposed. Also, slow vehicles are limited to be in
the left lane only when passing is needed. In the case where
the highway has three lanes, slow vehicles are limited to drive
on the middle and right lane only. Thus, the conditions for
every vehicle to merge are as follows:

Incentive The vehicle ahead must go slower.

ds
i < vi. (5)

Safety 1: The vehicle behind on the objective
lane must go slow enough to avoid a crash.

ds
b > vb. (6)

Safety 2: The vehicle ahead on the objective
lane must be far enough to avoid a crash.

ds′
i > vi. (7)

When merging into a lefter lane the three conditions are
required for both slow and fast vehicles. When merging into a
righter lane, the distinction between each type of vehicle lays
on the urgency of slow vehicles to do it. As a measure for
assuring this, theIncentive is only applied on fast vehicles
wanting to merge onto a righter lane.
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FIGURE 3. Scheme of a ramp in the right lane, with a length of
Lramp. A vehicle is inserted into the ramp with rate|rinit— of
type 1 with probabilityr1 or type 2 with probability1− r1.

Ramps

A “physical” ramp is not integrated [15], but we rather model
the capacity of a vehicle to enter/quit the system on a sec-
tion of the highway. To each ramp two different rates−1 ≤
r1, r2 ≤ 1 are associated, so at each time-step a vehicle of
type 1 or 2 can enter or quit the system. In Fig. 3, a scheme
of the ramp is observed.

Whenri > 0, a vehicle of typei with speedv = 2 cells/s
= 54 km/h is inserted into the system before the four rules
R1-R4 are applied with probabilityri. The vehicle is inserted
without consideration of safety distance, meaning it will be
put into the first empty cell found, without considering its
neighbors. Whenri < 0, then a vehicle of typei in the ramp
zone is deleted from the system with probability|ri|.

In that sense, at each time-step, every ramp might intro-
duce or remove two vehicles of different types, or simply in-
troduce one of any type.

To model the initial flux, a third rate0 ≤ rinit ≤ 1 is
introduced so there are a maximum ofrinit × 3600 cars en-
tering to the system per hour per lane. The type of vehicle
inserted at the beginning of the highway is given by the re-
spective rater1. Doing a small summary for the presented
rates, for a sequence of random tests:

• An initial fast vehicle is inserted ifrand() ≤ rinit

andrand() > r1;

• An initial slow vehicle is inserted ifrand() ≤ rinit

andrand() ≤ r1;

FIGURE 4. Annual average daily traffic of cars per year for D1 and D2. Measurement stations are listed as driving through each sense. Odd
measurement stations are type 1, whereas even stations are type 3. (a): All kind of vehicles, D1. (b): All kind of vehicles, D2. (c): Only slow
vehicles, D1. (d): Only slow vehicles, D2.
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FIGURE 5. Flow added at each ramp of the six studied systems. (a) and (b) refer to the fast vehicles flux at the ramps of D1 and D2
respectively. (c) and (d) refer to slow vehicles, also for D1 and D2 respectively. Points showing 0 vehicles per hour mean that the ramp was
removed.

• A fast vehicle is inserted in a ramp ifrand() ≤ r2

with r2 > 0;

• A slow vehicle is inserted in a ramp ifrand() ≤ r1

with r1 > 0;

• A fast vehicle exits at a ramp ifrand() ≤ |r2| with
r2 < 0;

• A slow vehicle exits at a ramp ifrand() ≤ |r1| with
r1 < 0.

4. Available data

The Mexican Secretariat (Ministry) of Communications and
Transportation publishes each year a table with data from
most of the federal highways and roads [17]. Data presents
the Annual Average Daily Traffic (AADT) and the compo-
sition of that measurement as a proportion of motorcycles,
small vehicles and large vehicles for a given measurement

station with a given location and a given direction. The
AADT is the total volume of vehicle traffic of a highway or
road in a year, divided by 365 days. Measurements are taken
in three different types of reported stations: type 1 where flux
is measured before the “traffic generating point”, type 2 mea-
suring at the generating point, and type 3 measuring after the
generating point.

In the case of the Cuernavaca Bypass, data from 2013 to
2016 is taken. Before this period, there is missing informa-
tion of the 27.3 km studied, while in the four years taken the
information is consistent in the way and the place where flux
is measured. Figure 4 presents the total and slow vehicles
AADT data from the four years for D1 and D2, and the aver-
age of this raw data (black bold line).

Data is processed to obtain the net flux per hour in the
different ramps of both senses taking the temporal average of
the obtained data. First, we suppose that there is an homo-
geneity of flux during 12 hours per day. Given the location of
a ramp, the measurements of the immediate station after (type
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3) and before the ramp (type 1) are taken. The difference is
computed and then divided by 12 hours. Supposing that the
flux in the ramps is homogeneous during 12 hours per day
the 7 days of the week is a poor approximation. However,
the information obtained from the official data is insufficient
to make a more accurate analysis given the number of ramps
and the different dynamics they can have during the different
hours and days of the week.

We call, for matters of simplification,̄fr the net flux in
rampr per hour. That is,̄f = (AADTr,3 − AADTr,1)/12,
where AADTr,i is the documented AADT at station of type
i of rampr. To obtain a rateri as in Sec. 3, then we divide
f̄r by 3600. The results of this computation are presented in
Fig. 5.

5. Methods

5.1. Phases in traffic theory

Generally, a phase is defined as a state in space and time.
This concept has been initially used in areas such as physics,
chemistry, and thermodynamics. In these systems, “phases”
mean different aggregate states (such as solid, fluid, or
gaseous; or different material compositions in metallurgy; or
different collective states in solid state physics) [18]. Most
of the time, the terms phase and phase diagram are applied to
large (quasi-infinite), spatially closed, and homogeneous sys-
tems in thermodynamic equilibrium, where the phase can be
determined in any point of the system. However, when these
concepts are transferred to traffic flows, researchers have dis-
tinguished between one-phase, two-phases, and three-phases
models. In particular, the number of phases is mainly related
to the number of traffic flow states that the instability diagram
distinguishes.

Classical theories based on the fundamental diagram of
traffic flow have two phases: free flow and congested traffic.
Kerner [19-21] developed a theory describing three phases,
adding a synchronized phase. However, Kerner defined the
synchronized phase as a unperturbed flow with decreasing
flow. In this case we follow other definition of synchronized
flow where an unperturbed mean speed is observed [22].
Nonetheless, from Kerner we recover the names he used to
describe the different phases. These are: Free flow (F), Syn-
chronized flow (S), Wide moving jam (J). In free flow, ve-
hicles travel at a maximum speed, which depends, amongst
other things, on the design speed of a road, the weather and
the speed restrictions in operation at any particular time. Af-
ter the congestion transition occurs, the free flow changes to
synchronized flow. In the synchronized flow, the speed of ve-
hicles drops significantly from the maximum speed. When
the synchronization phase passes, jams start to occur, so one
can find vehicles with null speed. At this phase, the greater is
the density, the less will be the flow, up to the point where no
car will be able to move. At this maximum density, the flow
will be zero again.

In Fig. 6, a schematic of the three described phases is pre-
sented. Phase 1 is the non-congested phase (free flow) when
there is no influence of the increasing density on the speeds

FIGURE 6. Transition phases in a fundamental diagram (see
Ref. 8).

of the vehicles. The speed does not drop with the introduc-
tion of new vehicles into the freeway. Here we can stress that
the change between free flow and synchronized flow may oc-
cur at higher densities for automated vehicles according with
anticipatory behavior [7,8]. Phase 2 finds the freeway can-
not sustain the slope with the injection of newer vehicles into
the traffic stream. In phase 3, the system enters into a con-
gested state where the flow starts to decrease as the density
increases.

5.2. Physical elements for vehicular traffic analysis and
its limitations

Studying the macroscopic variables obtained from a highway
such as a local density and a local flux, an organic nature to
apply analysis tools from fluids theory may come. However,
these tools must be applied with subtle care. More specif-
ically, in this section, we will refer to the fundamental dia-
gram usually used to detect and examine phase transitions in
physics.

As a reminder, fundamental diagrams are plots of flux vs.
density. In a slow density regime, flux increases linearly as
density increases. It is in this regime where the fundamental
relation of vehicular transitj = ρv comes,j being the flux,
ρ the density, andv the speed. As described in the Sec. 5.1,
we are talking about a free flow regime. However, in order
for this relationship to be met, the way to measure is impor-
tant and can determine the information in a fundamental dia-
gram [23].

In normal conditions, when the flux ceases to increase
proportionally to the maximum speed as the density in-
creases, the free flux regime finishes. More specifically, the
regime finishes when flux meets a maximum concerning den-
sity. This maximum is known as thecapacityof the system.
Once this point is passed, the system enters into acongested
state.
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However, it is at this point where things start to compli-
cate. In a first place, it is imperative to know what a mea-
surement plotted in a fundamental diagram is. This kind of
diagram is thought to present one-dimensional equilibrium
curves. In order to achieve that, equilibrium must be met.
Nevertheless, in traffic analysis, equilibrium can be met only
if the system isclosedand unperturbed. Translating into
a more physical language, walls must be adiabatic, i.e. no
ramps. In an open system with ramps, such as the one stud-
ied here, equilibrium cannot be met, but a stationary state can.
This is only because the flux entering at the starting point of
the highway and the ramps are set as macroscopically con-
stant over time. Thus, fundamental diagrams cannot be used
in the present study to detect phase transitions, and other tools
must be used to.

Also, vehicular systems might present different phenom-
ena between a free flux regime and a congested state,e.g.
hysteresis [23] or what is known as a synchronization period
[24]. Both might be represented in a fundamental diagram
(figures in Refs. [23,24]) and have a translation to physical
systems. Hysteresis is evident and will not be developed. A
synchronization period, however, might be seen in an analogy
with states of the matter as a mixed phase between gas and
liquid. In this phase, vehicles might find a free path where
they can go as quick as they want, but they can also be en-
closed within a group with a uniform speed. The speed of
these groups is determined by the group-leader which in our
case can be a slow vehicle or a fast vehicle.

In that sense, the gas-liquid analogy can be used to dis-
tinguish phases. A free flux regime is calledgaseous state
where vehicles might go to a mean speed close to its maxi-
mum value; a first synchronized state calledlight mixed state
where only fast vehicles led-groups can be found, and a sec-
ond synchronized state calledheavy mixed statewhere slow
vehicles led-groups can also be found. Finally, aliquid state
equivalent to a full congested state. The analogy can continue
up to a “solid state” where the highway is fully stopped, and
no car moves. However, such a scenario is not present in this
study.

5.3. Standard deviation as a measure of order

The different phases in a vehicular system reveal how the re-
lation of the macroscopic variables such as speed, flux, and
density might change. However, looking closer into the mi-
croscopical level of the highway, a phase transition can be
related to the apparition of specific structures created by the
vehicles moving (or not), such as the led-groups described in
Sec. 5.2.

Traditionally, entropy is a good choice to measure order.
Nevertheless, the problem comes to how to measure it and to
give a solid definition in our case. Indeed it has already been
discussed how entropy can be omitted to “measure” order [3].
In addition to this, being a macroscopic variable, an entropy
measurement does not give information about the formation
of microscopic structures in the highway.

As an alternative to the entropy, the analysis of the stan-
dard deviation of the macroscopic variables is done [3,8,24].
Phase transitions are easily detected doing this as it is further
shown in Sec. 6.1. The intuitive idea behind this is the fol-
lowing: imagine a highway scarcely driven. If a first vehicle
diminishes its speed by a random reason (noise), it is quite
probable that the vehicle behind will not be affected because
of the large distance between both of them. As the highway
is filled, the distance between two cars diminishes, resulting
in the fact that a change in the speed of the first vehicle will
more probably affect the next behind, and the next behind,
and the next behind, etc. If the mean speed and its standard
deviation of both scenarios are measured, it is found that the
scarcely driven system has a bigger standard deviation than
the more dense one. In this sense, standard deviation gives
information about the order in the system and is also related
to the probability of having a crash with another car [7,8].

However, what happens in a phase transition? Imagine
a highway where the cars follow a free flow regime. As
said before, the standard deviation decreases as the density
increases. If a phase transition comes into a synchroniza-
tion phase, then there will be an interval of density where
the whole systems rearrange itself in order to change its mi-
crostructure into a new phase. This complete rearrangement
means that many vehicles need to change their speed (possi-
bly violently), so the new structure can arise. In this sense,
during a phase transition, a significant change in the speed
standard deviation must be observed. Once the system is in
a new phase, the order is restored, and the standard devia-
tion can decrease again. Thus, phase transitions are related to
peaks in the speed standard deviation.

5.4. Computing Travel Times

Travel times are useful to compute as it gives a more intu-
itive idea and easy-to-rely impression of what is happening.
Highways in this kind of models are used to be divided in
different sections, where each end of a section can be delim-
ited by ramps or measurement stations, or any other real or
fictional limit. In this case of study, sections are delimited
by ramps to assure that the flux in a given section remains
unperturbed, thus resulting in a steady state.

Knowing the average speed of a given type of vehicle for
each section of a lanè, 〈v〉s,` and the corresponding length
of the section, a simple division between these two quantities
gives the average time to cross that sectionTs,`. Knowing
the average use of the specific lane in that particular section
us,` = js,`/

∑
` js,` will finally give the average time to cross

all sections,

Tt =
∑

s

∑

`

us,`Ts,` =
∑

s

∑

`

us,`
Length`

〈v〉s,`
. (8)

In this case, the useus,` refers to the portion of vehicles of a
given type that are in lanè. Thus,

∑
` us,` = 1.
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6. Results

The bypass is divided into different sections with lengths
varying from 150 to 250 meters. D1 is divided into 18 sec-
tions and D2 in 19. Measurements are done at the end of each
section by a unique sensor measuring individual speeds and
fluxes during a period of 12 seconds and then having an av-
erage temporal speed over the same period. The proportion
of slow vehiclesr1 is swept from 0% to 40% taking steps of
2%. The initial fluxrinit is also swept increasing three vehi-
cles per minute per lane from 0 veh/(h lane) to 2340 veh/(h
lane). Simulations are not transitory, meaning that the initial
flux and the proportion of slow vehicles remain constant dur-
ing the whole computation time. An ensemble ofN = 101
of simulations is taken for each combination of (r1, rinit). An
“average system” over the ensemble is done to have a unique
temporal system. This final system is the one analyzed over
time. It is important to note that results do not permute be-
cause of the lack of equilibrium and the stationary state of the
system. So, to do a first temporal average of any simulation
and then a study over the ensemble gives different results.

Parameters used areα = 0.75, R = 0.2 [7]. In order
to meet the topographical conditions imposed on the maxi-
mum speed of each type of vehicle discussed in Sec. 2, the
top speeds imposed arevmax,fast = 4 cells/s = 108 km/h in
dangerous curves, andvmax,slow = 2 cells/s = 54 km/h in the
slope.

In a first moment, the study of the unperturbed system
is done. The unperturbed system means that every ramp is
taken off and only the initial flux, the proportion of slow ve-
hicles and the topographical elements of the highway play a
role. Then, ramps are inserted again to study the Cuernavaca
bypass and its modifications in Sec. 6.2. The ramps have the
rates presented in Sec. 4.

6.1. Unperturbed system

The study of the unperturbed system is done with two dif-
ferent purposes. First, to show and explain the concepts dis-
cussed in Sec. 5.3. Second, to study the effects of the topo-
graphical elements in the system. We previously only the ini-
tial flux, the proportion of slow vehicles and the topograph-
ical elements of both senses influence the results. In that
sense, D1 is omitted in this section as the dangerous curves
(topographical elements of D1) are in the first 5 kilometers
of the highway, so there is no important feature to report. On
the other hand, D2, because of the presence of both curves
and the slope affecting fast and slow vehicles respectively in
the second half of the highway makes it more interesting to
study and report.

The slope affecting slow vehicles in D2 starts in section
14. In Fig. 7 we observe the mean speed of fast vehicles at
the left lane of section 16 (3.75 km after the slope begins)
with respect to the initial flux and the proportion of slow ve-
hicles, with their corresponding standard deviation. As said
in Sec. 5.3, forr1 = 0 the standard deviation of speed
diminishes as the initial flux increases, mainly because the
mean speed does not suffer essential changes. In that sense,
this is interpreted as the system ordering itself around a local
mean speed. Nonetheless, this behavior is only observed for
r1 = 0. When slow vehicles appear in the system and form a
mixed flux, the system transits to an unorganized state as the
initial flux increases. The way this disorganization is done
seems to have different and interesting behaviors which can
be seen in Fig. 7b.

Only some of the proportions of slow vehicles are shown
in Fig. 7. This is to maintain the cleanness of the Figure and
to focus in the relevant cases. Two different behaviors can be
observed forr1 > 0. For r1 < 0.16 it is observed how the
mean speed decreases as the initial flux increases, obtaining a
local minimum between 4800 and 5000 veh/h of initial flux.

FIGURE 7. (a) Mean speed of fast vehicles and its (b) standard deviation at section 16 of D2, once the slope affects slow vehicles. Dashed
lines in (a) represent the discrete values that the model allows as speeds in cells/s. We remember that 1 cell/s = 27 km/h. The top dashed
line represents the maximum speed minus the rate of random noise affecting the speed at any given time step,i.e. 5 cells/s - 0.2 cells/s
= 4.8 cells/s.
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Parallel to that, the standard deviation related increases. This
is because the number of slow vehicles increases, blocking
fast vehicles, which are forced to decrease their speed. As
the number of slow vehicle increases, more fast vehicles are
perturbed by them, resulting in the increase of the standard
deviation. When0.16 ≤ r1 ≤ 0.24, mean speed bounces
when the initial flux is equal 3960 veh/h after decreasing. No-
tice how at this particular value of initial flux the mean speed
meets a local minimum. After this value of initial flux, mean
speed tends to the values that the model allows as speed. In
particular, forr1 = 0.24 we observe a transition phase to a
synchronized flow. In this phase, the mean speed tends to a
value which is not perturbed by the increase of the number of
vehicles inside the system.

It is interesting to ask why, for certain proportion of slow
vehicles do mean speeds bounce after a certain initial flux.
Given that initial flux determines the number of vehicles in-
side the highway, then for a certain total number of vehicles
in a mixed flux, their transit is disorganized, leading to a de-
crease in the mean speed. However, given a certain propor-
tion of slow vehicles (>16%), fast vehicles are able to orga-
nize themselves to drive quicker. This is possible thanks to
the set of rules imposed in Sec. 3.

What happens between a free flux and a synchronization
phase is also interesting to analyze. Taking the case of 24% of
slow vehicles and in a range between 0 veh/h and 2100 veh/h,
the system is disorganizing itself as said before. On the other
hand, when found in an initial flux of 3960 veh/h, a maximum
standard deviation is found, meaning a maximum disorgani-
zation in the system. From there, the system abruptly orga-
nizes itself, described by an important decrease in the stan-
dard deviation around a higher mean speed. It is this max-
imum standard deviation and a consequent abrupt decrease
what reflects a phase transition from a free flux to a synchro-
nization phase.

The slope in D2 have important effects in the transit of
the highway. The modifications described in Sec. 2.2 do not
change anything about the effect of gravity in heavy trans-
portation. Thus, effective strategies must be found to opti-
mize transit in the built infrastructure.

6.2. Perturbed system

Ramps are considered, thus obtaining the complete system.
Also, having this analysis done in two parts allow to know
how much do ramps affect the system. Travel times are in-
troduced. Results are presented for both senses D1 and D2
separately.

6.2.1. Results for D1

In Fig. 8a, travel times for fast vehicles in D1 before the gov-
ernmental works (D1 Original) are shown with respect to the
proportion of slow vehicles and the initial flux. Each bold line
represents a fixed proportion of slow vehicles, going from 0%
to 40% in steps of 4%. In the case of travel times, we do not

FIGURE 8. (a) Travel times of fast vehicles and (b) its relative er-
ror for D1 Original. Each line represents a different proportion of
slow vehicles, going from 0% to 40% in 4% steps, starting with
0% at the bottom and finishing at 40% at the top. The dashed line
represents the phase transition.

have standard deviations as travel times are indirect mea-
surements computed using the mean speed, following Eq. 8.
Instead of standard deviation, we have errors that related to
the mean speed and its standard deviation. In Fig. 8b, the
relative errors are plotted.

Relative error, in comparison to standard deviation, does
not give information about transition phases. This can be seen
in Fig. 8. A dashed line is drawn in order to delimit two dif-
ferent phases in the system. The behavior to the left of the
dashed line refers to a gaseous or free flux regime, where the
average speed decreases as the initial flux increases as seen
in Sec. 6.1, resulting in an increase of the travel time. The
behavior to the right, on the other hand, refers to a synchro-
nization. This results in an unperturbed travel time by the
initial flux. This synchronization comes also with a maxi-
mum standard deviation which is negligibly perturbed by the
initial flux. However, comparing to the results in Sec. 6.2,
the relative error does not reflect the transition phase with a
peak of transition phase, but rather has a smooth transition
phase. This contrasts to the fact that the studied model does
not present soft phase transitions [14].
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FIGURE 9. Average speed of fast vehicle along D1 Original, for
initial fluxes between 3600 veh/h and 5040 veh/h.

In order to understand what happens in this synchroniza-
tion phase, the average speed along the highway is plotted in
Fig. 9 for 40% of slow vehicles and an initial flux between
3600 veh/h and 5040 veh/h where the travel time is 20.6 min.
As it can be seen, average speeds only differ in the first mea-
sure at the beginning of the highway. This comes from the
fact that the flux is supposed to initiate at the beginning of the
highway, while in the physical highway flux initiate a dozen
of kilometers before. The minimal change in average speed
results in a constant travel time.

The qualitative behavior observed for D1 Original in
Fig. 8 is repeated for D1 Express and for D1 Local. This al-
lows to directly compare travel times of the three systems and
to have a more complete picture of what the different govern-
mental works produce. Results are shown in Fig. 10. Instead
of plotting every different percentage of slow vehicles, only
the maximums are present (0% and 40%), representing the
envelops.

From Fig. 10b, it is observed how the best travel times
are obtained at D1 Local, having an increasing behavior as
the initial flux is increased and no synchronization phase. On
the other hand, D1 Express has better times than D1 Orig-
inal but keeps the same transition to a synchronized phase.
This transition is done more smoothly than in D1 Original,
reaching the synchronized travel time after an initial flux of
4500 veh/h.

Looking at Fig. 10b, it is noticeable how D1 Local
presents the best travel times. The main difference between
the latter system and the others is the addition of a third lane
during the 14.5 first kilometers. The existence of this third
lane allows freeing the extreme left one of slow vehicles, thus
having space with higher average speed, decreasing travel
times. However, whereas the extreme left lane exists dur-
ing the 27.3 kilometers of D1 Local, the extreme right only
exists for the 14.5 first kilometers. The result of this is that all
vehicles being in the extreme right lane must merge into the
second if they want to keep in D1, explaining the broadening
of the relative error in Fig. 10b.

FIGURE 10. (a) Travel times of fast vehicles and (b) its relative er-
ror for D1. Only two lines per system are presented, corresponding
to 0% and to 40% of slow vehicles. These lines serve as envelops
to the general behavior.

Also, the broadening of the relative error of D1 Express
is explained by the fact that, as Fig. 5a shows, the deletion
of 8 ramps provokes a net flow of 500 veh/h at the end of
the Express Pass. For small initial fluxes, the ramp perturbs
the flow inside the highway. As the initial flux increases, the
number of vehicles is such that the flux in the ramps has a
weaker effect in the flux inside the highway.

From the present results, an easy-to-implement strategy
to optimize the traffic can be presented. If the traffic of slow
vehicles is prohibited in D1 Express, then travel times would
be reduced significantly. The effects of this strategy can be
seen in Fig. 10. In D1 Original the interval of travel times
goes from 13 min± 1% to 20.7 min± 3%, which is the
same interval of times in the modified highway (D1 Local +
D1 Express). However, if slow vehicles cannot transit in D1
Express, then only the lower part of the envelop of D1 Ex-
press must be taken in Fig. 10. The interval of travel times
will then be from 13 min± 1% to 18 min± 2.6%, meaning
a reduction of almost 10% in travel times.
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FIGURE 11. (a) Travel times of fast vehicles and (b) its relative
error for D2 Original.

6.2.2. Results for D2

D2 presents a different behavior with respect to D1. Results
are shown in Fig. 11. In this case, the behavior of travel times
of fast vehicles are not as simple as in D1, and only some
of them are presented to maintain cleanness. Between 0%
and 16% of slow vehicles, travel times behave similar to D1,
increasing as the initial flux increases, to then become con-
stant, entering into a synchronization phase. However, once
this proportion is passed, the synchronization phase is bro-
ken, observing a second kind of transition phase. This time,
the transition is not only achieved varying the initial flux, but
also increasing the proportion of slow vehicles. It is impor-
tant to notice what happens between 16% and 24% of slow
vehicles, as it is in this interval where the transition phase
happens. From a stable travel time at 16%, a destabilization
starts to happen at 20% and 24%, finishing with a complete
different behavior of travel times at 28% of slow vehicles. It
is in this transition phase where the maximum travel times
and relative errors are found. It is undesirable to be driving

FIGURE 12. (a) Travel times of fast vehicles and (b) its relative er-
ror for D2. Only two lines per system are presented, corresponding
to 0% and to 20% of slow vehicles. These lines serve as envelops
to the general behavior.

during this transition phase, as it involves a higher probability
of having an accident.

Similar to D1, Fig. 12 presents the envelops of the travel
times and its standard deviation for the three systems of D2.
However, in this case, the envelops are shown by the lines
corresponding to 0% and 20% of slow vehicles. D2 Express
presents the same general behavior of D2 Original which has
been already discussed. D2 Local, on the other hand, does
not present transitions of any kind, leaving the system in a
gaseous state. It is here that the smaller travel times and stan-
dard deviations are found. Indeed D2 Local seems to follow
a complete different dynamics than D2 Original and D2 Ex-
press. The main reason of this is the presence of the third lane
during the second half of D2, where the slopes affects the
slow vehicles. As in D1, the third lane allows fast vehicles
to have a space to accelerate and go to a higher speed. Fur-
thermore, for D1 Local it is observed a broadening of travel
times and its relative error in Fig. 10, while for D2 Local,
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travel times and the relative error remains do not see such
and increase. The main factor for this to happen is the loca-
tion of the third lane with comparison of the global transit in
the highway. While in D1 Local, the third lane finishes at the
14.5 km of the modified part, and thus creating a bottleneck
in both D1 Express and D1 Local, for D2 Local the third lane
has the opposite effect. If there is a very dense and slow tran-
sit in the first sections of D2, then this transit will disperse
when the third lane is added. In this sense, the third lane in
D2 Local buffers the topographical effect of the slope in slow
vehicles

In this case the same strategy as in D1 can be imple-
mented, obtaining even better results. The introduction of
the Local system provoked a different dynamics in the high-
way, reducing the travel times to 15 min± 2.25% in the most
critical case of 5000 veh/h and 40% of slow vehicles, mean-
ing a reduction of 32% in travel times. By itself, D2 Local
made an important improvement. However, if no strategy
is implemented, the driver does not experiment any change
in terms of time when crossing D2 Express than when he
crossed D2 Original. If all slow vehicles are forced to be in
D2 Local (which does not have an important effect as just
said), travel times in D2 Express are reduced to an interval
between 13 min± 1.1% and 16.3 min± 3.0%, meaning a
reduction of 26% in travel times.

7. Conclusions

The Mexican Government realized several works to the Cuer-
navaca bypass in order to improve the mobility of the inhabi-
tants of the metropolitan zone. The availability of traffic data
gives the opportunity to analyze not only the bypass before
the works but to project the behavior of the highway after-
wards.

To analyze and detect phase transitions, a particular em-
phasis is put on the standard deviation of the mean average
speed. A presentation was done to use the standard devia-
tion as a measure of order, useful when other variables such
as entropy are not available. The radical fluctuations of stan-
dard deviation allowed to detect phase transitions from free
flux regime (or gaseous state) to congested regimes (or liquid
state) and to a synchronized phase where the macroscopic
measure does not change as the number of vehicles in the
system increases.

However, as the government works results in three dif-
ferent systems (one past, two present), the analysis of every

one becomes unpractical. In that sense, travel times are com-
puted. This variable allows to have a macroscopic measure
analyzing the system in a whole, whilst being attainable and
intuitive for physicist, transit analysts and engineers. This
analysis allows to detect not only gaseous and liquid states,
but also synchronous phase in the different systems.

The analysis done in Sec. 6 shows how, without any
specific strategy, the maximum travel times in the modified
highway stay the same, while the minimum travel times im-
prove. In order to actually make a profit of the modifications
done by Government, an easy-to-implement strategy must be
done. Restricting the transit in the Express Pass to slow vehi-
cles. It is only in that sense that the modifications take sense.
The analysis also shows how topographical elements present
in the bypass affect the transit in the highway, more specifi-
cally in the South-North sense. It is here where an unstable
free flux regime is obtained, finding the highest values for
travel times and standard deviations. This unstable regime,
which is found for a proportion of slow vehicles between 16%
and 24% is not only the most inconvenient in terms of travel
times, but also the most dangerous, as the high standard de-
viations reflects a highest probability of having an accident.
However, the addition of a third lane in the “Local” system
allows to buffer the topographic effect, resulting in an impor-
tant decrease of travel times of up to 32%.

Also, and more importantly, the study presented here
shows how physical interpretations of many body systems of
a non-physical nature can be successfully applied to describe
observables which depend of human behavior. But most im-
portantly, to study and interpret transition phases in human
systems using standard deviation as a measure of order.

Official data release by the government is of enormous
usefulness in order to analyze and create better strategies
for the common wellness. In that sense, transparency pol-
icy must move towards a regime where data is measured with
great care and rigor and released to the general public (al-
ways respecting privacy) in order to obtain critical analysis
from the scientific and industrial society.
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