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We address the problem of teaching the mathematics of entanglement using only elementary linear algebra. For this goal, we first discus:
tensor products using only matrix multiplication and with this we discuss entanglement for pure bipartite systems of arbitrary dimensions.
We show how to assess entanglement using only Gaussian mathotte row reduced echelon form of the familiar Gauss-Jordan algorithm

for solving systems of linear equations. In this way we can present entanglement avoiding the difficulties of tensor products and without the
Schmidt decomposition. Some elementary examples are provided together with MATLAB scripts. A Gaussian algorithm for the factorization
of unentangled states is given.
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1. Introduction Sec. 3 we discuss entanglement. The question of factoriz-
ability or separability can be presented in terms of the most
Quantum entanglement is not only one of the most remarkelementary techniques of linear algebra, namely, the Gauss-
able features of quantum mechanics but it is also at the core @brdan methods for solving linear systems of equation. Our
many sci-fi-like applications of quantum mechanics such asgnain tool is the reduction of matrices to row echelon form.
guantum teleportation, quantum information, quantum crypThese mathematical techniques are discussed in elementary
tography and quantum computation [1]. Nowadays everylinear algebra books [5].
body talks about quantum entanglement but understanding |n the remaining sections we show how one can tell en-
this phenomenon requires knowledge of tensor products, gngled states from unentangled ones and we present an al-
topic usually shrouded in mystery. Although several authorsgorithm for factorizing an unentangled state. No need for
such as Aczel [2], do a wonderful job explaining the conceptschmidt or Singular Value Decompositions.
without mathematics, entanglement is such that it can hardly  Through this presentation we restrict ourselves to pure bi-

be understood in a purely verbal fashion; we need matheyartite systems but we place no restriction on the dimensions
matics and usually not basic ones so that when invoked theyf the spaces other than they should be finite.

are frequently just too frightening to beginners. For instance,
entanglement is closely tied to the mathematical notion of
tensor product. Some authors, as Isham [3], just ignore conp,  Tensor products
pletely the task of providing an explanation of what tensor
products are and declare that “The full definition of the ten-In advanced linear algebra textbooks it is shown that, given
sor product operation is quite complex” and provide insteadwo vector space® andV it is always possible to construct
a “pbaby algebra” approach, a term due to Awodey [4]. a third spacé/ ® W called tensor product of andW'. It

We just wonder if to understand quantum entanglement igs also shown that, although there are many possible tensor
it then necessary to present a full fledged approach with lotproducts, they are all isomorphic, and in this sense the tensor
of commutative diagrams and of universal properties. Theroduct is unique.
answer to this question is no, and in this work we show how  According to quantum mechanics, every systgiis de-
using elementary linear algebra (of the sort any first year unscribed by means of a Hilbert spaég, that is, a complex
dergraduate would understand), tensor products and entagector space with an inner product that is complete: Cauchy
glement can be presented in a reasonably rigorous way.  sequences converge fi. Assume next that our syste

In Sec. 2 we introduce tensor products in a simple yeis composed of two subsysterfis and.S,. Symbolically we
quite rigorous way; only matrix multiplication is required. In write S = S;US5 and quantum theory tells us that the Hilbert
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spaces of, S; andS; are related by a tensor product, which In the literature this is theect function, so we could trans-
is written asH = H; ® H». Consequently our first challenge form our matrix by means ofect (gT) and the result is
is to describe tensor products. just the familiar Kronecker produét-on (a, b) (in MALTAB
This topic can be made easier as follows. We know thavect is done with the colon operator, sect (a) = a (:)).
if a complex vector space with inner product (unitary spaceror thevect andkron functions the reader is referred to [6].
for short) has a finite dimension then it is automatically com-We could use, if we wanted, column vectors for the tensor
plete. Now, as every complex vector space with finite dimenproduct but, as we will see shortly, the matrix representation
sion is isomorphic taC™ we loose no generality if we take has significant practical advantages.
H = C" and envision the vectors as column vectors, that The missing ingredient for a complete definition of the
is, asn x 1 matrices. In the restricted context of spa€®s  tensor product is theniversal mapping propertpr UMP.
tensor products are easy. A tensor product of two sp@fes  This is the frightening ingredient, and it will be included in
andC" has two components: the Appendix B for the curious reader (in appendix A we
include some comments on commutative diagrams that are
needed for an undersanding of tensor products). In short,
the tensor product of two vector spacésand IV is an-
other vector spac¥ @ W together with a bilinear mapping
2. A bilinear function, denoted also by the signwhich & : V x W — V ® W that satisfies the UMP.
associates with any two vectorsc C™ andb € C",
avectora®b € C™*™, In our case the explicit expres-
sion for the product is

1. A new vector spac€™ ® C". In our case this new
space will be simplyC™*", the space of alin x n
complex matrices.

3. Entanglement

a®b=ab?,

Assume a bipartite syste = S; U Ss. A (pure) state of

S is a vectorp € H and we say that the stateis separa-
That the function is bilinear means that: ble, factorable, non-entangled or simplepiican be written
as¢ = a ® b for somea € H; andb € H,. Otherwise we
say that the state is entangled. If it turns out that the state

whereT" denotes matrix transposition .

1. For anya,b € C™ andc € C™ we have that

(a+bd)@c=a®c+bc. ¢ = a ® bis non-entangled, we can say that the subsystem

S, is in statea and that the subsystef is in stateb. But if

2. Foranya € C™ andb, c € C" we have that the state is entangled such a separation is not possible.
a®(b+c)=a®@b+a®ec. Even worse, if the state is entangled there appear cor-

relations between the properties of the subsystems that are
3. For any numbety and vectors € C™ andb € C", we  paradoxical and counter-intuitive. Perhaps this was under-
have that stood most clearly by Woody Allen, who in his bo@thout
(va) ®b=a® (7b) = (a®b). Featherd[7] dgscribed “the bizarre experience of two broth-
ers on opposite parts of the globe, one of whom took a bath

The reader can verify that with® b = ab” the bilinear- ~ while the other suddenly got clean”.
ity is a simple consequence of the most elementary proper- It is then of great practical importance to be able to tell
ties of the matrix product. The bilinearity indicates that thisif a given state is entangled or not. We will restrict ourselves
“product” behaves like other products (for instance, the disto bipartite systems, but we will consider spaces of any fi-
tributive property holds). Notice that the dimensior(Gf <™ nite dimension. In case the state is separable we will show
ism x n, which equals the product of the dimension€38f  explicitly how to produce a factorization.
andC™ (dnn(Hl X Hg) = dlm(Hl) X diIH(HQ) )

At this stage the reader might wonder how is it that the
tensor product of two vectors is a matrix and not a column
vector. Well, matrices are also vectors in the sense that they’
belong to a vector space, in our case the sg&c&™ of all
complex-valuedn x n matrices; this space is isomorphic to
the spac&™" of all the (column) vectors of lengtiun. Ac-
tually one can transform the matrix= a ® b = ab” into a
column vector just by stacking its rows (converted into verti-
cal columns) one on top of the other, for example:

ta] =

Gaussian reduction

Recall that a given matri¥d can be subjected to the so-called
elementary operations:

1. Exchange any two rows of.

2. Multiply a whole row of A (seen as a row vector R™
or in C™) by a numbery # 0.

QUL O o

3. Add to any row a scalar multiple of any other row.
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We say that a matrix is in echelon form when: thus A equalsa ® b, for some vectors. We have just proved
that if A is of rank one then the state is separable. The con-
verse also holds, becausedf= cd” then, for any column
vectorz we have thatdz = ¢(d” x) and the column space of

2. Any row that does not consist exclusively of zeros has i one-dimensional (and spannedd)y This means that.
as a first non-zero element (from left to right) the num- has rank one. In short, the state is separable if and only if the

1. All rows consisting exclusively of zeros lie at the bot-
tom of the matrix.

ber one. This one is callddading oneor pivot corresponding matrix is of rank one. This holds for all values
of m andn.
3. For every pivot, the further down it lies the more tothe |t js important to notice thatl = ac” simply means, in
rightitis (echelon). terms of entries of andc, thatA4;; = a;c;.

If in addition, in every column with a pivot all the other ele-

ments are zero, we say that the matrix is in row reduced echs  Gauss and entanglement

elon form (RREF). In linear algebra text books it is shown

that every real or complex matrix can be brought into an echThe key point from the previous section is that a vector in
elon form or into aRREF by means of elementary opera- ¢cmx s separable if and only if the rank of the correspond-
tions. The echelon form is not unique but tREFE F is. ing matrix is one.

The rank of a matrix is the number of non-zero rows in  For this reason the proposed criterion for assessing en-
any echelon form; itis the number of leading ones. The trantanglement consists in calculating the rank of a matrix. The
sit from a matrixA to its RREF (represented by?) willbe  procedure, simply stated, amounts to:
represented schematically ds— R and it is well known
that there is a nonsingular matrix such thatBA = R. If 1. Reduce the matrix to an echelon form.

[P, Q] denotes the matri¥’ augmented with a matrig) of

the same siZethen the matrixB can be determined by the 2. Determine its rank, just counting the number of non-
calculation[A, I| — [R, B], wherel is an identity matrix of zero rows in the echelon form. If there is only one such
the same size ad and the Gaussian reduction process per- a row the state is separable, otherwise it is entangled.
formed onA augmented with an identity matrix will yield

sequently we can factor it, that is, write it as a tensor product of two

A= B 1R vectors. In general the solution is not unique, we will give

) an algorithm for finding one. Whe#A is of rank one, since
The product of any twe xn matricesP and@ canbe ex- 4 — B-1R then A can be factored in terms of the first col-

pressed in the so-called outer product expansion (also KnoWiinn of -1 and the first row of. They can be obtained as

as column-row expansion) as follows:
PQ = Z col; (P) row; (Q), 1. from [A, I] — [R, B] we obtainR andB.
i=1

_ _ 2. from [B,I] — [I, B~'] we obtainB~*.
where co] (P) is thei-th column of P (viewed as a column
vector,i.e. as ann x 1 matrix) and row (Q) is thei-th row  This is the standard Gaussian algorithm for matrix inversion.
of @) (viewed as a row vector.e. as agl x n matrix). If we
callp; = col; (P) andg; = (row; (Q))" then we canrewrite 51 An example is worth a thousand words
the product as

Consider the bipartite state with = n = 3 given by

n n
PQ=Y pigi = pi®a
=1 =1 4 D 6
- . . g = 8 10 12
When this is applied to the formulas given above for the 12 15 18
RREF, ifit turns out that the rank ofl is, say,p then, since
R will have only p non-zero rows, it follows that The augmented matrices are
. . (4 5 6 1 00
_p-lp_ BT b
A=5B R—;“lbz Z;““@bl g.I]=| 8 10 12 0 1 0 |,
. - |12 15 18 0 0 1
wherea; = col; (B~1) andb; = (row; (R))" . 105 3 0 0 4
i — 4 2 2
In particular, wherp = 1 ~lo o0 0 1 0 _é 7
A:B_lR:CLl@bl, _0 0 0 0 1 -3
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column vector: we have thati” = = d (c’z) sod lies in the
column space ofA”” which is the row space of.

1
(B,1] = ? 8 E (1) ? 8 A basis for the rovy space of _aqy matrix caq be obtained
’ 01 3 00 1 ' from the RREF', and if the matrix is of dimension one the
L 3 basis is just the first row of th& REF. Thena andc are
(1 0 0 4 1 0 proportional to the first rows of thRREF of AT and A re-
~l0o 10 8 01 spectively.
0 01 12 0 0 Thus a simplified approach would be:
Notice that, for consistency, we have done the RREF 1. Calculate the RREF forms of both” and A.

in both cases; however in practice any reduced form showing

that the left matrix has only one non-zero row can be used. ~ 2- EXtract the non zero row of each and call theands,

Then respectively.
1 4 . .
c—| 5 a= | 8 3. Form B = rTs, then A is proportional toB, say
i1’ e A = ~B for some numbe.
2
andg = a ® 7. 4. ~ can be found in a number of ways, our choice is to

use the fact thaf'r (A) = ~7'r (B) and then infer
~. This works provided the trace is not zero; in such
a case one must perform an element-wise comparison

Why textbooks never use this simple algorithm that re-
quires no eigenvectors nor eigenvalues? Possibly the answer
is related to the neglect of the concept of tensor product.

Surely the reader will have noticed that, in terms of coor-
dinates, our realization of the tensor product is nothing but
the so-callecexterior product of matricesclosely related to
the Kronecker producty ® ¢ = kron(a,c”). Our point is
that all this is both elementary and useful.

A simple MATLAB program for the factorization is given
below.

function [ a,c ] = unentangled( g )

%UNENTANGLED If state es separable

%it produces the factors.

if rank(g) "=1
disp(the state is entangled’)
return

end

[n.m]=size();

al=[g,eye(n,n)];

bet=rref(al);

r=bet(:,1:n);

b=bet(:,n+1:end);

ga=[b,eye(n,n)];

del=rref(ga);

binv=del(:,n+1:end);

a=binv(:,1);

c=r(1,);

c=c’;

end

5.2.  Aneven simpler procedure

between the elements dfand B. A possibility would
be to form element- wise ratios taking care to exclude

divisions by zero.

Consider again bipartite state with = n = 3 given by

4 5 6
g=| 8 10 12
12 15 18

Performing the Gaussian reduction we see thdtas the
RREF given by

5 3
L 7 3
00 0],
00 0

so we know thay is separable (non-entangled).
The RREF forg™ is

1
0
0

O O N
o O W

so the factow in A = ac” will be proportional to[ 1 2 3]
whereasc will be proportional to[ 1 % %] or (removing
fractions)to[4 5 6 ] and, as a matter of fact, these are the
values for the factors, as the reader is asked to verify.

A simple MATLAB program for this factorization is

given below:

function [al,bet,factor{] = tangle(g)
% Gaussian approach to entanglement of pure

We have seen in the previous section that the state is sep% bipartite states.

rable if and only if the corresponding matrik has rank one
and that, in this case, the matrix can be writterdas: cd”
for some column vectorsandd.

But if A = cd” then, for any column vector we have
that Az = ¢ (d”z), soc lies in the column space of which
is the row space ofi”. Similarly, sinceA” = dc”', for any

if rank(g)=1

disp(the state is entangled’)
return

end
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al=rref(g.”; 3. and a rule of correspondendes., a formula, recipe or
al=al(1,); algorithm that associates a unighda) € B to every
al=al.’; a € A

bet=rref(g);

bet=bet(1,:); Sometimes this is written a8:A — B but it will prove
bet=bet.”; more convenient to writel — B with identical meaning:

factor=trace(g)/trace(al*bet’);

%factor*al*bet.” should equal g.
end

F'is a function with domaiml and codomair.
If we have two functionsd —— B and B - C, then

GoF

we can define a new functioh — C' by means of

) (GoF)(a) =G (F(a)).
6. A slightly more general case
This new function is called theompositiorof ' andG.
The corresponding diagram would be (with= G o F)

If we were told that the state is

m n

Y= Zzgijvi ® wy,

i=1 j=1

for bases{vy,vo, ..., vy} and{wy, ws, ..., w,} and num-
bersg;;, we could proceed as before but with the matix
This can be seen explicitly from the fact thayifs separable,
theng;; = a;c; and

w:ZZaicjvi ®w]-: (Z aivi> ® chwj
i=1 j=1

i=1 j=1

s

B
o
C

So far the diagram only says that we have three functions
and tells us what their domains and codomains are. BHt if
is the composition of” andG then we say that the diagram
is commutative. It expresses the idea that going frérto
B by means off' and next fromB to C' by means ofG is
& actly the same as going directly (non-stop flight) frdrto
by means ofH.

7. Conclusions

We have shown how simple Gaussian reductions can be us

to decide whether a given pure bipartite state is entangled

not and then also make possible to factorize a non-entangled

state. Gaussian reductions are the methods first year students

learn in order to handle systems of linear equations. Gaussidd. Tensor products

methods can be applied (for small sized problems) with pen-

cil and paper alone or on the blackboard. No eigenvalues, nBheorem 1 Let V, W and Q be vector spaces over the

eigenvectors, no Schmidt coefficients (singular values) thagame field (for instance all real or all complex), and let

require the use of a computer and diagonalization software.B : V x W — Q be a bilinear function. Then there
The methods here presented have didactic value when el another vector spac& ® W, together with a bilinear

plaining the mathematical aspects of entanglement, a conmap® : V x W — V ® W and a unique linear map

pulsory subject in this era of quantum information. L:V®W — Q, such that the following diagram is commu-

tative:

Appendix ®
A. Commutative diagrams

We dive next into the difficult part, the one that produces
panic to lecturers and students alike. Tragson d&tre of
tensor products is to be able to visualize any bilinear map as
if it wgre "’.1 linear map m som_e vector space. But in order toDefinition 1 The spacé’ ® W is called "tensor product” of
explain this we need a little bit of archery [4].
the spaced” and V.
In elementary courses we see that every funcfiohas

three ingredients: Remark 1 When an arrow is dashed it means that the exis-

tence of the arrow is asserted. The exclamation mark, as in
1 - .

A — C means that the arrow is unique. In our context,

arrow, morphism, function and application mean the same.

1. adomain, call itA.

2. a codomain, call if3.
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In short, all this means that we can replace bilinear map#s RREF' is
by linear ones. The linear transformatiaérhas the property

1 0
L(a®b) = B(a,b), 01 2 |,
0 0

so for vectors of the forni. (a ® b) gives exactly the same
result asB (a,b). ButinV ® W there are many vectors

that are not of the form a ® b. This is the origin of the so A has ranko = 2 and can not be separab|e_
entanglement.

. . The construction given above with the commutative di-
As an example of this consider the state represented bXgram is an example of what mathematicians galiersal

the matrix 1 2 3 property or universal mapping propertfUMP). The tensor
45 6 |, product is universal in the sense that it allows us to represent
7 8 9 any bilinear function as a linear mapping.
i. We say that a matrid is augmented with matri® if we form 2. A. Aczel, Entanglement, the greatest mystery in Phy§esur
a new matrix having as columns the columnsfdfnd B, for Walls Eight Windows, New York, 2002).
instance if 3. C. Isham,Lectures on Quantum Theory: Mathematical and
) e f Structure Foundationdmperial College Press, London, 1995).
A= d and B = nol
4. S. Awodey,Category TheoryClarendon Press, Oxford, 2006).
then the augmented matrix is 5. G. StrangLinear Algebra and its Applicationgourth edition,
A, B [ a b e f } (Wellesley-Cambridge Press, Wellesley MA, 2009).
e d g b 6. C.F. Van LoanJournal of Computational and Applied Mathe-

1. M.A. Nielsen, |.L. ChuangQuantum Computation and Quan- matics123(2000) 85-100.
tum Information (Cambridge University Press 2000). 7. W. Allen, Without Featherg¢Ballantine Books, NY, 1983).
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