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In this paper we revise two classical examples of Relativistic Hydrodynamics in order to illustrate in detail the numerical methods commonly
used in fluid dynamics, specifically those designed to deal with shocks, which are based on a finite volume approximation. The two cases we
consider are the relativistic blast wave problem and the evolution of a Tolman-Oppenheimer-Volkoff star model, in spherical symmetry. In
the first case we illustrate the implementation of relativistic Euler’s equations on a fixed background space-time, whereas in the second case
we also show how to couple the evolution of the fluid to the evolution of the space-time.
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1. Introduction system of equations, which requires the definition of con-
servative variables on top of a discrete cell centered mesh.
In this paper we present the elements needed to implemefthe solution of relativistic Euler’s equations is found using a
the numerical solution to the relativistic Euler equations inHigh Resolution Shock Capturing method (HRSC) based on
spherical symmetry using examples in special and generghe approximate solution of local Riemann problems at the
relativity. The aim is to describe the necessary tools to imintercell boundaries. Particularly we use the HLLE approxi-
plement numerical codes able to deal with basic problems inmate Riemann solver with a linear piecewise reconstructor of
VOIVing relativistic hydrOdynamiCS which eventua”y are USEdvariabieS_ Being this a paper revisiting the numerical meth-
to model high energy astrophysical phenomena, for instancgds, we try to be as specific as possible in the description of
stellar collapse of compact stars like supernovae core cokach of the steps within the appropriate section.
lapse, shock waves propagating out from a spherical source The paper is organized as follows. In Sec. 2 we set
interacting with the interstellar medium, etc. We are par-he equations of hydrodynamics for a spherically symmetric
ticularly interested in revising the specific numerical meth'space-time, define conservative variables and set the system
ods that are commonly used and present a detailed flaveyi Eylers equations as a flux balance set of equations, so as
of high resolution shock capturing methods used in generghe numerical methods used for the solution. In Sec. 3 we
relativistic hydrodynamics. We focus on the description Ofpresent the blast wave case and describe in detail its prop-

two representative physical cases: the spherically symmetsties and in Sec. 4 we present the evolution of TOV stars.

ered to be a test case in hydrodynamics and the evolution of
a Tolman-Oppenheimer-\Volkoff (TOV) star model, made of
a self-gravitating polytropic ideal gas on a dynamical space2. Hydrodynamics
time background.
We consider the problem of solving relativistic hydrody- 2-1. The equations of relativistic hydrodynamics in
namical systems as an initial value problem, ruled by rela- spherical symmetry

tivistic Euler’s equations. We have to provide initial data forA . . d i hericall .
a relativistic fluid, which then evolves according to Euler’s S a starting point we describe a spherically symmetric

equations in the blast wave case, and in the case of the TO@pace—time line element in spherical coordinates to be of the
star we need to solve simultaneously Euler’s and Einstein’é,Orm

equations. 2_ 2 9
In the blast wave case we start up with free initial data, ds” = —a’(t,r)dt
which we choose to correspond to an ideal gas distributed +a®(t,r)dr? + r2d6* + r* sin? 0d¢?, (1)

into two concentric spherical chambers, being the inner one

where the gas is at high pressure whereas in the outer sphesbere ¢ is the time coordinate an¢, 6, ¢) are the usual

the pressure is smaller. In the TOV star case it is not possispherical coordinates and where we have assumed geomet-

ble to choose arbitrary initial data, it is necessary to construatic units whereG = ¢ = 1. This line-element will serve to

initial data that are consistent with Einstein’s equations. Inworkout the two problems we deal with: the hydrodynamics

order to have a complete description of the second probleranto the Minkowski space-time where = o« = 1 and the

we introduce the necessary general relativistic background. TOV star where such metric functions obey Einstein’s equa-
We base our numerical treatment on an Eulerian descrigiions. We choose the matter model to correspond to a perfect

tion of the fluid equations using a flux balance form of thefluid, which means the fluid is not subject to heat transfer and
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viscosity effects; the stress energy tensor of a perfect fluiédnd consideringwa # 0, we have
given in general relativistic form reads [1,2]: . 1 )
Ot(pocau’) + Ear(poaar u)=0, =
T = pohutu” + pg"”, (2) '

1
t - 2 Tty —
wherepy is the rest mass density of the flujdjts pressure, Oc(pocrau”) + r2 Or(poaarlov™u’]) =0, =

u* is the four velocity of the fluid on the space-time described 1 )
by (1) andh the specific enthalpy O(aD) + 50, (aar”v"D) =0, (7)
h=1+e+p/po 3) which is the first of Euler's equations. The remaining two of

Euler’s equations are obtained by developing (5) as shown in
wheree is the specific internal energy of the gas. The stressthe freely available script [7]. Finally one obtains the follow-
energy tensor (2) is commonly found in the literature writtening set of equations
asTH = (p + p)uru” + pg"”, wherep is the total energy
density of the gas which can be expressed in terms of the rest
mass density and internal energyas po(1 + ¢€). Also g"¥

Or(aD) + %Z&(aarQDvr) =0,

1 2
are the components of the inverse of the 4-metric in (1). O(aS,) + T—26,.(aar2 [Srv" +p]) = Oza7p
The fluid equations are given by the local mass conserva- )
tion law and the Bianchi identity, that are respectively: _ aaaT;n(SrvT +r4+p+ D),

Vu(pout) =0, (4) 1 m

i (at) + =0, (aar®*(t + p)v") = —aa— S, 8

VMT,U,V _ O7 (5) f( ) r2 ( ( ) ) r2 ( )

where the set of conservative variables is defined by

where V,, is the covariant derivative consistent with (1).

When these equations are projected onto space-like hyper- D= poW,

surfaces and their normal directions one obtains the relativis- S, = pohW?uv,,

tic Euler equations [3-5]. The result is a set of equations

for the primitive variableg, v", p or equivalentlypg, v", €, T = pohW? — p — poW. 9)

wherev” is the three velocity of the fluid elements measuredrhen it is possible to write down these equations as a set of
by an Eulerean observer. The way to relate the spatial vepalance flux type of equations

locity with the spatial components of the four velocity of 1
the fluid in (2) is using the relation” = u"\/1 — g, 0" 0" dy(au) + <0, (aar’F(u)) = S(u), (10)
=u"v1—a?v"v" = u" /W, whereW is the Lorentz factor, "
which in turn is defined byV = au’.

It is well known that Euler’s equations develop disconti-

whereu is the state vector of conservative variablBEsthe
flux vector andS is a source vector given by

nuities in the hydrodynamical variables even if smooth initial D Dv"
data are considered [6]. Therefore one may use as a firsttry u= | S |, F.=| S0"+p |,
a finite differences approach, nevertheless it cannot be ap- L 7 (T +pp"
plied because the approximations of derivatives would not be - 0
accurate at discontinuities; even though it is common to use S— | —qa?’m(g D 2 (11)
finite differences modifying Euler's equations with a dissi- @t (S J;aTnj_Ser ) Haad -
7,.2 T

pative term and analyze the limit at which such term van- -
ishes [6]. Instead, a more accurate approach used to solve Notice that the term that goes as p/r is singular at
hydrodynamics equations considers the use of finite volume = 0. However in order to regularize the equations there, it
methods, which need the system of equations to be written ii$ possible to split the flux balance form of the equations by
a flux balance law form, which in turn requires the definition appropriately splitting the flux vector and avoid the presence
of conservative variables as shown below. of such singular term [8,9]:
As an illustration of how to write down a balance flux 1
equation we construct the first of Euler’'s equations, the one Or(au) + ﬁaf(o‘aﬁfl(u)) +Or(aafz(u)) = s(u), (12)

obtained by developing (4) for the line element (1): where now the fluxes read:

1 [ Do" 0

Vu(pou') = ﬁalt(\/jgpouu) =0, = £, = S, = p |,
1 | (T +p)v" 0
2, t 2, r — B
car? O (aar u®) + a2 Or(aar<u”) = 0. (6) 2 0

whereg is the determinant of the metric tensor in (1) and $=| —aa QTT(STUTer T+p+D) |- (13)
therefore,/—g = aar?siné. DefiningD = poW = ppau’ L —aags Sy
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There is still a usual ingredient when solving problemswherev? = a?v"v" ande, is the speed of sound. On the
in spherical symmetry, that is, the coordinate singularity aither hand, a useful property of the gas is the speed of sound,
r = 0 of the derivative operators in (12). This problem which is defined by
is solved usually by substitutingl /72)9,.f by 30, f for a
given functionf, where now the derivative is with respectto , » _ (p) . _Op | _op
r3. This result is applied to the second term in Eq. (12). s )"’ X= Bpo 1@ Oe
Therefore, we end up with three evolution equations for
the four variablesD, S,., 7, p, or equivalently, for the primi- where for the ideal gas equation of state (}d)= ¢(I' — 1)
tive variablespg, v, €, p. This requires to close the system, = p/py andx = po(I' — 1). Using expression (3) for the
for which an equation of state relatipg= p(p) is sufficient,  enthalpy,
wherep = po(1 + €) is the total energy density. In the prob-

|Pov (19)

lems we deal with in this paper we choose the gas to obey an h=1+c+p/po=1+ p T
ideal gas equation of state given by po =1’
p= (' = 1Dpoe, (14)  one obtains an expression for the speed of sound in terms of

whereI' = ¢,/c, is the ratio between the specific heats, the thermodynamical variables
sometimes described in terms of the polytropic indesuch
thatl’ =1+ 1/n [10]. 2= pL(C—1) (20)
o pL+po(T = 1)

2.2. Spectral decomposition of the spherically symmet-

ric relativistic Euler equations which can be used to calculate the eigenvalues and eigenvec-

tors in (15) and (16-18).

The High Resolution Shock Capturing methods used here
consider schemes where the spectral elements of the Jaco-
bian matrix, A(u) = 9F(u)/0u, associated to relativistic
Euler’s equations (10) play an important role. Following [4],
the three eigenvalues of the Jacobian matrix of Euler's equa?-'3'1'
tions for zero shift are as follows:

Numerical methods
Finite Volumes

Due to the non-linearity of the relativistic Euler equations, the

A = av” (15)  presence of discontinuities like shocks and contact discon-
tinuities in the hydrodynamical variables is common, even

Ay = « v (1) though smooth initial data are considered. For this reason,

1 —v%c numerical methods based on the continuity and smoothness

degree of the functions involved, like finite differences, are
1 . - . _ . .

e (1 —v2) |55 (1= v2e2) — oror (1 — 2) not sunablg to solve this kind ofnorj Imear equatlons. Ong pf
a the most widely used approaches in the literature is the finite

volume method; firstly this method considers the problem is

A3 - lvr (1—¢2)

=122
1 —v?c2

. ¢ (1=) | (=0 o1~ >H

and their corresponding linearly independent eigenvectors: t*

k. AX
hW (k—poc?)
ry = Ur ) (16) ol
Kk
1 hW (k—poc2) n+1/2
[ 1 ; At
" _Xo/a n
_ | AW (UT» — =2l ) t
T2 = az v/ ? (17) b PR Xin S Xian

a%*'urvr
hw(g;ygz)f1

FIGURE 1. In this figure, we present the discretization and cell

M 1 structure of the space-time. Here, the center of@éﬂTl/Q is lo-

WV (v _ 1;7'—()\3+ﬁ")/o¢) cated at"*t1/2, ;) and its space-time volume 1§ = A¢tAz. In

rs = r v As/a , (18) terms of an evolution problem, the step sizéis= t"*' —¢™ and

W ( lﬁf?rvr ) 9 the spatial resolution i&x = x;1/2 — T;_1/2 = Tit1 — ; for
2z As /e our homogeneous mesh.
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defined on a mesh of grid points that define a cell structure o®ne of the important problems consists in the calculation of
the space-time, that is, the time is restricted to have the dighe temporal averages of the fluxes which we describe be-
crete set of values® = nAt and the space is considered to low, which depend both on the conservative and the primitive
be discretized with cells whose spatial centers are defined a&ariables.

x; = iAz as shown in Fig. 1. Secondly, the numerical meth-

ods for balance flux type of equations consist in discretizinge.3.2. Cell reconstruction

the equations in the_zir inte_gra_\l_form. This is a method particu_'Equation (23) provides an evolution rule for the conserva-
larly useful when discontinuities are expected to appear as i) o variables, however the difficulty to calculate the tempo-

the Ipresgnt ca;ltla [6]. he fini | hod id ral averaged fluxei‘?fll/; at interfaces between cells, still
n order to illustrate the finite volume method, consider o Jing ‘one way to solve this problem defines the Godunov-

the follqwing conservative system of equations in one spatia{ype of numerical methods [11]. The main idea of these

dimension: methods is to consider a Riemann problem at each intercell
boundary, which requires to approximate the spatial average
whereu is the vector of conservative variableB(u) are  of the variablesa at each cell with piecewise functiofis

fluxes which depend on the variablasand$ is a vector of There are different ways of reconstructing the variables.

sources. In this way, the first step to discretize the integrafp,g simplest reconstruction was introduced by Godunov

form of the Eq. (21) is to take its average over a space-timgnq consists in defining the variables to be constant piece-

Opu+ 0;F(u) =S, (21)

eyt : , :
cellC; . wise [6,11]. More general reconstructions assume the vari-
Tig1 /o gntl ables are linear piecewise, which is the case we handle in this
1 paper; in this case, the variablé@sare reconstructed using
Oyudxdt ) . . :
AtAzx a minmod slope limiter that restricts the slope of the linear

Ti—1/2 "

functions defining the variables within each cell [6,12]:
Tip1/2 ¢t

/ 9, F (u)dudt

Ti—1/2 "

~I _
* E Wil =05 + Uz‘(%‘ﬂ/z — 1),

ﬁﬁl/g =Wiq1 + 0ip1(Tig1/2 — Tiv1), (24)

Tiqqyg gt

_ 1 / Sdadt (22) where L and R indicate the cell to the left and to the right
AtAz ’ respectively from the intercell boundary we deal with. The
Ti-i/2 B quantityo; is calculated as
where the volume of the cellc!™/? is (&, ¢n+1)

x(x;_1/2,%i11/2). Now, as second and final step, by us- (25)

ing Gauss’ theorem, this last equation can be integrated to
obtain a discretized version of the integral form of the systenThe functionm,,,, is the derivative of the conservative

g; = minmodnli_l/g, mH_l/g).

of Egs. (21): variablesii, centered at the cell interfaces
At /- _ _
—n+l _ = n+1/2 n+1/2 n+1/2 _ _
W = ap - o (B - FR) 481 A (29) rpay = B0 26)

wherew? are the spatial averages of the conservative vari- Tit1 = P
ables

Tit1/2

u; = s u(t™, z)dz,

Ti—1/2
andFZfll/; are the temporal averages of the fluxes:

tn+1

cnt1/2 L
?H/g BN / F(u(t,ziy1/2))dt.

tn
Finally S7'/2 is the spatial and temporal average of the
sources

Tip1/2 7T
Sn+1/2 _ 1 / S(t, x)dxdt FIGURE 2. We show how a function is approximated within each
7 - ) . . , . . .
AxAt cell using Godunov’s constant piecewise reconstruction (top) and

Ti—1/2 " the minmod linear piecewise reconstruction (bottom).
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and the minmod slope limiter is defined by the functions (24) to the right and left from the interfaces be-
a if Ja|<[b| and ab>0 tween cells, we can compute the temporal averaged fluxes
minmoda,b) ={ b if |a|>[b] and ab>0 (27) using an approximate Riemann solver.
0 if ab<0,

for more details see for instance [9]. The illustration of these2.3.3.  Approximate Riemann Solver: HLLE

reconstructions are shown in Fig. 2. The constant piecewise

reconstruction provides a first order approximation in spac&ifferent approximate Riemann solvers require different
of the variables whereas the linear reconstruction is secongharacteristic information from the Jacobian matrix, for in-
order accurate. This property impacts on both accuracy angtance the Roe solver (se@.[12]) requires the eigenvalues
order of convergence of the evolution algorithm. In this pa-and the eigenvectors. One of the appealing properties of the
per of course we use the linear reconstruction which helps aiLLE approximate flux formula is that it requires only the

achieving convergence of our results. Finally, once we knoweigenvalues of the Jacobian matrix. The HLLE numerical
|  fluxes formula at the intercell boundaries reads [13]:

FHLLE _ >\+F(ﬁiL+1/2) A"F(ua 1+1/2)+>\ A (af EARY 1'L+1/2)

i+1/2 = AT — A\ (28)

where the differenis are defined by

l/vhereas the pressure is given by:

p = poe(I' = 1) = (poh — po — p)(T' — 1)

AT = max(0, XA N NE AL AL,

A7 = min(0, A, A AT AL AL S, (29)
Sy D
Herea” anda” are the values of the conservative variables = (I' = 1) [W%. W p]
reconstructed at the right and left from the intercell boundary '
respectively. Notice however that for the cases in this paper, _ Sy /vr — —pW?
the fluxes and sources in (12) depend not only on the con-

servative variables, but also prandv™ which are primitive

variables. This requires the reconstruction of these primitive = po(I' — 1)
variables too. Also, the differents depend on the speed of

sound, which in turn depends pr{see (20)) and is needed at w3z +wa(1 — W) +ap(l — W?)

both the left and right cells. This is the reason why itis re-  — oI 1) [ w W ] » (32)

quired to calculate the conservative and primitive variables.
wherelW = W (v" (p)). This defines a trascendental equation

2.3.4. Calculation of primitive variables for p which has to be solved at each cell in the domain. We
solve this equation using a Newton-Rapson root findepfor

As mentioned above, the numerical fluxes and sources degt each cell. With this information it is possible to reconstruct

pend both on the conservative and on the primitive variablesp in order to obtairp” andp®. Then usinga’ anda? to-

After each time step within an evolution scheme like thatgether with (31) we calculatel andv? and using (30) the

in (23) during the evolution, one obtains new values of therest mass density. Then it is possible to calculate the speed of

conservative variableB;, S,;, 7; at each cell centeracross  sound on the left and right using (20), with this one can cal-

the grid, then it is required to reconstruct the primitive vari- cy|ate the eigenvalues of the Jacobian matrix (15), which in
ables out of the conservative ones in order to account Withyrn allows one to calculate™ and A~ using (29) and finally

the necessary information to calculate the numerical fluxeghe numerical fluxes (28).
and sources (28) for the expression (13).
In order to do so, first of all we recognize that the vari-2 4. Evolution
ables that are being evolved in our system of equations are
w = au = (aD,aS,,at) = (w1, ws,w3) (See Egs. (8)). The evolution algorithm can be summarized as follows:
From definition (9) one can solve for two of the primitive

T—|-D(1—W)—|—p(1—W2)
[ o)

1. Start with given values of the primitive variables at the

variables: 5 center of the cells that contain the physically relevant
po = = “;1 W (30) information of the problem.
o s, B wo 1) 2. Calculate the conservative variables.
a*(r+p+D)  a*(wz+ap+wi)’ 3. Reconstruct all the conservative variables at the left

and right from the intercell boundaries using (24) and
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the pressure by solving (32) and then also reconstruct- 7. Calculate the primitive variables starting frgmand

ing to the left and to the right from all the intercell thenv”, W, po, € andh.
boundaries. With this calculate also the velocity and
rest mass density at the left and right cells. 8. Repeat from step 3 on.

4. Calculate the speed of sound and the eigenvalues of the
Jacobian matrix and use them to calculateand\—. In order to evolve the averaged conservative variables

_ from time stept™ to t”*! we use the discrete expression (23)
5. Use suchresult to calculate the numerical HLLE fluxes,ith numerical fluxes (28) corresponding to Egs. (12), which
(28). we perform using the method of lines (MoL) with a third or-

6. Integrate in time the expression (23) for equations (12)der TVD Runge-Kutta integrator.

1
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)
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FIGURE 3. Weak blast wave model at= 0.4 is shown. The initial discontinuity is located at= 0.5 and the adiabatic index iS = 1.4.

Notice that there is a small region where the Mach number is bigger than one, which indicates that the fluid is supersonic. The spatial
resolution used to carry out this numerical simulatiomis = 2 x 10~* with a Courant factor ofAt/Az = 0.25, which we choose
empirically only being sure that the evolution is causal in the whole domain.
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FIGURE 4. Strong blast wave model. The numerical parameters are as in the previous case and the gas obeys the same equation of state
with T' = 1.4. In this case the Lorentz factor reaches values near 4. The region where the velocity of the fluid is supersonic is wider and the
velocity there higher than in the previous case.

3. The blast wave problem shock wave moving outwards, a rarefaction wave moving in-
wards and between the shock wave and the tail of the rarefac-
The spherical blast wave problem is a particular realizatiorfion wave two new states are developed which are separated
of a Riemann problem. Physically, it consists in a relativistichy a contact discontinuity.
gas distributed into two chambers separated by a removable We present different physical situations corresponding to
spherical membrane locatedat= r¢. Initially the gas in  this problem, based on the numerical solution of the relativis-
the inner chamber has a higher density and pressure than fic Euler's equations. Specifically, the blast wave problem is
the outer one, and the velocity is zero everywhere. Once theet on top of the Minkowski space-time. All we need to do
membrane is removed, a shock wave moves from the regiois set the metric functions to the values= a = 1 in (1).
of higher pressure to the region with lower pressure. Alsdn order to illustrate the physics of the spherical blast wave
a rarefaction wave travels in the opposite direction. Strictlyproblem, we perform different simulations. The parameters
speaking, there are various waves propagating in the spacewa use are shown in Table I.
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In this section we construct various initial configurations
TaBLE . Initial data configurations for the blast wave problem. and show how stable and unstable configurations behave.
Subindex %" is used to represent the initial primitive variables of

the fluid in the inner chamber of radids5, whereas subindex" 4.1. Einstein’s equations

is used to represent the variables in the outer chamlgef0.5, 1].

Einstein’s equation&,,,, = 877, for the space-time (1) and

Case pi Pe pi Pe Vi e the stress-energy tensor (2) in terms of the conservative vari-
Weak blast 1.0 01 10 0125 00 00 jgples (9) reduce to the following system of equations, which
Strong blast  133.33 0.125 100 1.0 0.0 0.0 coincide with those in Ref. 8 (see [7] for the details on the

equations):
In the weak blast case shown in Fig. 3, the difference of
pressure is one order of magnitude, whereas in the strong 0ia = —4rraaS,, (33)
blast wave case case in Fig. 4, the difference of pressure in the 5 m
initial shock is of three orders of magnitude, respectively. As da=a {47”“(7' + D) — 772} , (34)
we can see, the presence of a blast wave is more remarkable P m
when the difference of pressure is higher, producing veloci- ?T =a? [47rr(5rv" +p)+ T—Q} , (35)

ties close to the speed of light and regions where the fluid is

supersonic. The case corresponding to the strong blast wawehere we have identified the metric functienvith the mass

has regions where the Lorentz factor approaches the valugspect function using the expressioh= 1/(1 — 2m(r)/r),

of 4, which indicates the relativistic nature of the process. wherem(r) is the mass contained within a 2-sphere of ra-
An interesting situation is presented in Fig. 5. Due to thediusr.

symmetry of the problem a reverse shock wave appears [18]. Notice that this is an overdetermined constrained evolu-

Unlike the cartesian blast wave case, here the two states sefion system, that is, the first equation is an evolution equation

rated by the contact discontinuity are not constant. It happen®r the metric functiorw, the second is the Hamiltonian con-

that in some localized regions the pressure is higher to thstraint and the third equation is a slicing condition for the

right side than to the left, producing a shock moving inwardslapsea. This system of equations allows the evolution of any

The velocities reached, for this reverse shock wave, are clossource provided, p, D, S, andr, however in order to rep-

to the speed of light. resent a solution of Einstein’s equations they need to satisfy
Finally, in order to analyze the accuracy of the numericalsuch equations at initial time, which we describe next.

evolution of the spherical blast wave, we implement a self-

convergence test for one of the state variables. Fig. 6 show&2. The initial value problem

snhapshots of the self-convergence of the pressure, for both

the strong and weak blast wave cases. As we can see, tReTOV star is described as a spherically symmetric, static

numerical methods applied to this problem are convergensystem that obeys Einstein’s equations sourced by a perfect

Some discussion about self-convergence is in turn; first, whefiuid that obeys a polytropic equation of state.

solving a problem with the unknown functions initially dis-  In order to solve the initial value problem we assume the

continuous, considering the HRSC methods used are secosface-time metric is static and momentarily will usg-) in-

order accurate in regions where the functions are smooth bigtead ofa in order to maintain the standard notation for the

first order accurate at discontinuities, one can expect the solgonstruction of TOV stars (seeg. [1]). Then we start with

tion to converge with first order since the initial discontinuity the line element (1) rewritten as:

contaminates the numerical domain; second, the convergence

can only be considered in the rarefaction zone, because at th@s?=—a(r)2dt* + >

regions where the states still have the values of the initial 1 2mn)

conditions the errors are zero, and in the remaining zone a

contact discontinuity and a shock is being developed, and n%()vie(r)e Wc?ﬂ? ave ?.SS?me?. the Sf:ﬁm IS t;mr?-syzwrr:jetrlcnit
test can be done at the discontinuities. = U and the metric Tunctions and the gas functions depe

only onr. We also assume the gas obeys initially a poly-

4. The evolution of a TOV star tropic equation of state = Kp{. Using [14] one arrives at
' the following set of equations:

Concerning the evolution of the TOV star, besides the evolu-
tion of the fluid as described in detail in the preceding sec- dm — dmr?p (37)
tion, the space-time geometry is allowed to evolve according dr ’
to Einstein’s eqL_Jat|ons, therefore the coupled Euler-Eisntein dp m Amrdp om\ !
system of equations holds. —=——=(p+p) 1+  —
- . - L dr T m T

Moreover, in this case the initial data one supplies is not

arbitrary, instead they have to obey Einstein’s field equations m + 4nr3p

at initial time. =—(p+p) r(r—2m)’

+72d0? 472 sin” 0d¢?, (36)

(38)
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FIGURE 5. In this figure, the presence of a reverse shock wave, in the spherical blast wave problem, is shown. The parameters we use, in this
example, are the following: domain of the simulatiore [0, 12], numerical resolutiod\r = 0.004, Courant Factof.25, adiabatic index
1.4, initial discotinuityr, = 3.0 and the initial primitive variables apg = 13.33, p. = 0.1, p; = 10, p. = 1 andv; = v, = 0.
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FIGURE 6. Snapshots of the self-convergencepdbr the two different cases considered here, the strong and weak blast wave cases are
presented for two different values of time. The resolutions we use/are:= 2.5 * 10™%, Ary = Ari/2 andArs = Ary /4. Figures &)

and (b) corresponds to the weak blast wave, and (c) and (d) to the strong blast wave. In both cases the self-convergence is analyzed in tt
rarefaction zone, where nos hocks are developing. The convergence factor is calQuiatéd: — p2)/(p2 — p3), wherep1, p2 andps

represent the pressure calculated with the three resolutions used. The conclusion is that we achieve first order convergence, as expected 1
the evolution of a discontinuity.

ideal gas equation of state= (I" — 1)ppe, = poe =

lda 1 dp m+4m’p (39) p/T - 11)/;Fthereforep = po(l +€) = po + poe
adr  pH+pdr  r(r—2m)’ = (p/K)"' +p/(T — 1) is the source of (37).
where we have usgel= po(1 + €) andpoh = po(1 +€) +p 3. a(0) = «p is an arbitrary given initial central value
= p+ p. This system of ordinary equations constitutes the for the lapse. Notice in (39) that the solution can be
conditions a TOV star satisfies at initial time, and has to be rescaled multiplying by a constant, which preferably
integrated o_utwards_ from = Qup tor = rmax. We _50|Ve will be chosen such that at the numerical boundary
these equations using a fourth order Runge-Kutta integrator satisfiesa(rma) = 1/a(rmax), Which is a condition
on top of the same grid defined for the fluid equations de-  hat Schwarzschild's solution satisfies and we expect
scribed above. The initial conditions for the integration of to happen at = rmax.

the variables are:
1. m(0) = 0, because the integrated mass up to there is 4. The value ofy. turns to be the input parameter that de-

zero. Another interpretation is that the gravitational termines the configuration, and corresponds to the cen-
field at the origin is zero, and thugr) = 1 corre- tral value of the rest mass density. The result is that for
sponds to the flat space, which implieg0) = 0. each value op,. a configuration can be constructed.

2. p(0) = Kpj., wherepq. is the central value of the rest  1yyg observations are in turn. The first one concerns the
mass density. In the whole domain it happens that orhoint - — 0, because there Egs. (38) and (39) are singular.
the one hangy = (p/K)"/" and on the other, froman \yhat is usually done is to Taylor expand the singular factor

| and get approximate equations for small values: of

m+4rrdp  m(0) +m!(0)r + m” (0)r? 4+ gm/"(0)r® + O(r*) + 47r®p  dmpr/3 + darp

= 40
r2—=2mr 2= 2r(m(0) +m/(0)r + 1m”(0)r2 + tm"(0)r3 + O(r?)) 1—8mpr2/3 (40)
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FIGURE 7. Initial data as found fof® = 2, (n = 1), po. = 0.42, 16 ‘ ‘ ‘
a. = 0.5, K = 1. The result is as follows, the total mass
M = 0.1616, the rest masd/, = 0.177, R = 0.7045. The lapse e
a has been rescaled such thdtma) = 1/a(rmax) as expected to 2l
happen for Schwarzschild’s solution.
: il T}gml mass ——
where equation (37) was used to calculate the derivatives Critical povst | @
i 2 2 9 08 - Special cases W
of m: dm/dr|,—0 = 4nrépl,—0 = 0, d*m/dr?|,—
= 4n(2rp 4+ 7?p)|r=0 = 0 andd®m/dr3|,—o = 4m(2p 06
+ 2rp + 2p)|,—0 = 8mp. Then Egs. (38) and (39) are y
approximated for smatt by

L L L L L L L
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Poc

dp dmpr/3 + dmrp o
ar =—(p+p) m, FIGURE 8. Mass vs central density (_jlagra_m f0|_r thg cakes- 100,
I'=2andK = 10,I" = 5/3. The filled circle indicates the loca-
1 do dmpr/3 + dmwrp tion of the maximum possible mass and also the threshold between
adr T 1-Sepr2f3 (41) " the stable and unstable brances. Those configurations to the left of
the maximum are stable and those to the right are unstable. The fact
These approximate regular equations are the ones to be prthat the rest mass has a bigger value than the total mass indicates
grammed for at least the first mesh point located at Ar that the system is gravitationally bounded. This eventually implies
whereAr is the spatial resolution of the mesh. that those configurations belonging to the unstable branch should
8ollapse and form black holes. Configurations marked with a filled
square correspond to particular configurations we evolve to illus-
trate the different behaviors of stable and unstable configurations.

The second observation is related to the divergence of th
specific enthalpy (3) whepy approaches zero, which in the-
ory would happen from the star’'s surface to infinity where
there is only vacuum. Itis usually set an external atmosphere,
thatis, a minimum value is assumed fgrthan can be hidden The difference between the total and the rest mass of the

within numerical errors and allows the convergence of thestar determines whether or not the system is gravitationally
numerical calculations, however it happens to be a mere niyyounded.

merical artifact at the moment and as far as we can tell, there  As an example of a TOV star configuration we show in

is no theory behind the appropriate value of the atmosphergig. 7 the functions fof' = 2, a polytropic constank = 1

densitypam = floor. The value offloor rather depends on  and a central density,. = 0.42.

the specific problem to be solved. The result of integrating the TOV equations for various

Considering this ingredient one can define the radius values ofp, is summarized in Fig. 8, where we plot the total

of the TOV star as the minimum radius = R at which  and rest mass for two different classes of equations of state,

po = floor. On the other hand, the total mass of the TOVT = 2 andT = 5/3 for several values o,b()c_ Each point

star isMy = m(R), whereas the rest mass of the star is thein the curves corresponds to a valueppfand therefore de-

spatial integral opy given by fines a TOV star configuration. The first plot corresponds to
an ultrarelativistic case whereas the second serves to model

R o ; : i )
) a fermionic gas and is a simple approximate model of white

Mo = 4”/'007’ a(r)dr. dwarfs. The maximum in the plots indicates the threshold be-
0 tween stable and unstable configurations, that is, configura-
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FIGURE 9. Maximum ofa(r) for the stable case&” = 100, I" = 2 andpo. = 0.001 andK = 10, " = 5/3 andpo. = 0.0006. The metric

function responds to the perturbation due to numerical errors and its maximum oscillates. The constant line indicates the value calculatec
at initial time for the maximum of which should be maintained constant in the continuum limit. Also shown is the convergence factor

of the L; norm of the Hamiltonian constraint of Einstein’s equations defined from (34Yby 0,a — a® [47T7’(T + D) — %] such that

Li(H) =, |H:|Az. This simulations use 6000 cells in a domaig [0, 500] for theI" = 2 case and 3000 cells for the cdse= 5/3 in

a domain- € [0, 500]. In both cases the atmosphere rest mass densfipis: = 10~ '3,

tions to the left of the maximum oscillate under perturbations €= L7
whereas those to the right collapse and form black holes if po(l' = 1)
they are perturbed, because these systems are gravitationally h=1+¢e+p/po,
bound sinceViy > My for the values of. shown. We also

indicate in Fig. 8 four particular configurations, two stable D = poW,

and two unstable that we use to illustrate their evolution.

Summarizing, the information required to start up the
evolution of a TOV star has now been calculated at each cell,
and is the following:

S, = pghWQasz,
T = pohW? —p— poW.

Then the evolution of the system is ruled by the Einstein-

a (numerically integrated Euler system as described next.

o« (numerically integrated

. : 4.3. The evolution
p (numerically integrated
The system of equations is the one composed of Euler’'s equa-
tions (12) and the overdetermined system of Einstein’s equa-
tions (33-35). The whole system is started with the initial

po = max((%)l/F , floor),

T

v =0 data corresponding to a TOV star. Among Einstein’s equa-

W= 1 tions we choose to solve (33) farand the remaining (34)
1= a2(vr)2’ is the Hamiltonian constraint we use to monitor the evolu-

tion. Notice that the equation far is an ODE inr, that we
integrate every time step during the evolution.
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Thus the algorithm for the evolution provided given val- — Integrate (35) fory, and rescale it such that at the
ues of K andTI" is as follows: boundary it satisfieg(rmax) = 1/a(rmax)-

e Construct a TOV configuration as initial data for a o After a full time step, calculate the Hamiltonian con-
given central densityy... straint (34) in order to monitor the convergence of the
results.

e Use the evolution equations and calculate Hews,., ) ] ]
7 and simultaneously integrate in time the momentum L€t us explain what should happen during the evolution.
constraint (33) for at every time step. In thg continuum limit the TOV configurations should remain
time independent all the way, because they are static solu-
— For each intermediate time-step of the MoL inte- tions to Einstein's equations. If a perturbation is applied to
grator a stable configuration (for example, a small amplitude shell
o . . pulse added to the density), the geometry and matter quanti-
— Express the prlr_nltlve variables in terms of the ties would oscillate around the equilibrium values, whereas
consgrvatlve vgnables and recqnstruct to the Ieftan unstable configuration would collapse and form a black
andrrlght from intercell boundaries the values for ;e Nevertheless, we are using numerical methods and as
P pos and the_conservanve varla_blé)s S’”’_T shown above, all our calculations involve an intrinsic error.
in order to obtain the necessary information to We then take advantage of such fact and use such error as
construct the numerical fluxes. the perturbation of the equilibrium configurations. Therefore
— Apply boundary outflux conditions to the conser- stable configurations would oscillate around the equilibrium
vative variables and extrapolate farln our con-  values, whereas unstable configurations eventually will col-
servative formulation it requires only to copy the lapse due to a perturbation triggered by the numerical errors.
values of the conservative variables at boundaries In order to illustrate the evolution of TOV stars we choose
from the point next to it. two stable configurations and show some results in Fig. 9. On

K=100, T=2, p =0.004 K=100, T=2, p ,=0.004
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FIGURE 10. We show snapshots of the metric functions for the unstable cases indicated in E#¢.=8,100, I' = 2, po. = 0.004) with

total massMr = 1.623 and(K = 10, I = 5/3, po. = 0.0025) with M7 = 1.475. The lapse collapses to zero with time, which indicates

that an apparent horizon has formed, and in turn implies that external to such apparent horizon there is an event horizon; observe that the
lapse approaches zero untik- 2. Notice also that the metric functiandiverges at a similar location of the horizon radius, which is an

effect of the slice stretching that occurs during a black hole formation in non-penetrating coordinates.
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s Ev‘ent ho‘rizon qf a CO{lapsing conﬁguratiyn In order to make sure that a black hole has formed we
track a bundle of outgoing null geodesics starting at about

130 |- 1 t ~ 103, which we show in Fig. 11 for one of the collaps-
ing configurations. The null rays shown indicate the behav-

e 7 ior of null 2-spheres. Near the event horizon these null sur-

faces should diverge toward the singularity and toward future
null infinity. We show the null geodesics until our simulation

120 |

8 |- 1 remains accurate, which happens until the aforementioned
problem of the coordinates we are using appears. However
el il this small window in time allows one to appreciate the diver-

gence of the null spheres and thus infer that the event horizon
is contained into the set of null rays shown. This guarantees
100 w w ‘ ] ‘ ] ‘ that independently of the formation of an apparent horizon
r ' ' indicated by the gauge dependent conditior 0, an event
horizon, which is gauge independent has formed. It is pos-

FIGURE11. We s.how abundie of r.'u” rays, which due to the. SYM* sible to see that the event horizon grows due to the accretion
metry and coordinates we are using, represent the behavior of 2-

dimensional null spheres. What we show is that some of these rayg)f the gas and tends to stabilize at a radius nearly twice the

diverge toward the singularity and other will diverge outwards to- mass of the initial configuration.
ward infinity, and more precisely toward future null infinity [17].
The growing null sphere in between the two behaviors would be5  Final comments
the event horizon. In theory, an event horizon would be well de-
fined if we guarantee that outgoing null rays diverging outwards \We have shown in detail a particular sort of implementation
reach future null infinity, however we only show a small chunk of of numerical relativistic hydrodynamics solutions, of spher-
the space-time where we can measure the divergence of these nyll o symmetric cases in spherical coordinates. The steps
surfac_es due to the afo_remennoned slice stretching drawback of th%pecified in the paper are also useful for different choices of
coordinates we are using. . - . .

numerical approximations described here.

Specifically, related to the treatment of relativistic hy-
the one hand we show the maximum of the metric functiordrodynamics, we only use a particular flux formula for the
a in time which shows a periodic oscillation. The reasonpnumerical solution of the Riemann problems at the intercell
is that we are solving numerically the initial value problem, houndaries. There are several other choices like the Roe,
and also we are integrating numerically with a finite accu-Marquina, HLL, HLLC,etcetera flux formulas. Also, for the
racy, then there is a numerical error introduced in our calcucell reconstruction of variables, other choices aside the min-
lations at initial time which works as a perturbation whosemod limiter are well studied like the MC (linear monotonic
effects converge to zero in the continuum limit [15]. What centered), PPM (parabolic piecewise method), etc.
is more important is that the metric function remains nearly For instance in Ref. 8 the authors use the combination
time-independent, as expected for a stable equilibrium conHLLE flux formula and MC limiter for the evolution of TOV
figuration. On the other hand we show the convergence of thetars, and in Ref. 16 the evolution of TOV stars is imple-
Hamiltonian constraint, which is necessary to verify that wemented using Marquina and Roe fluxes with MC and minmod
are truly solving the full set of Einstein’s equations (remem-sjope reconstructors.
ber that the Hamiltonian constraint (34) is not being solved, we found appropriate to choose a single combination of
only monitored). We are verifying the convergence of ournumerical methods in order to be as specific and detailed as
results by doubling the resolution, which means that a conpossible.
vergence factor is defined a& whereQ is the order of con- We also want to mention other aspects inherent to these
vergence [15]. Then from Fig. 9 we know our results con-numerical methods. Particularly interesting is that the
verge within order 1.6 and order 2, which is consistent Withenthalpy diverges when the rest mass density approaches
the approximations we have made in all the methods used. zero (3), and the implementation of an atmosphere is neces-

We also show the evolution of two unstable configura-sary. However, so far there is no theory or explanation about
tions in Fig. 10. In this case the metric functionsanda what values of the atmosphere density are to be applied, and
do not remain nearly time independent as in the stable cases, the best cases (as here) convergence tests are used to sup-
where snapshots of the metric functions would be seen asport the numerical results, and the values used for such ex-
single curve. Instead, the lapse collapses to zero in a locaternal density is justified as long as the numerical results in
ized region, which in the coordinates we use is an indicatioierms of accuracy and convergence are achieved.
that an apparent horizon and therefore that a black hole has Even though the density at the atmosphere is small, the
been formed. Also the functiom diverges near the location fluid may develop highly relativistic speeds, which eventually
of the horizon, which is due to the slice stretching effect ofmay produce intractable shocks at the star surface. Therefore
the normal coordinates we are using. the atmosphere requires a rather ad hoc treatment, like artifi-

105 - i
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cial limitation to the speed of the fluid at the atmosphere, etcefaction zone; for a detailed explanation of self-convergence
In particular in our simulations of TOV stars we have usedsee [15]. On the other hand, we also showed a different set
this type of condition, consisting on setting the velocity of of convergence tests for the case of the TOV star; in that case
the atmosphere to a small number. Potential recipes for thehat we show is that the Hamiltonian constraint is satisfied
treatment of the atmosphere with a different equation of staten the continuum limit, that is, we show our numerical solu-
may ameliorate this problem [4,8]. tions satisfy such constraint in the continuum limit, and is not

A very educative point is the convergence. In this pape,exactly zero within numerical approximations (see also [15]).
we show two types of convergence that it is worth describing.
In the case of the spherical blast wave we show snapshots @{cknowledgments
the self-convergence of our results; it is important to notice
that convergence for discontinuous initial conditions are del-This work is supported by grants CIC-UMSNH-4.9 and
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