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Recibido el 19 de abril de 2012; aceptado el 25 de julio de 2012

In this paper we revise two classical examples of Relativistic Hydrodynamics in order to illustrate in detail the numerical methods commonly
used in fluid dynamics, specifically those designed to deal with shocks, which are based on a finite volume approximation. The two cases we
consider are the relativistic blast wave problem and the evolution of a Tolman-Oppenheimer-Volkoff star model, in spherical symmetry. In
the first case we illustrate the implementation of relativistic Euler’s equations on a fixed background space-time, whereas in the second case
we also show how to couple the evolution of the fluid to the evolution of the space-time.
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1. Introduction

In this paper we present the elements needed to implement
the numerical solution to the relativistic Euler equations in
spherical symmetry using examples in special and general
relativity. The aim is to describe the necessary tools to im-
plement numerical codes able to deal with basic problems in-
volving relativistic hydrodynamics which eventually are used
to model high energy astrophysical phenomena, for instance
stellar collapse of compact stars like supernovae core col-
lapse, shock waves propagating out from a spherical source
interacting with the interstellar medium, etc. We are par-
ticularly interested in revising the specific numerical meth-
ods that are commonly used and present a detailed flavor
of high resolution shock capturing methods used in general
relativistic hydrodynamics. We focus on the description of
two representative physical cases: the spherically symmet-
ric blast wave on Minkowski space-time, which is consid-
ered to be a test case in hydrodynamics and the evolution of
a Tolman-Oppenheimer-Volkoff (TOV) star model, made of
a self-gravitating polytropic ideal gas on a dynamical space-
time background.

We consider the problem of solving relativistic hydrody-
namical systems as an initial value problem, ruled by rela-
tivistic Euler’s equations. We have to provide initial data for
a relativistic fluid, which then evolves according to Euler’s
equations in the blast wave case, and in the case of the TOV
star we need to solve simultaneously Euler’s and Einstein’s
equations.

In the blast wave case we start up with free initial data,
which we choose to correspond to an ideal gas distributed
into two concentric spherical chambers, being the inner one
where the gas is at high pressure whereas in the outer sphere
the pressure is smaller. In the TOV star case it is not possi-
ble to choose arbitrary initial data, it is necessary to construct
initial data that are consistent with Einstein’s equations. In
order to have a complete description of the second problem
we introduce the necessary general relativistic background.

We base our numerical treatment on an Eulerian descrip-
tion of the fluid equations using a flux balance form of the

system of equations, which requires the definition of con-
servative variables on top of a discrete cell centered mesh.
The solution of relativistic Euler’s equations is found using a
High Resolution Shock Capturing method (HRSC) based on
the approximate solution of local Riemann problems at the
intercell boundaries. Particularly we use the HLLE approxi-
mate Riemann solver with a linear piecewise reconstructor of
variables. Being this a paper revisiting the numerical meth-
ods, we try to be as specific as possible in the description of
each of the steps within the appropriate section.

The paper is organized as follows. In Sec. 2 we set
the equations of hydrodynamics for a spherically symmetric
space-time, define conservative variables and set the system
of Euler’s equations as a flux balance set of equations, so as
the numerical methods used for the solution. In Sec. 3 we
present the blast wave case and describe in detail its prop-
erties and in Sec. 4 we present the evolution of TOV stars.
Finally in Sec. 5 we present some final comments.

2. Hydrodynamics

2.1. The equations of relativistic hydrodynamics in
spherical symmetry

As a starting point we describe a spherically symmetric
space-time line element in spherical coordinates to be of the
form

ds2 = −α2(t, r)dt2

+ a2(t, r)dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

where t is the time coordinate and(r, θ, φ) are the usual
spherical coordinates and where we have assumed geomet-
ric units whereG = c = 1. This line-element will serve to
workout the two problems we deal with: the hydrodynamics
onto the Minkowski space-time whereα = a = 1 and the
TOV star where such metric functions obey Einstein’s equa-
tions. We choose the matter model to correspond to a perfect
fluid, which means the fluid is not subject to heat transfer and
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viscosity effects; the stress energy tensor of a perfect fluid
given in general relativistic form reads [1,2]:

Tµν = ρ0huµuν + pgµν , (2)

whereρ0 is the rest mass density of the fluid,p its pressure,
uµ is the four velocity of the fluid on the space-time described
by (1) andh the specific enthalpy

h = 1 + ε + p/ρ0, (3)

whereε is the specific internal energy of the gas. The stress-
energy tensor (2) is commonly found in the literature written
asTµν = (ρ + p)uµuν + pgµν , whereρ is the total energy
density of the gas which can be expressed in terms of the rest
mass density and internal energy asρ = ρ0(1 + ε). Also gµν

are the components of the inverse of the 4-metric in (1).
The fluid equations are given by the local mass conserva-

tion law and the Bianchi identity, that are respectively:

∇µ(ρ0u
µ) = 0, (4)

∇µTµν = 0, (5)

where∇µ is the covariant derivative consistent with (1).
When these equations are projected onto space-like hyper-
surfaces and their normal directions one obtains the relativis-
tic Euler equations [3-5]. The result is a set of equations
for the primitive variablesρ0, v

r, p or equivalentlyρ0, v
r, ε,

wherevr is the three velocity of the fluid elements measured
by an Eulerean observer. The way to relate the spatial ve-
locity with the spatial components of the four velocity of
the fluid in (2) is using the relationvr = ur

√
1− grrvrvr

= ur
√

1− a2vrvr = ur/W , whereW is the Lorentz factor,
which in turn is defined byW = αut.

It is well known that Euler’s equations develop disconti-
nuities in the hydrodynamical variables even if smooth initial
data are considered [6]. Therefore one may use as a first try
a finite differences approach, nevertheless it cannot be ap-
plied because the approximations of derivatives would not be
accurate at discontinuities; even though it is common to use
finite differences modifying Euler’s equations with a dissi-
pative term and analyze the limit at which such term van-
ishes [6]. Instead, a more accurate approach used to solve
hydrodynamics equations considers the use of finite volume
methods, which need the system of equations to be written in
a flux balance law form, which in turn requires the definition
of conservative variables as shown below.

As an illustration of how to write down a balance flux
equation we construct the first of Euler’s equations, the one
obtained by developing (4) for the line element (1):

∇µ(ρ0u
µ) =

1√−g
∂µ(

√−gρ0u
µ) = 0, ⇒

1
αar2

∂t(αar2ut) +
1

αar2
∂r(αar2ur) = 0. (6)

whereg is the determinant of the metric tensor in (1) and
therefore

√−g = αar2 sin θ. DefiningD = ρ0W = ρ0αut

and consideringαa 6= 0, we have

∂t(ρ0αaut) +
1
r2

∂r(ρ0αar2ur) = 0, ⇒

∂t(ρ0αaut) +
1
r2

∂r(ρ0αar2[αvrut]) = 0, ⇒

∂t(aD) +
1
r2

∂r(αar2vrD) = 0, (7)

which is the first of Euler’s equations. The remaining two of
Euler’s equations are obtained by developing (5) as shown in
the freely available script [7]. Finally one obtains the follow-
ing set of equations

∂t(aD) +
1
r2

∂r(αar2Dvr) = 0,

∂t(aSr) +
1
r2

∂r(αar2[Srv
r + p]) = αa

2p

r

− αa
a2m

r2
(Srv

r + τ + p + D),

∂t(aτ) +
1
r2

∂r(αar2(τ + p)vr) = −αa
m

r2
Sr, (8)

where the set of conservative variables is defined by

D = ρ0W,

Sr = ρ0hW 2vr,

τ = ρ0hW 2 − p− ρ0W. (9)

Then it is possible to write down these equations as a set of
balance flux type of equations

∂t(au) +
1
r2

∂r(αar2F(u)) = S(u), (10)

whereu is the state vector of conservative variables,F the
flux vector andS is a source vector given by

u =




D
Sr

τ


 , F. =




Dvr

Srv
r + p

(τ + p)vr


 ,

S =




0
−αaa2m

r2 (Srv
r + τ + p + D) + αa 2p

r
−αa m

r2 Sr


 . (11)

Notice that the term that goes as∼ p/r is singular at
r = 0. However in order to regularize the equations there, it
is possible to split the flux balance form of the equations by
appropriately splitting the flux vector and avoid the presence
of such singular term [8,9]:

∂t(au) +
1
r2

∂r(αar2f1(u)) + ∂r(αaf2(u)) = s(u), (12)

where now the fluxes read:

f1 =




Dvr

Srv
r

(τ + p)vr


 , f2 =




0
p
0


 ,

s =




0
−αaa2m

r2 (Srv
r + τ + p + D)

−αa m
r2 Sr


 . (13)
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There is still a usual ingredient when solving problems
in spherical symmetry, that is, the coordinate singularity at
r = 0 of the derivative operators in (12). This problem
is solved usually by substituting(1/r2)∂rf by 3∂r3f for a
given functionf , where now the derivative is with respect to
r3. This result is applied to the second term in Eq. (12).

Therefore, we end up with three evolution equations for
the four variablesD, Sr, τ, p, or equivalently, for the primi-
tive variablesρ0, v

r, ε, p. This requires to close the system,
for which an equation of state relatingp = p(ρ) is sufficient,
whereρ = ρ0(1 + ε) is the total energy density. In the prob-
lems we deal with in this paper we choose the gas to obey an
ideal gas equation of state given by

p = (Γ− 1)ρ0ε, (14)

whereΓ = cp/cv is the ratio between the specific heats,
sometimes described in terms of the polytropic indexn such
thatΓ = 1 + 1/n [10].

2.2. Spectral decomposition of the spherically symmet-
ric relativistic Euler equations

The High Resolution Shock Capturing methods used here
consider schemes where the spectral elements of the Jaco-
bian matrix,A(u) = ∂F(u)/∂u, associated to relativistic
Euler’s equations (10) play an important role. Following [4],
the three eigenvalues of the Jacobian matrix of Euler’s equa-
tions for zero shift are as follows:

λ1 = αvr (15)

λ2 =
α

1− v2c2
s

[
vr

(
1− c2

s

)

+

√
c2
s (1− v2)

[
1
a2

(1− v2c2
s)− vrvr (1− c2

s)
]]

λ3 =
α

1− v2c2
s

[
vr

(
1− c2

s

)

−
√

c2
s (1− v2)

[
1
a2

(1− v2c2
s)− vrvr (1− c2

s)
]]

and their corresponding linearly independent eigenvectors:

r1 =




κ
hW (κ−ρ0c2

s)

vr

1− κ
hW (κ−ρ0c2

s)


 , (16)

r2 =




1
hW

(
vr − vr−λ2/α

1
a2−vrλ2/α

)

hW
( 1

a2−vrvr

1
a2−vrλ2/α

)
− 1


 , (17)

r3 =




1
hW

(
vr − vr−(λ3+βr)/α

1
a2−vrλ3/α

)

hW
( 1

a2−vrvr

1
a2−vrλ3/α

)
− 1


 , (18)

wherev2 = a2vrvr and cs is the speed of sound. On the
other hand, a useful property of the gas is the speed of sound,
which is defined by

hc2
s = χ +

(
p

ρ2
0

)
κ, χ =

∂p

∂ρ0
|ε, κ =

∂p

∂ε
|ρ0 , (19)

where for the ideal gas equation of state (14),χ = ε(Γ − 1)
= p/ρ0 andκ = ρ0(Γ − 1). Using expression (3) for the
enthalpy,

h = 1 + ε + p/ρ0 = 1 +
p

ρ0

Γ
Γ− 1

,

one obtains an expression for the speed of sound in terms of
the thermodynamical variables

c2
s =

pΓ(Γ− 1)
pΓ + ρ0(Γ− 1)

, (20)

which can be used to calculate the eigenvalues and eigenvec-
tors in (15) and (16-18).

2.3. Numerical methods

2.3.1. Finite Volumes

Due to the non-linearity of the relativistic Euler equations, the
presence of discontinuities like shocks and contact discon-
tinuities in the hydrodynamical variables is common, even
though smooth initial data are considered. For this reason,
numerical methods based on the continuity and smoothness
degree of the functions involved, like finite differences, are
not suitable to solve this kind of non-linear equations. One of
the most widely used approaches in the literature is the finite
volume method; firstly this method considers the problem is

FIGURE 1. In this figure, we present the discretization and cell

structure of the space-time. Here, the center of cellC
n+1/2
i is lo-

cated at(tn+1/2, xi) and its space-time volume isV = ∆t∆x. In
terms of an evolution problem, the step size is∆t = tn+1− tn and
the spatial resolution is∆x = xi+1/2 − xi−1/2 = xi+1 − xi for
our homogeneous mesh.
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defined on a mesh of grid points that define a cell structure on
the space-time, that is, the time is restricted to have the dis-
crete set of valuestn = n∆t and the space is considered to
be discretized with cells whose spatial centers are defined at
xi = i∆x as shown in Fig. 1. Secondly, the numerical meth-
ods for balance flux type of equations consist in discretizing
the equations in their integral form. This is a method particu-
larly useful when discontinuities are expected to appear as in
the present case [6].

In order to illustrate the finite volume method, consider
the following conservative system of equations in one spatial
dimension:

∂tu + ∂xF(u) = S, (21)

whereu is the vector of conservative variables,F(u) are
fluxes which depend on the variablesu andS is a vector of
sources. In this way, the first step to discretize the integral
form of the Eq. (21) is to take its average over a space-time
cell Cn+1/2

i :

1
∆t∆x

xi+1/2∫

xi−1/2

tn+1∫

tn

∂tudxdt

+
1

∆t∆x

xi+1/2∫

xi−1/2

tn+1∫

tn

∂xF(u)dxdt

=
1

∆t∆x

xi+1/2∫

xi−1/2

tn+1∫

tn

Sdxdt, (22)

where the volume of the cellCn+1/2
i is (tn, tn+1)

×(xi−1/2, xi+1/2). Now, as second and final step, by us-
ing Gauss’ theorem, this last equation can be integrated to
obtain a discretized version of the integral form of the system
of Eqs. (21):

ūn+1
i = ūn

i −
∆t

∆x

(
F̄n+1/2

i+1/2 − F̄n+1/2
i−1/2

)
+ S̄n+1/2

i ∆t (23)

whereūn
i are the spatial averages of the conservative vari-

ables

ūn
i =

1
∆x

xi+1/2∫

xi−1/2

u(tn, x)dx,

andF̄n+1/2
i+1/2 are the temporal averages of the fluxes:

F̄n+1/2
i+1/2 =

1
∆t

tn+1∫

tn

F(u(t, xi+1/2))dt.

Finally S̄n+1/2
i is the spatial and temporal average of the

sources

S̄n+1/2
i =

1
∆x∆t

xi+1/2∫

xi−1/2

tn+1∫

tn

S(t, x)dxdt.

One of the important problems consists in the calculation of
the temporal averages of the fluxes which we describe be-
low, which depend both on the conservative and the primitive
variables.

2.3.2. Cell reconstruction

Equation (23) provides an evolution rule for the conserva-
tive variables, however the difficulty to calculate the tempo-
ral averaged fluxes̄Fn+1/2

i+1/2 at interfaces between cells, still
remains. One way to solve this problem defines the Godunov-
type of numerical methods [11]. The main idea of these
methods is to consider a Riemann problem at each intercell
boundary, which requires to approximate the spatial average
of the variables̄u at each cell with piecewise functions̃u.

There are different ways of reconstructing the variables.
The simplest reconstruction was introduced by Godunov
and consists in defining the variables to be constant piece-
wise [6,11]. More general reconstructions assume the vari-
ables are linear piecewise, which is the case we handle in this
paper; in this case, the variablesũ are reconstructed using
a minmod slope limiter that restricts the slope of the linear
functions defining the variables within each cell [6,12]:

ũL
i+1/2 = ūi + σi(xi+1/2 − xi),

ũR
i+1/2 = ūi+1 + σi+1(xi+1/2 − xi+1), (24)

whereL andR indicate the cell to the left and to the right
respectively from the intercell boundary we deal with. The
quantityσi is calculated as

σi = minmod(mi−1/2,mi+1/2). (25)

The functionmi+1/2 is the derivative of the conservative
variablesū, centered at the cell interfaces

mi+1/2 =
ūi+1 − ūi

xi+1 − xi
, (26)

FIGURE 2. We show how a function is approximated within each
cell using Godunov’s constant piecewise reconstruction (top) and
the minmod linear piecewise reconstruction (bottom).

Rev. Mex. Fis. E58 (2012) 84–98
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and the minmod slope limiter is defined by

minmod(a, b) =





a if |a| < |b| and ab > 0
b if |a| > |b| and ab > 0
0 if ab < 0,

(27)

for more details see for instance [9]. The illustration of these
reconstructions are shown in Fig. 2. The constant piecewise
reconstruction provides a first order approximation in space
of the variables whereas the linear reconstruction is second
order accurate. This property impacts on both accuracy and
order of convergence of the evolution algorithm. In this pa-
per of course we use the linear reconstruction which helps at
achieving convergence of our results. Finally, once we know

the functions (24) to the right and left from the interfaces be-
tween cells, we can compute the temporal averaged fluxes
using an approximate Riemann solver.

2.3.3. Approximate Riemann Solver: HLLE

Different approximate Riemann solvers require different
characteristic information from the Jacobian matrix, for in-
stance the Roe solver (seee.g. [12]) requires the eigenvalues
and the eigenvectors. One of the appealing properties of the
HLLE approximate flux formula is that it requires only the
eigenvalues of the Jacobian matrix. The HLLE numerical
fluxes formula at the intercell boundaries reads [13]:

F̄HLLE
i+1/2 =

λ+F(ũL
i+1/2)− λ−F(ũR

i+1/2) + λ+λ−(ũR
i+1/2 − ũL

i+1/2)

λ+ − λ−
(28)

where the differentλs are defined by

λ+ = max(0, λR
1 , λR

2 , λR
3 , λL

1 , λL
2 , λL

3 ),

λ− = min(0, λR
1 , λR

2 , λR
3 , λL

1 , λL
2 , λL

3 ). (29)

HereũL andũR are the values of the conservative variables
reconstructed at the right and left from the intercell boundary
respectively. Notice however that for the cases in this paper,
the fluxes and sources in (12) depend not only on the con-
servative variables, but also onp andvr which are primitive
variables. This requires the reconstruction of these primitive
variables too. Also, the differentλs depend on the speed of
sound, which in turn depends onp (see (20)) and is needed at
both the left and right cells. This is the reason why it is re-
quired to calculate the conservative and primitive variables.

2.3.4. Calculation of primitive variables

As mentioned above, the numerical fluxes and sources de-
pend both on the conservative and on the primitive variables.
After each time step within an evolution scheme like that
in (23) during the evolution, one obtains new values of the
conservative variablesDi, Sri, τi at each cell centeri across
the grid, then it is required to reconstruct the primitive vari-
ables out of the conservative ones in order to account with
the necessary information to calculate the numerical fluxes
and sources (28) for the expression (13).

In order to do so, first of all we recognize that the vari-
ables that are being evolved in our system of equations are
w = au = (aD, aSr, aτ) := (w1, w2, w3) (see Eqs. (8)).
From definition (9) one can solve for two of the primitive
variables:

ρ0 =
D

W
=

w1

a

√
1− a2(vr)2, (30)

vr =
Sr

a2(τ + p + D)
=

w2

a2(w3 + ap + w1)
, (31)

whereas the pressure is given by:

p = ρ0ε(Γ− 1) = (ρ0h− ρ0 − p)(Γ− 1)

= (Γ− 1)
[

Sr

W 2vr
− D

W
− p

]

= (Γ− 1)
D

W

[
Sr/vr −DW − pW 2

DW

]

= ρ0(Γ− 1)
[
τ + D(1−W ) + p(1−W 2)

DW

]

= ρ0(Γ− 1)
[
w3 + w2(1−W ) + ap(1−W 2)

w1W

]
, (32)

whereW = W (vr(p)). This defines a trascendental equation
for p which has to be solved at each cell in the domain. We
solve this equation using a Newton-Rapson root finder forp
at each cell. With this information it is possible to reconstruct
p in order to obtainpL andpR. Then using̃uL andũR to-
gether with (31) we calculatevL andvR and using (30) the
rest mass density. Then it is possible to calculate the speed of
sound on the left and right using (20), with this one can cal-
culate the eigenvalues of the Jacobian matrix (15), which in
turn allows one to calculateλ+ andλ− using (29) and finally
the numerical fluxes (28).

2.4. Evolution

The evolution algorithm can be summarized as follows:

1. Start with given values of the primitive variables at the
center of the cells that contain the physically relevant
information of the problem.

2. Calculate the conservative variables.

3. Reconstruct all the conservative variables at the left
and right from the intercell boundaries using (24) and
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the pressure by solving (32) and then also reconstruct-
ing to the left and to the right from all the intercell
boundaries. With this calculate also the velocity and
rest mass density at the left and right cells.

4. Calculate the speed of sound and the eigenvalues of the
Jacobian matrix and use them to calculateλ+ andλ−.

5. Use such result to calculate the numerical HLLE fluxes
(28).

6. Integrate in time the expression (23) for equations (12).

7. Calculate the primitive variables starting fromp and
thenvr, W , ρ0, ε andh.

8. Repeat from step 3 on.

In order to evolve the averaged conservative variables
from time steptn to tn+1 we use the discrete expression (23)
with numerical fluxes (28) corresponding to Eqs. (12), which
we perform using the method of lines (MoL) with a third or-
der TVD Runge-Kutta integrator.

FIGURE 3. Weak blast wave model att = 0.4 is shown. The initial discontinuity is located atr = 0.5 and the adiabatic index isΓ = 1.4.
Notice that there is a small region where the Mach number is bigger than one, which indicates that the fluid is supersonic. The spatial
resolution used to carry out this numerical simulation is∆r = 2 × 10−4 with a Courant factor of∆t/∆x = 0.25, which we choose
empirically only being sure that the evolution is causal in the whole domain.
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90 F.S. GUZMÁN, F.D. LORA-CLAVIJO, AND M.D. MORALES

FIGURE 4. Strong blast wave model. The numerical parameters are as in the previous case and the gas obeys the same equation of state
with Γ = 1.4. In this case the Lorentz factor reaches values near 4. The region where the velocity of the fluid is supersonic is wider and the
velocity there higher than in the previous case.

3. The blast wave problem

The spherical blast wave problem is a particular realization
of a Riemann problem. Physically, it consists in a relativistic
gas distributed into two chambers separated by a removable
spherical membrane located atr = r0. Initially the gas in
the inner chamber has a higher density and pressure than in
the outer one, and the velocity is zero everywhere. Once the
membrane is removed, a shock wave moves from the region
of higher pressure to the region with lower pressure. Also
a rarefaction wave travels in the opposite direction. Strictly
speaking, there are various waves propagating in the space, a

shock wave moving outwards, a rarefaction wave moving in-
wards and between the shock wave and the tail of the rarefac-
tion wave two new states are developed which are separated
by a contact discontinuity.

We present different physical situations corresponding to
this problem, based on the numerical solution of the relativis-
tic Euler’s equations. Specifically, the blast wave problem is
set on top of the Minkowski space-time. All we need to do
is set the metric functions to the valuesα = a = 1 in (1).
In order to illustrate the physics of the spherical blast wave
problem, we perform different simulations. The parameters
we use are shown in Table I.
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TABLE I. Initial data configurations for the blast wave problem.
Subindex “i” is used to represent the initial primitive variables of
the fluid in the inner chamber of radius0.5, whereas subindex “e”
is used to represent the variables in the outer chamberr ∈ [0.5, 1].

Case pi pe ρi ρe vi ve

Weak blast 1.0 0.1 1.0 0.125 0.0 0.0

Strong blast 133.33 0.125 10.0 1.0 0.0 0.0

In the weak blast case shown in Fig. 3, the difference of
pressure is one order of magnitude, whereas in the strong
blast wave case case in Fig. 4, the difference of pressure in the
initial shock is of three orders of magnitude, respectively. As
we can see, the presence of a blast wave is more remarkable
when the difference of pressure is higher, producing veloci-
ties close to the speed of light and regions where the fluid is
supersonic. The case corresponding to the strong blast wave,
has regions where the Lorentz factor approaches the value
of 4, which indicates the relativistic nature of the process.

An interesting situation is presented in Fig. 5. Due to the
symmetry of the problem a reverse shock wave appears [18].
Unlike the cartesian blast wave case, here the two states sepa-
rated by the contact discontinuity are not constant. It happens
that in some localized regions the pressure is higher to the
right side than to the left, producing a shock moving inwards.
The velocities reached, for this reverse shock wave, are close
to the speed of light.

Finally, in order to analyze the accuracy of the numerical
evolution of the spherical blast wave, we implement a self-
convergence test for one of the state variables. Fig. 6 shows
snapshots of the self-convergence of the pressure, for both
the strong and weak blast wave cases. As we can see, the
numerical methods applied to this problem are convergent.
Some discussion about self-convergence is in turn; first, when
solving a problem with the unknown functions initially dis-
continuous, considering the HRSC methods used are second
order accurate in regions where the functions are smooth but
first order accurate at discontinuities, one can expect the solu-
tion to converge with first order since the initial discontinuity
contaminates the numerical domain; second, the convergence
can only be considered in the rarefaction zone, because at the
regions where the states still have the values of the initial
conditions the errors are zero, and in the remaining zone a
contact discontinuity and a shock is being developed, and no
test can be done at the discontinuities.

4. The evolution of a TOV star
Concerning the evolution of the TOV star, besides the evolu-
tion of the fluid as described in detail in the preceding sec-
tion, the space-time geometry is allowed to evolve according
to Einstein’s equations, therefore the coupled Euler-Eisntein
system of equations holds.

Moreover, in this case the initial data one supplies is not
arbitrary, instead they have to obey Einstein’s field equations
at initial time.

In this section we construct various initial configurations
and show how stable and unstable configurations behave.

4.1. Einstein’s equations

Einstein’s equationsGµν = 8πTµν for the space-time (1) and
the stress-energy tensor (2) in terms of the conservative vari-
ables (9) reduce to the following system of equations, which
coincide with those in Ref. 8 (see [7] for the details on the
equations):

∂ta = −4πrαaSr, (33)

∂ra = a3
[
4πr(τ + D)− m

r2

]
, (34)

∂rα

α
= a2

[
4πr(Srv

r + p) +
m

r2

]
, (35)

where we have identified the metric functiona with the mass
aspect function using the expressiona2 = 1/(1− 2m(r)/r),
wherem(r) is the mass contained within a 2-sphere of ra-
diusr.

Notice that this is an overdetermined constrained evolu-
tion system, that is, the first equation is an evolution equation
for the metric functiona, the second is the Hamiltonian con-
straint and the third equation is a slicing condition for the
lapseα. This system of equations allows the evolution of any
source providedp, ρ, D, Sr andτ , however in order to rep-
resent a solution of Einstein’s equations they need to satisfy
such equations at initial time, which we describe next.

4.2. The initial value problem

A TOV star is described as a spherically symmetric, static
system that obeys Einstein’s equations sourced by a perfect
fluid that obeys a polytropic equation of state.

In order to solve the initial value problem we assume the
space-time metric is static and momentarily will usem(r) in-
stead ofa in order to maintain the standard notation for the
construction of TOV stars (seee.g. [1]). Then we start with
the line element (1) rewritten as:

ds2=−α(r)2dt2 +
dr2

1− 2m(r)
r

+r2dθ2 +r2 sin2 θdφ2, (36)

where we have assumed the system is time-symmetric at
t = 0 and the metric functions and the gas functions depend
only on r. We also assume the gas obeys initially a poly-
tropic equation of statep = KρΓ

0 . Using [14] one arrives at
the following set of equations:

dm

dr
= 4πr2ρ, (37)

dp

dr
= −m

r2
(ρ + p)

(
1 +

4πr3p

m

)(
1− 2m

r

)−1

= −(ρ + p)
m + 4πr3p

r(r − 2m)
, (38)
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FIGURE 5. In this figure, the presence of a reverse shock wave, in the spherical blast wave problem, is shown. The parameters we use, in this
example, are the following: domain of the simulationr ∈ [0, 12], numerical resolution∆r = 0.004, Courant Factor0.25, adiabatic index
1.4, initial discotinuityr0 = 3.0 and the initial primitive variables arepi = 13.33, pe = 0.1, ρi = 10, ρe = 1 andvi = ve = 0.

Rev. Mex. Fis. E58 (2012) 84–98



REVISITING SPHERICALLY SYMMETRIC RELATIVISTIC HYDRODYNAMICS 93

FIGURE 6. Snapshots of the self-convergence ofp for the two different cases considered here, the strong and weak blast wave cases are
presented for two different values of time. The resolutions we use are:∆r1 = 2.5 ∗ 10−4, ∆r2 = ∆r1/2 and∆r3 = ∆r1/4. Figures (a)
and (b) corresponds to the weak blast wave, and (c) and (d) to the strong blast wave. In both cases the self-convergence is analyzed in the
rarefaction zone, where nos hocks are developing. The convergence factor is calculatedQ = (p1 − p2)/(p2 − p3), wherep1, p2 andp3

represent the pressure calculated with the three resolutions used. The conclusion is that we achieve first order convergence, as expected for
the evolution of a discontinuity.

1
α

dα

dr
= − 1

ρ + p

dp

dr
=

m + 4πr3p

r(r − 2m)
, (39)

where we have usedρ = ρ0(1 + ε) andρ0h = ρ0(1 + ε) + p
= ρ + p. This system of ordinary equations constitutes the
conditions a TOV star satisfies at initial time, and has to be
integrated outwards fromr = 0 up to r = rmax. We solve
these equations using a fourth order Runge-Kutta integrator
on top of the same grid defined for the fluid equations de-
scribed above. The initial conditions for the integration of
the variables are:

1. m(0) = 0, because the integrated mass up to there is
zero. Another interpretation is that the gravitational
field at the origin is zero, and thusa(r) = 1 corre-
sponds to the flat space, which impliesm(0) = 0.

2. p(0) = KρΓ
0c, whereρ0c is the central value of the rest

mass density. In the whole domain it happens that on
the one handρ0 = (p/K)1/Γ and on the other, from an

ideal gas equation of statep = (Γ − 1)ρ0ε, ⇒ ρ0ε =
p/(Γ − 1); thereforeρ = ρ0(1 + ε) = ρ0 + ρ0ε
= (p/K)1/Γ + p/(Γ− 1) is the source of (37).

3. α(0) = α0 is an arbitrary given initial central value
for the lapse. Notice in (39) that the solution can be
rescaled multiplying by a constant, which preferably
will be chosen such that at the numerical boundary
satisfiesα(rmax) = 1/a(rmax), which is a condition
that Schwarzschild’s solution satisfies and we expect
to happen atr = rmax.

4. The value ofρ0c turns to be the input parameter that de-
termines the configuration, and corresponds to the cen-
tral value of the rest mass density. The result is that for
each value ofρ0c a configuration can be constructed.

Two observations are in turn. The first one concerns the
point r = 0, because there Eqs. (38) and (39) are singular.
What is usually done is to Taylor expand the singular factor
and get approximate equations for small values ofr:

m + 4πr3p

r2 − 2mr
∼ m(0) + m′(0)r + 1

2m′′(0)r2 + 1
6m′′′(0)r3 + O(r4) + 4πr3p

r2 − 2r(m(0) + m′(0)r + 1
2m′′(0)r2 + 1

6m′′′(0)r3 + O(r4))
=

4πρr/3 + 4πrp

1− 8πρr2/3
(40)
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FIGURE 7. Initial data as found forΓ = 2, (n = 1), ρ0c = 0.42,
αc = 0.5, K = 1. The result is as follows, the total mass
M = 0.1616, the rest massM0 = 0.177, R = 0.7045. The lapse
α has been rescaled such thatα(rmax) = 1/a(rmax) as expected to
happen for Schwarzschild’s solution.

where equation (37) was used to calculate the derivatives
of m: dm/dr|r=0 = 4πr2ρ|r=0 = 0, d2m/dr2|r=0

= 4π(2rρ + r2ρ)|r=0 = 0 and d3m/dr3|r=0 = 4π(2ρ
+ 2rρ + r2ρ)|r=0 = 8πρ. Then Eqs. (38) and (39) are
approximated for smallr by

dp

dr
= −(ρ + p)

4πρr/3 + 4πrp

1− 8πρr2/3
,

1
α

dα

dr
=

4πρr/3 + 4πrp

1− 8πρr2/3
. (41)

These approximate regular equations are the ones to be pro-
grammed for at least the first mesh point located atr = ∆r
where∆r is the spatial resolution of the mesh.

The second observation is related to the divergence of the
specific enthalpy (3) whenρ0 approaches zero, which in the-
ory would happen from the star’s surface to infinity where
there is only vacuum. It is usually set an external atmosphere,
that is, a minimum value is assumed forρ0 than can be hidden
within numerical errors and allows the convergence of the
numerical calculations, however it happens to be a mere nu-
merical artifact at the moment and as far as we can tell, there
is no theory behind the appropriate value of the atmosphere
densityρatm = floor. The value offloor rather depends on
the specific problem to be solved.

Considering this ingredient one can define the radiusR
of the TOV star as the minimum radiusr = R at which
ρ0 = floor. On the other hand, the total mass of the TOV
star isMT = m(R), whereas the rest mass of the star is the
spatial integral ofρ0 given by

M0 = 4π

R∫

0

ρ0r
2a(r)dr.

FIGURE 8. Mass vs central density diagram for the casesK = 100,
Γ = 2 andK = 10, Γ = 5/3. The filled circle indicates the loca-
tion of the maximum possible mass and also the threshold between
the stable and unstable brances. Those configurations to the left of
the maximum are stable and those to the right are unstable. The fact
that the rest mass has a bigger value than the total mass indicates
that the system is gravitationally bounded. This eventually implies
that those configurations belonging to the unstable branch should
collapse and form black holes. Configurations marked with a filled
square correspond to particular configurations we evolve to illus-
trate the different behaviors of stable and unstable configurations.

The difference between the total and the rest mass of the
star determines whether or not the system is gravitationally
bounded.

As an example of a TOV star configuration we show in
Fig. 7 the functions forΓ = 2, a polytropic constantK = 1
and a central densityρ0c = 0.42.

The result of integrating the TOV equations for various
values ofρc is summarized in Fig. 8, where we plot the total
and rest mass for two different classes of equations of state,
Γ = 2 andΓ = 5/3 for several values ofρ0c. Each point
in the curves corresponds to a value ofρc and therefore de-
fines a TOV star configuration. The first plot corresponds to
an ultrarelativistic case whereas the second serves to model
a fermionic gas and is a simple approximate model of white
dwarfs. The maximum in the plots indicates the threshold be-
tween stable and unstable configurations, that is, configura-
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FIGURE 9. Maximum ofa(r) for the stable casesK = 100, Γ = 2 andρ0c = 0.001 andK = 10, Γ = 5/3 andρ0c = 0.0006. The metric
function responds to the perturbation due to numerical errors and its maximum oscillates. The constant line indicates the value calculated
at initial time for the maximum ofa which should be maintained constant in the continuum limit. Also shown is the convergence factor
of theL1 norm of the Hamiltonian constraint of Einstein’s equations defined from (34) byH = ∂ra − a3

[
4πr(τ + D)− m

r2

]
, such that

L1(H) =
∑

i |Hi|∆x. This simulations use 6000 cells in a domainr ∈ [0, 500] for theΓ = 2 case and 3000 cells for the caseΓ = 5/3 in
a domainr ∈ [0, 500]. In both cases the atmosphere rest mass density isfloor = 10−13.

tions to the left of the maximum oscillate under perturbations
whereas those to the right collapse and form black holes if
they are perturbed, because these systems are gravitationally
bound sinceM0 > MT for the values ofρ0c shown. We also
indicate in Fig. 8 four particular configurations, two stable
and two unstable that we use to illustrate their evolution.

Summarizing, the information required to start up the
evolution of a TOV star has now been calculated at each cell,
and is the following:

a (numerically integrated),

α (numerically integrated),

p (numerically integrated),

ρ0 = max(
( p

K

)1/Γ

, f loor),

vr = 0,

W =
1√

1− a2(vr)2
,

ε =
p

ρ0(Γ− 1)
,

h = 1 + ε + p/ρ0,

D = ρ0W,

Sr = ρ0hW 2a2vr,

τ = ρ0hW 2 − p− ρ0W.

Then the evolution of the system is ruled by the Einstein-
Euler system as described next.

4.3. The evolution

The system of equations is the one composed of Euler’s equa-
tions (12) and the overdetermined system of Einstein’s equa-
tions (33-35). The whole system is started with the initial
data corresponding to a TOV star. Among Einstein’s equa-
tions we choose to solve (33) fora and the remaining (34)
is the Hamiltonian constraint we use to monitor the evolu-
tion. Notice that the equation forα is an ODE inr, that we
integrate every time step during the evolution.
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Thus the algorithm for the evolution provided given val-
ues ofK andΓ is as follows:

• Construct a TOV configuration as initial data for a
given central densityρ0c.

• Use the evolution equations and calculate newD, Sr,
τ and simultaneously integrate in time the momentum
constraint (33) fora at every time step.

– For each intermediate time-step of the MoL inte-
grator

– Express the primitive variables in terms of the
conservative variables and reconstruct to the left
and right from intercell boundaries the values for
p, vr, ρ0, and the conservative variablesD, Sr, τ
in order to obtain the necessary information to
construct the numerical fluxes.

– Apply boundary outflux conditions to the conser-
vative variables and extrapolate fora. In our con-
servative formulation it requires only to copy the
values of the conservative variables at boundaries
from the point next to it.

– Integrate (35) forα, and rescale it such that at the
boundary it satisfiesα(rmax) = 1/a(rmax).

• After a full time step, calculate the Hamiltonian con-
straint (34) in order to monitor the convergence of the
results.

Let us explain what should happen during the evolution.
In the continuum limit the TOV configurations should remain
time independent all the way, because they are static solu-
tions to Einstein’s equations. If a perturbation is applied to
a stable configuration (for example, a small amplitude shell
pulse added to the density), the geometry and matter quanti-
ties would oscillate around the equilibrium values, whereas
an unstable configuration would collapse and form a black
hole. Nevertheless, we are using numerical methods and as
shown above, all our calculations involve an intrinsic error.
We then take advantage of such fact and use such error as
the perturbation of the equilibrium configurations. Therefore
stable configurations would oscillate around the equilibrium
values, whereas unstable configurations eventually will col-
lapse due to a perturbation triggered by the numerical errors.

In order to illustrate the evolution of TOV stars we choose
two stable configurations and show some results in Fig. 9. On

FIGURE 10. We show snapshots of the metric functions for the unstable cases indicated in Fig. 8,(K = 100, Γ = 2, ρ0c = 0.004) with
total massMT = 1.623 and(K = 10, Γ = 5/3, ρ0c = 0.0025) with MT = 1.475. The lapse collapses to zero with time, which indicates
that an apparent horizon has formed, and in turn implies that external to such apparent horizon there is an event horizon; observe that the
lapse approaches zero untilr ∼ 2MT . Notice also that the metric functiona diverges at a similar location of the horizon radius, which is an
effect of the slice stretching that occurs during a black hole formation in non-penetrating coordinates.
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FIGURE 11. We show a bundle of null rays, which due to the sym-
metry and coordinates we are using, represent the behavior of 2-
dimensional null spheres. What we show is that some of these rays
diverge toward the singularity and other will diverge outwards to-
ward infinity, and more precisely toward future null infinity [17].
The growing null sphere in between the two behaviors would be
the event horizon. In theory, an event horizon would be well de-
fined if we guarantee that outgoing null rays diverging outwards
reach future null infinity, however we only show a small chunk of
the space-time where we can measure the divergence of these null
surfaces due to the aforementioned slice stretching drawback of the
coordinates we are using.

the one hand we show the maximum of the metric function
a in time which shows a periodic oscillation. The reason
is that we are solving numerically the initial value problem,
and also we are integrating numerically with a finite accu-
racy, then there is a numerical error introduced in our calcu-
lations at initial time which works as a perturbation whose
effects converge to zero in the continuum limit [15]. What
is more important is that the metric function remains nearly
time-independent, as expected for a stable equilibrium con-
figuration. On the other hand we show the convergence of the
Hamiltonian constraint, which is necessary to verify that we
are truly solving the full set of Einstein’s equations (remem-
ber that the Hamiltonian constraint (34) is not being solved,
only monitored). We are verifying the convergence of our
results by doubling the resolution, which means that a con-
vergence factor is defined as2Q whereQ is the order of con-
vergence [15]. Then from Fig. 9 we know our results con-
verge within order 1.6 and order 2, which is consistent with
the approximations we have made in all the methods used.

We also show the evolution of two unstable configura-
tions in Fig. 10. In this case the metric functionsα anda
do not remain nearly time independent as in the stable cases,
where snapshots of the metric functions would be seen as a
single curve. Instead, the lapse collapses to zero in a local-
ized region, which in the coordinates we use is an indication
that an apparent horizon and therefore that a black hole has
been formed. Also the functiona diverges near the location
of the horizon, which is due to the slice stretching effect of
the normal coordinates we are using.

In order to make sure that a black hole has formed we
track a bundle of outgoing null geodesics starting at about
t ∼ 103, which we show in Fig. 11 for one of the collaps-
ing configurations. The null rays shown indicate the behav-
ior of null 2-spheres. Near the event horizon these null sur-
faces should diverge toward the singularity and toward future
null infinity. We show the null geodesics until our simulation
remains accurate, which happens until the aforementioned
problem of the coordinates we are using appears. However
this small window in time allows one to appreciate the diver-
gence of the null spheres and thus infer that the event horizon
is contained into the set of null rays shown. This guarantees
that independently of the formation of an apparent horizon
indicated by the gauge dependent conditionα ∼ 0, an event
horizon, which is gauge independent has formed. It is pos-
sible to see that the event horizon grows due to the accretion
of the gas and tends to stabilize at a radius nearly twice the
mass of the initial configuration.

5. Final comments

We have shown in detail a particular sort of implementation
of numerical relativistic hydrodynamics solutions, of spher-
ically symmetric cases in spherical coordinates. The steps
specified in the paper are also useful for different choices of
numerical approximations described here.

Specifically, related to the treatment of relativistic hy-
drodynamics, we only use a particular flux formula for the
numerical solution of the Riemann problems at the intercell
boundaries. There are several other choices like the Roe,
Marquina, HLL, HLLC,etcetera flux formulas. Also, for the
cell reconstruction of variables, other choices aside the min-
mod limiter are well studied like the MC (linear monotonic
centered), PPM (parabolic piecewise method), etc.

For instance in Ref. 8 the authors use the combination
HLLE flux formula and MC limiter for the evolution of TOV
stars, and in Ref. 16 the evolution of TOV stars is imple-
mented using Marquina and Roe fluxes with MC and minmod
slope reconstructors.

We found appropriate to choose a single combination of
numerical methods in order to be as specific and detailed as
possible.

We also want to mention other aspects inherent to these
numerical methods. Particularly interesting is that the
enthalpy diverges when the rest mass density approaches
zero (3), and the implementation of an atmosphere is neces-
sary. However, so far there is no theory or explanation about
what values of the atmosphere density are to be applied, and
in the best cases (as here) convergence tests are used to sup-
port the numerical results, and the values used for such ex-
ternal density is justified as long as the numerical results in
terms of accuracy and convergence are achieved.

Even though the density at the atmosphere is small, the
fluid may develop highly relativistic speeds, which eventually
may produce intractable shocks at the star surface. Therefore
the atmosphere requires a rather ad hoc treatment, like artifi-
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cial limitation to the speed of the fluid at the atmosphere, etc.
In particular in our simulations of TOV stars we have used
this type of condition, consisting on setting the velocity of
the atmosphere to a small number. Potential recipes for the
treatment of the atmosphere with a different equation of state
may ameliorate this problem [4,8].

A very educative point is the convergence. In this paper
we show two types of convergence that it is worth describing.
In the case of the spherical blast wave we show snapshots of
the self-convergence of our results; it is important to notice
that convergence for discontinuous initial conditions are del-
icate in the sense that convergence can be estimated only in
regions free of discontinuities, in our case only in the rar-

efaction zone; for a detailed explanation of self-convergence
see [15]. On the other hand, we also showed a different set
of convergence tests for the case of the TOV star; in that case
what we show is that the Hamiltonian constraint is satisfied
in the continuum limit, that is, we show our numerical solu-
tions satisfy such constraint in the continuum limit, and is not
exactly zero within numerical approximations (see also [15]).
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