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Quantum echoes in classical and semiclassical statistical treatments
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Some quantal systems require only a small part of the full quantum theory for their analysis in classical terms. In such understanding we
discuss some recent literature on semiclassical treatments and add some results of our own. This analysis allows one to see that some
important quantum features of the harmonic oscillator, a system of great didactic value, can indeed be already encountered at the classical or
semiclassical statistical levels.
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Algunos sistemas @nticos requieren&o una pequia parte de la te@a clantica completa para su a@isis en érminos chsicos. Para
una mejor comprengn discutimos algunos tratamientos sedmsétos de la literatura reciente fiaimos algunos resultados propios. Este
aralisis permite ver que algunas importantes caréstteas canticas del oscilador af@nico, tan importante para la @idtica de conceptos
fisico, de hecho ya pueden ser encontradas en los nivelesséstaichsicos o semiélsicos.

Descriptores: Teoiia de la informadn; espacio de fases; informéanisemichsica; delocalizadin; medida de Fisher.
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1. Introduction in the vicinity of the ground state, like nuclei or Luttinger
liquids. For starters we briefly review below the notions un-

It has been pointed out long ago that some quantal systengi€rlying this communication.
require only a small part of the full quantum theory for their o
analysis in classical terms [1]. Some exciting contempo-L-1. Escort distributions
rary ideas n S'”.“'ar. vein are those Of. [2] Herg we W'.Sh toG'ven a probability distribution (PDY(z), there exists an
present a didactic discussion concerning these issues in Whl%ﬁ‘inite family of associated PD, () given by

we hope is an original manner, suitable for students that have
had one/two semester(s) of instruction in boths quantum me- fi(x)

chanics and statistical mechanics. fo(z) = Tda fi(z)’ (1)

With this notion in mind, and with reference to some re- . .
cent work [3-9] we will try to show, after inspection, reflec- ywth ga reall parameter, th_at have prov_ed to be quite useful
tion, and re-elaboration, that some typical quantal peculiar'—n the investigation of nonlinear dynamical systems, as they

ities can be explained, to a rather surprising extent, by re(_)ften are better able to discern some of the system’s features

course to just classical or semiclassical considerations. \/\/Ié_]an the original dlstr|but_|on_ [1(.)’ 16]. It should be .empha'
have in mind here such “purely-quantum” concepts as thosg'zed that both types of distributionf, and f accrue similar

of decoherence factor, Mandel parameter, and escorts dist tatus in contemporary statistical physics’ research [10], as

butions, a well-known tool of contemporary statistical me-they not_oriously oceur in the formulation of several recent
chanics’ research [see, for instance, [10, 11] and referencetgrmUIat'OnS O.f statistical mechanics [10, 11, 16].

therein]. We will encounter quantum echoes regarding such Here we will take aqlv_antage of the-degree of freedom
notions, outside the Sabdinger or Heisenberg representa- 1o look for efiects not v_|s_|ble o " 1_that hopefully emerge
tions. Our main research tools will be escort distributions,at otherq—yalues. Add|_t|onally, 't.W'" be seen that physical
intertwined with information-quantifiers, of which the semi- considerations constrain the-choice.
classical Wehrl's entropy and Fisher’s information measure, ,

are singled-put.

The harmonic oscillator (HO) constitutes the focus of ourDecoherence is that interesting process whereby the quantum
attention. This is, of course, much more than a mere exanmechanical state of any macroscopic system becomes rapidly
ple, since in addition to the extensively used Glauber statesorrelated with that of its environment in such a manner that
in molecular physics and chemistry [12, 13], nowadays theno measurement on the system alone (without a simultane-
HO is of particular interest for the dynamics of bosonic orous measurement of the complete state of the environment)
fermionic atoms contained in magnetic traps [14, 15], as weltan exhibit any interference between two quantum states of
as for any system that exhibits an equidistant level spacinthe system. Decoherence is a rather exciting phenomenon
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and a subject of widespread attention [17]. However, it is dif-a character. The semi-classical Husimi probability distribu-
ficult to provide a quantitative definition of it. All pertinent tion refers to a special type of probability: that for simultane-
attempts always depend on the relevant experimental configgus but approximate location of position and momentum in
uration and on the authors’ taste [18]. An important relatedohase-space [22].

guantity is the square of the density matrix, in whose terms  The usual treatment of equilibrium in statistical mechan-
one can define a decoherence paramBt§t9], ranging be-  ics makes use of the Gibbs’s canonical distribution, whose

tween O (pure states) and one. It is defined as associated, “thermal” density matrix is given by
o ) @ p=2"te M, (6)
(Trp)? with Z = Tr(e—ﬁﬁ) the partition functions = 1/kpT the

This is a clearly non-negative quantity. The quaniiy5?) inverse temperaturg, andk the Boltzmann constant.

is often called the purity of, equal to unity for pure states. 2.2, Information quantifiers in phase-space

1.3. Mandel parameter and Fano factor The operative semiclassical entropic measure is here

. ise-indi lassical field is th Wehrls's entropyW, a useful measure of localization in
A convenient noise-indicator of a non-classical field is t ephase-space [27]. Its definition reads

so-called Mandel parameter which is defined by [20]

dxd
2 W= —/ P iz, p) mp(z, p). Q)
o-— (AN) 1= F_1 3) 2mh
a (N) B ’ The uncertainty principle manifests itself through the in-
o . . equality
which is closely related to the normalized variance (also 1< W, 8)

called the quantum Fano factgt [21]) F = AN)2 N . ) .
of the photon distribution. FaF < 1 (Q < 0), (emittec{<ligk>1t which was first conjectured by Wehrl [27] and later proved by

is referred to as sub-Poissonian since it has photo-count noide€P [28]- In dorder tot;:_onver;:entl_{ write d(:w_n an expression
smaller than that of coherent (ideal laser) light with the sam or W consideranar itrary Hamiltoniafd o clgen-energies
intensity (F = 1: QO — 0), whereas fotF > 1, (Q > 0) the E,, and eigenstateg:) (n stands for a collection of all the
light is called super-Poissonian, exhibiting photo-count noisé)ertmlent quaqtumzrzlumbers required to label the states). One
higher than the coherent-light noise. Of course, one wishe§2" &Ways write [22]

to minimize the Fano factor. 1 _
plap) = D e P (aln)l. )

2. Basictools A useful route tolV starts then with Eq. (9) and continues

_ _ with Eg. (7). In the special case of the harmonic oscillator
We introduce next the basic tools needed for our endeavor. the coherent states are of the form [26]

2.1. Phase-space, coherent states, and Husimi distribu- |2) = e~ 121772 Z Z (10)
tions

In phase-space, exact quantum solutions are given by WignéYhere|”> are a complete orthonormal set of eigenstates and
distributions [22-24]. The paradigmatic semiclassical conVN0S€ spectrum of energy, = (n+1/2)hw,n =0,1,...
cept to be appealed to is that of Husimi probability distribu-'n,th's ;ltuatlon we have the useful analytic expressions ob-
tion, u(z, p), built upon using coherent states [5, 25, 26]. The!@ined in Ref. 22

pertinent definition reads p(z) = (1 — e Bhwy ==l (11)

p(z, p) = (zlplz), (4) Wio =1—1In(1 —e 7). (12)

a “semi-classical” phase-space distribution function associWhenT — 0, the entropy takes its minimum vali€x o =1,

ated to the density matrig of the system [12, 26]. Coherent expressing purely quantum fluctuations. On the other hand

states are eigenstates of the annihilation operatoe., sat- When7" — oo, the entropy tends to the value}n(ﬁh,w).
isfy a|z) = 2|z). The distributionu(z, p) is normalized in which expresses purely thermal fluctuations. Fisher's infor-
the fashion ’ mation measuré is the local counterpart of the global Wehrl

dxdp _1 5 quantifier. It is an indicator of how much information is con-
o, M@P) = ) tained in a probability distribution function (PDF) [29]. In

Indeed, u(z, p) is a Wigner-distributionDy, smeared over phase-space, the local quantifier adopts the appearance [6]
an# sized region of phase space [22]. The smearing renders 1 / d?z () (8111 ,u(z))2
S Bl ’

wu(x,p) a positive function, even iDy, does not have such I'= 4 92|

(13)

™

Rev. Mex. 5. E58(2012) 120-126
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so that inserting the—expression into the above expression (F < 1) the photon distribution becomes narrower than that

we obtain for the HO the analytic form of a Poisson-PDF and the associated state is non-classical.
. The most elementary examples of non-classical states are
Ino=1—e P, (14)  number states. Since they are eigenstates of the photon num-

ber operatotV, the fluctuations inV vanish and the Mandel
parameter read@ = —1 (F = 0) [23]. Taking into account
that the number operator is connected with the harmonic os-
cillator HamiltonianH via N = H /hw—1/2, we can rewrite

the HO-Mandel parameter in this fashion

sothatd < Iyp < 1.

2.2.1. Afirst observation
Introducing (14) into the Wehrl expression we find

(AH)?

WHO =1-—1In (IHo), (15) . \=)
hw(H) — h2w? /2

which together with the Lieb inequality seems to be telling
us that too much information might be incompatible with the .
uncertainty principle. Closer inspection shows, however, thathere we have used that = %iw|z|* [8]. Of course, classi-
the above expression is valid for any values of either w. cally the hamiltonian phase-space function is

We will return to this point later on, in connection with escort

distributions. p?

1
'H(:U,p) = % + 5771;&)2332. (21)

Q=F-1= 1, (20)

2.3. Escort Husimi distributions

Things can indeed be improved in the above described sce-

nario by recourse to this concept of escort distribution, intro-3- Decoherence parameter

ducing it in conjunction with semiclassical Husimi distribu-

tions. Thereby one might try to gather “improvesEmiclas- We shall calculate the decoherence (2) in three different ver-
sical informationfrom escort Husimi distributions;-HDs)  sions: quantum, classical, and semiclassical. In the two last
vq(z, p): instances, one replacgdy an ordinary, normalized PDF

z,p)? and the trace operation by integration over phase spage,
alap) = D) (16) peration by integ phase spa
f T M(:L‘yp)q
. f dxdp f2
whered?z/n = dadp/27h and whose HO-analytic form can D—=1_ h ' (22)
be obtained from Ref. 7.e., (f 9zde f)2

_Bh Ca(1l—e— PPy 2 ) ) )
Yg(2) = q(1 — e7e)emat=e I, (A7) cClassically,D is not guaranteed to be of a nonnegative char-
] . L acter.As a first new result of this communication we will see
As for the associated escort-Fisher meadifeone eas- oy that interesting physical results ensue if we nonetheless

ily gets demand nonnegativity

@_ L [d= lnyy(2) "

m 3.1. Quantal HO-version

that using (17) leads to
@ _ b We begin with the orthodox quantum recipe. All our cal-
LV =q(l—e ) =alno, (19)  culations are performed in phase-space. For technical de-
tails consult, for instance, Ref. 5. The quantum HO- den-
sity operator isp = ¢ /Z, H the HO-Hamiltonian, and
Z = e Phw/2 /(1 — ¢~ Phw) the partition function of this sys-
tem, so that one straightforwardly finds

entailing that) < 19 < q.
2.4. Coherent states and Mandel parameter

For a coherent state (a pure quantum state) the Mandel pa-

rameter vanishese., Q = 0 and*F = 1. Afield in a coher- Dauant = 2 )
ent state is considered to be the closest possible quantum- 1+ efhe
state to a classical field, since it saturates the Heisenberg

uncertainty relation and has the same uncertainty in each It is easy to see that fof — oo one hasDgyant = 0
guadrature component. It should be clear that b@tand  while for 3 — 0 one hasDguant = 1, as expected. As stated
F function as indicators on non-classicality. Indeed, for aabove, intriguing things may happen if we try to repladsy
thermal state one hag > 0 andF > 1, corresponding to a a classical PDF and the trace operation by integration over
photon distribution broader than the Poissonian. Got 0, phase-space.

(23)
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3.2. Classical HO-version 3.3.1. Second echo

Classically (or semiclassically), the delocalization factor canThe above result can be interpreted ( [6] via the relationship
be gotten by using probability distributions instead of densitybetween the decoherence factor and the so-called participa-

matrices [5]. For the HO one has tion ratio R, that “counts” the number of pure states asso-
ciated to a density matrix). We find here that just two pure
Dyace= 1 — 1 dzdp _pnuz? (22) sStates would “enter” the semiclassical PDFTat= 0, if it
class Z2.) h ’ could be regarded as being of a quantal character, since
whereZgass= 1/(8hw) is the classical partition function for D=1_ l (31)
the HO. The pertinent computation yields R
3.4. Escort semiclassical HO-version
Bhw
Dclass: 1—— (25) . . .
2 For more interesting results we turn now our attention to es-

cort distributions in the hope that makigg# 1 may help us
to elucidate more details of our problem. The ensuing semi-
classical version becomes

Interestingly enoughDcjss — 1 asT — oo, as in the quan-
tum instance.

3.2.1. First quantum echo DWW =1- — 2, (32)
m

When dealing with Gaussian distributions one fiﬂd@sgo ie,
i i = Ae—al?l
[Cf. Ref. 2] only in special cases. Fgr= Ae one Dg‘g) —1_ g (1- e_ghw) —1_ g% 0<~<1. (33)

readily finds
Dopee =1 — 2. (26)  Non-negativity implies(¢/2)y < 1. One can satisfy this
2 relationship and still retain ample liberty to find acceptable
Thus,Dgjass> 0 impliesa < 2. In our caseq = Shw and the  triplets of vaIueSDég) =z, q, (.
requirement turns out to be that the “thermal” enekgyl", Additionally, from (33) we find, calling: = DY
i.e, the average classical energy per degree of free@om 2(1 — )
is such that . 1= 1 pho- (34)
w
(€)min = 5 (27) Now, in this case the Wehrl entropy and Fisher measure

. . - - . turn out to be, respectively, [6
This entails a rather surprising resudt,minimum possible P s

mean energy per degree of freeddmmin. FOr energies W, =1-Infg(l— e Phw)

smaller of this value the quantity (22) becomes negative. I, =q(1 — e PM), (35)
Thus, we encounter a quantum-flavored result at the class'g0 that the Lieb inequality becomes in this instance
cal level. One might be tempted to suggest that the vacuum

energyfw /2 has a statistical origin. Why? Because a min- —Infg(1 —e PP >0, e,

imum possible HO-energy arises just by demanding that the —lngy>0 = gy <1, (36)

pertinent distributiory’ verify which does pose some further constraintgypnamely,

dadp \? dzdp o q(1 —e Phy =21 —2) <1, (37)
)= [ B e
(/ h / h that is

DY >1/2; R >2. (38)
3.3. Semiclassical HO-version
3.4.1. Third echo
In a semiclassical version, this parameter takes the form
The meaning of the above result is quite interesting. Math-
D.o—1_ / &N(Z)g (29) ematically, ¢ (and thusi,) can be larger than what is al-
5 P ' lowed by (37), since in such vein one only needs asking that
) o W, > 0, entailingg < e/~, instead ofy < 1/~. However,
whose analytic expression is for
14 e—Bhw 1/y<q<e/y, (39)
Dse = 5 (30)  Lieb’sinequality is violated, which is tantamount to asserting
that the uncertainty principle is ignored. Thus, we see here
One ascertains then that fér — oo we have, as expected, that“too much” information violates Heisenberg’s principle
Dsc = 1. On the other hand, & = 0 we getDsc = 1/2. in a semi classical setting.
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3.5. Classical escort version 4.2. Classical Fano factor
The escort classical HO-phase-space probability distribution o ) )
reads [9] In the classical instance some further considerations become
e—aBhw|z|* necessary. The HO's classical partition function was given
Py(x,p) = (40)  above byZyass= 1/Shw [30]. Accordingly,

[ Lwhdp e—aBhw|z|2’

so that, after integration one finds

; 1
2 H) = /dxd h) |2|2 e PPel=l® = =, 46
Pq(x,p) _ qﬁﬁw efqﬁhw|z| ) (41) < > chass ( p/ )| | ﬁ ( )
Thus, a simple computation for
2,2 5
Dis=1- /(dﬂcclp/h)Pq(x,p)2 (H?) = Z“’ /(d:cdp/h) |2[* e~ Pelal — %, (47)
class
yields a result that entails a mere re-scaling of the inverse-
temperatures by a factorg which entailsl/ AH)? = 1/42. As a consequence, we have
qphw
Dégss: 1- 9 (42) 1
Felass= The | R2wZ (48)

This entails a shifting of the minimum allowable energy.

kpT — 2K%LT?

3.5.1. Fourth echo ,
At IOW T, kBT << h/WT and fdass - 0. fdass dlvel’geS at

HereD'Y. > 0 entailsq < kpT/(hw/2), so that we obtain high temperatures. Indeed, it does s&af" = hw/2, when

class =

a physical restriction on the value @f the thermal energy equals the HO-ground state energy.
<H>class
< o class 43
¢S g (43)
whereE, = hw/2 is the zero-point energy. 4.2.1. Fifth echo
3.6. Quantal escort version This is a quite interesting result. The classical treatment

somehow “knows” that this is a strange energy value, mean-
ingless (but unattainable) in the classical world, and reacts
with a “pole”. In any case, classical considerations do lead to

Thus, the decoherence factlor the vacuum HO-energy (again!).
=1 —Tr /2, and we have the analytic

Interestingly enough, the sanfe-rescaling occurs in the
quantum instance. In this version we hgye= p?/ Tr 9 =
e 0P (1 — e=aBhw)cabhe/2,

is defined a'?

’ quant
expression
D= . (44)
au 1+ eabhw 4.3. Semiclassical Fano factor

We see tha‘Déﬁém > 0 impliesq > 0, still another physical

restriction on the;—value. The semiclassical versiafi,. of Fano factor evaluated with
Husimi’s distribution was found in Refs. 3 and 9

4. Diverging HO-Fano factors

(AuN)?

It was found in Ref. 3 that the semiclassical g-Husimi-HO Fse = W’ (49)

treatment reveals the appearance of “poles’, divergences "

of the Fano factor for specifig—values. We delve further

into this issue below. where (...}, denotes the semiclassical mean value of any
general observable and the subingerdicates that we have

4.1. Quantal Fano factor taken the Husimi distribution (11) as the weight function. It

. . is then easy to see that, reads
If we take the mean valug) = Tr(pH) we have for the

guantal Fano factor the expression 9

: (45) T TP (- e o))

(50)
F quant — m .

For our present objectives we note that this quantity “di-No divergences ensue in this instance. However, they will
verges”onlyfor T' = oco. appear if we appeal to escort distributions.
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5. Escort Fano factors (H) =1/(¢B), (H?) =2/(¢*B?), and(AH)? = 1/(¢*52).
Consequently, the-escort classical Fano factor is
5.1. Semiclassical escort Fano factor for the HO

o (56)
B " . . class hw h2w?2 °
The “escort’-expression for the Fano factor is [3] 95,7 — 22kQBT2
2
Flo = (51)  The limitq — 1 leads toF\... = Feass The Fano “pole”

_ o—Bhw _ _ p—Bhw))"
g1 —e J2—all—e ) becomes located at= 2k5T/(fw). Also, here we have
We note that wheg tends to unity we havé‘s(é) = Fse. We 2
see now the Fano-divergences may occur whenever Prverg(q) = ghw’ (57)

—G(B) =1 — e P, (52) and can be chosen at will.

2
q
5.3. Quantal escort-Fano factor
Since0 < exp (—fhw) <1
Here we have

1
and i.e, we find again a5—scaling and nothing interesting hap-
2< ¢ < . (54)  pens.e” 97" =1 when eithey = 0 or T — co.
Additionally, the inverse temperature at which the divergence6 Conclusion
of the Fano factor takes place is given by . onclusions
“ln(1-2/q) We have focused attention here on two purely quantal con-
Brdiverg(q) = —p (55) cepts: the decoherence paraméfeand the divergence of

the Fano factor for specifigor 5 values. These two notions

a value that obviously ranges i, co]. We conclude that the have been treated at three levels: 1) quantum, 2) classical,
“classical pole” can be “moved” to any temperature what-and 3) semiclassical. In all instances this was done both for
soever by a judicious choice gf which allows one thento ¢ = 1andq # 1.
mimic at will the “pole”-behavior in either the classical orthe ~ We have heard quantum echoes at the classical level and
quantum (afl’ = oo) instances. discovered that by changingwe can force the semiclassical
results to accommodate either quantum or classical proper-
ties.

In related matters concerning stochastic electrodynamics,
The escort distribution can mimic, after judicious the illuminating work of T.H. Boyer and L de la Ra et al.

q—selection and for specific physical facets, either quantunfamong others) has to be mentioned [1, 31, 32], what we here
or classic behavior. call echoes emerge there as well. It is safe then to assert then

that the classical-quantum links deserve further scrutiny.

5.1.1. Second observation

5.2. Escort-classical Fano factor
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