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Fourier description of lock-in
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In this study, a new interpretation about the operation of a traditional lock-in and dual lock-in is presented from the viewpoint of Fourier
analysis. Once the mathematical principles under which these devices operate are understood, we could take full advantage of the magnituc
and phase of the Fourier coefficients to measure the physical variables, as shown in the final example of this study. Also, a comparison
between signal-to-noise ratio (SNR) of a square reference lock-in and a pure sinusoid lock-in is also presented.
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1. Introduction parameter that affects the amplitudefdt) can be measured
) in this way.

Itis often the case that undergraduate and graduate students | et ys derive an expression for the coefficieats and

in electronics or experimental physics obtain poor results in,  To calculaten,,, the signalf(¢) is multiplied by a ref-
their experiments due to the presence of large amounts Qirence signal, which corresponds to the function associated
noise in their measurements, caused by the relatively larggiith the coefficienta,,; in this case, it isos(mwot + ¢o),
bandwidth of the instruments commonly used in an underyhereg, is the phase difference that may exist witft) (for
graduate laboratory, such as the oscilloscope and the multimpjicity, it will be assumed thap, = 0; the general case

meter, which makes them use lock-in. However, when stuy;i| pe discussed later) and the product is integrated over a
dents begin to use a traditional lock-in (non- traditional lock-period as follows:

in techniques [1,2] are not considered in this work), it is diffi-
cult for many of them to understand its operation principles, T s

and this causes, in some circumstances, inappropriate use or /f(t) cos (mw,t) dt = ag / cos (mw,t) dt
under-utilization. There are numerous studies on the use of 0 A

lock-in, but there are only a few discuss the analysis of its op- .

eration [3-5], which, in most cases, is difficult to understand

(additional references are summarized in Ref. 4). For this +> /al sin (lwot) cos (mwot) dt
reason, this study focused on providing a simple interpreta- Lo

tion of the lock-in based on the basic analytical arguments.

T
) ) +/bl cos (lw,t) sin (mw,t) dt
2. Mathematical analysis 9

Before starting our analysis, it must be pointed out that &Dwing to the orthogonality of the sine and cosine [6] func-
lock-in can only be used for measuring periodic signals; iftions, all terms on the right-hand side of the previous equation
this condition cannot be achieved, then it is not applicableare zero, except the term of equal frequenicy=(m) in the
Once this indispensable condition is satisfied, let us supposexpression of the desired coefficient,

that we want to measure a voltage or currgfi, which, due

to its periodicity, can be represented in a Fourier series as 1 o
follows: am =2 T /f(t) cos (mw,t) dt 2
0

flt)=aop+ i {am cos (mwot) + by, sin (mwot)} (1)

m=1

Theb,, coefficient is calculated in a similar way, except that

) o . here, f(t) is multiplied by the quadrature signgh (mw,t),
wherea,,, andb,,, are them-th Fourier coefficientswy is  thys obtaining the following equation:

the fundamental angular frequency fft), andT is its pe-

riod. From Eq. (1), iff(¢) is multiplied by a constant, all 1 T

Fourier coefficients are multiplied by the same constant, and by =2 | = / f(t) sin (mw,t) dt (3)
thus, any of them allows us to measurei.e., any physical T 0
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FIGURE 1. General block diagram of a lock-in (dual lock-in includes dashed blocks).
3. Implementation of the analytical method asr is increased, the previous approximation trends to equal-

o ~ ity in such a way that the exit of the LPF corresponds to
To demonstrate that a lock-in is an apparatus that physicallgq. (6) in the limitr — oo and the observation time in which

implements Eq. (2), let us analyze Fig. 1, which correspondghe measurement is performeai(s) trends to infinity [17].
to the general block diagram of a lock-in [5] (in Fig. 1, dual

lock and common elements incorporated to a lock in Ref. 15 1 tobs
are also included). The phase detector (PSD) multiplies the vo = — [ w(t)dt. (6)
input signalf (¢) and reference inpubs (mwot) [16], hence, T )

it remains to corroborate that the low-pass filter (LPF) car-

ries out the averaging operation, subsequently providing thE!€re;vo represents the exact temporal average [18] and cor-

coefficienta,,, and we proceed as follows. responds ta,,, or b,, according to the case. To conclude this
Taking into account the fact that the LPF used in a lock-S€ction, we state that a lock-in amplifier implements Eq. (2)

in is usually a first-order one, let us consider the simple Rddual lock-in implements Eqgs. 2 and 3 named X and Y out-
network shown in Fig. 2, which is a representative of all first-PUts respectively] divided by/2 when calibrated to deliver
order LPFs. the root mean square (rms), and therefore, is a Fourier coef-

According to the voltage law of Kirchhoff, the input ficient meter.

(v;)—output @,) relationship of theRC' network is:
4. Noise reduction

dv,
720 Lo, =, (4) . . .
dt In the process of measuring, there are always undesirable sig-

nalse,, (t) (noise) that contaminate the signal to be measured,
introducing an element of uncertainty in the measurements.
A lock-in processes such noisy signals according to Eq. (2),

wherer = RC is the constant time of the networR (s the
resistance and' is the capacitance).
For periodic voltages with frequencies greater than unit,

as follows:
dv,
’7‘ 7l e [vo] (5) 9 T
T / (f(t) + en(t)) cos (mwot) dt = ay,
therefore, Eq. (4) can be approximated to 0
dv, 2 r
T i + T/en(t) cos (muwqt) dt. @)
0

The new term of on the right-hand side of Eq. (7) represents
the noise at the output of a lock-in (the same goe&faut-

. o o put of a dual lock-in). The value of this integral is virtually

oy | + zero because every strange signal that does not have the fre-

V. | v, quency and _phase of reft_are_nce will be orthogonal to it_, and

(input) —_— C (output) therefore, ellml_nated. _Th|s is the great advaqtage of this (_je-

vice, although in practice, there are contributions from adja-

N _ cent components tawy of e, (¢), which, at the input of LPF,

i} ) do not meet the condition given in Eq. (5). For example, if

FIGURE 2. First—order low—pass filter. en(t) represents a pass-band source of noise with constant
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power density spectrurk, then the power of noise:f) at  Wheng, = 0, (making the analogy with the Cartesian com-

the output of a lock-in with a first-order LPF is [7,8]: ponents of a vector), a dual lock-in measures thandY
K components of the FVC divided by2 when calibrated to
2 T : L .
nt= o (5”0) (8)  deliver the rms value (similar to the lock-in model SR530

o : ) ~of Stanford Research Systems), whereas a lock-in only mea-
The expression in brackets in Eq. (8) is the bandwidthges thex component.
noise [10] andv. = 1/7 is the cutoff frequency of the LPF; Let us now investigate the cagg # 0, where the refer-

hence, according to Eq. (9), it is now easy to understangpce with a phase shiff, is expressed as follows:
why 7 has to be chosen as large as possible. However, we

must not forget that this implies that the observation time cos(mwot + ¢o) = cos doin — sin Gojm (18)
also increases, and therefore, a compromise between outpsitq the quadrature is

power noise and observation time must be done. It must be

remarked that the assumption of noise sources of constant sin(mwot + ¢o) = sin gois, + cos ojm (19)

power density is not a restriction, becauseis usually less 1o outputX is the rms dot product between the signal and

than a few Hz, whereas the power density for most noisgy,q yeference given by Egs. (14) and (18), respectively, there-
sourcesg.g, shot noise, is approximately constant up to fre-¢;

guencies of 80 MHz [7]. ¥ — % (cos Goam — sin doby) (20)
K
n? = ir 9  and the quadratur&@” output is the rms dot product of
Egs. (14) and (19) [19]
5. The phase Y = % (sin ¢oam + cos gobm) (21)

Before carrying out an experimental demonstration of our hy- ) ) ) ]
pothesis, let us reconsider the phase differencéhat may Equation (22) summarizes Egs. (20) and (21) in matrix form,

exist between the signal to be measured and the referen@@d represents the general expression of the outputs of a dual
signal. To simplify the notation, let us make the following lock-in as follows:

definitions: The cosine and sine functions are represented as { X } _ 1 [ cos¢g —sin gy ] [ am ] (22)
V2
(10) Thus, we conclude, thap, # 0 makes a dual lock-
in to measure the rms componenf§ and Y of the
Jm = sin mwot (11)  anticlockwise-rotated FVC (a lock-in, of course, only mea-
sures theX component).

vectors in a Hilbert space [6] Y V2 | singg  cosgp b

i,;, = cos mwot

The scalar product of periodic signgi§t) andg(t) with pe-
riod T can be denoted as

T 6. Signal-to-noise ratio
1
f-g=7 /f(t)g(t)df (12)  The quality of a signal in the presence of noise is measured
0 through the signal-to-noise ratio (SNR), defined as the ratio

Thus, with the exceptioh - iy — 1, the orthogonality of sine  ©f the output power signa?; to the output power noise,,

. . . P,
and cosine functions can be written as SNR — " 23)

il ' lm = lé-lm
cos ié (13) The early lock-in or the most simple and inexpensive ones
7 Jm = 50m uses a square wave as the reference signal (we will name
i jm =0V m,l it as sq-lock-in). Let us calculate its signal-to-noise ratio
(SNR,,) and compare it with the&& VR of a lock-in with
pure sinusoid reference sign&l R;).
We will assume that the square reference sigmal)(
) = ) ) ) = raises fronD to A in the origin of time ¢ = 0), and let us de-
f = aolo + Z (mim + bmjm) = aolo + Z smo (14) fine its duty cycle ag, = t;?/T Where; is it)s period and,
m=t m=t is its time of high state, which is 0.5, because for this value,
am =2 (f-ip,) (15)  ry, has the simplest Fourier representation and the Fourier
coefficients are the maximum (this is why a reference signal

where §,;,,, is the Kronecker delta. Under this notation
Egs. (1)— (3) can be rewritten as

b = 2(f - jm) (16) with these characteristics is used).
where the Fourier Vector Component (FVC) can be defined A o)
as rsg = §io + Z Bij (24)
Sm = Qmipm + bmjm (17) =1
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Transducer — () \);\ fOr®) | Lowpass|  p 6.1.2. Noise power
-

filter

— rr(t) Pou: For sources of noise with noise spectral density constant and
I considering the noise at each component of the reference as

pass-band noise [7], the noise power at the output of the filter
can be calculated as follows:

FIGURE 3. Process of measurement a physical variable.

6.1. SNR,, of asquare reference lock-in (sg-lock-in) n— i +§:(n i@ + o) (31)
= Nolo clll qlJl

6.1.1. Signal power 1=1

Before calculating the signal powef(), let us analyze Fig. 3 Using Egs. (24) and (31) at the output of the sg-lock-in, the
which represents the process of measurement of a physicabise can be given as
variable [9]. As shown in the figure, we first perform a mea-
surement without the sample, obtaining an output signal at = 1
the sg-lock-in whose power By, and subsequently with Now =M - Ty = = Z ng B + = Ang (32)
the sample, the output signal power changeBit@. Thus, 2 =1 2
Py = Pouz — Poun = Alout (25) Therefore, the output power noisé,(,) considering that
nZ, = n? for everyl (n” is given in Eq. (9)), is the sum-

We now proceed to calculafe. Let f(¢) be the signal deliv- mation of every component of Eq. (32):

ered by the transducer illustrated in Fig. 3. The powgy) (
of the product off (t) andr,(t) is:

o T . Ph = (le Z B? + leQ) n? (33)
Py = i - [ (Fle)rag(e)dt (26) =

o o _ _ the expression between the parenthesis of Eq. (33) is
Taking into account the characteristicsigf (), its poweris  (3/4) Py,, and for stationary noise sources and non-memory

P,, = A?/2 and Eq. (26) can be expressed as measurements, then, the signal nois@js= 2P,,,; there-
e fore, the maximum SNR for a sg-lock-in is
1
P, =2Py | lim = / fA(t)at (27) 4AP
P | 22T SNRy, < -—*1 (34)
0 6 n2

The expression between the parenthesis of Eq. (27) repre-
sents only a fraction of the total poweP() of f(¢) given

by 6.2. SNRs of a sinusoid reference lock-in (lock-in)

the amplitude off (¢), which occurs commonly, (see Fig. 3),
we can use the Perseval theorem to show that the changes in
the signal power [Eq. (28)] are equal to those of the power
(‘egntained in every Fourier coefficiemnte.

T
Py = Tlgxéol /fQ(t)dt (28) If the physical variable that we want to measure only affects
0

Hence P, < 2 P,, P, the equality is only met if
f(t) = krsy(t) wherek is a constant of proportionality.
Therefore, this is the best signal we can use to measure with
sg-lock-in. From Fig. 3, we can observe that the signal deliv-
ered by the sg-lock-in is the zero-frequency component of the APy = lAle (35)
product of f(t) andr,,(t) (because the cutoff frequency of 2
the LPF is usually very small). As the component at zero fre-
quency of a square signal contributes half of its total power;Therefore, the signal power for the optimum case of sg-lock-
we conclude, that for the best signal the output power is prein is equal to that measured with the sinusoid lock-in, with
cisely reference being in phase with(t). We already calculated
Pout = Psy Py (29) the noise output powet? in Eq. (9); thus, for this lock-in,
P,, = 2n? for the same reasons mentioned earlier. Therefore,

According to Eg. (25) the maximum power of the signal we conclude that

achieved with a sg-lock-in is

P, = P,,AP; (30) SNR,, < (0.667)SNR, (36)
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FOURIER DESCRIPTION OF LOCK-IN 5

7. Experimental set up SR-530 and a self-designed correlating circuit [20]. It is im-
portant to note that in measurements with a lock-in, the ref-
In this section, we will experimentally demonstrate that agrence signal (named REF) and SIG must be correlated to
lock-in is a Fourier coefficient meter. To carry out this task, nave the same frequency and phase difference, and a common
we will use an SR530 dual lock-in of Stanford Research Sysyay to meet this requirement is to generate REF from SIG;
tems to perform the following: First, the magnitude of the nowever, here, the opposite will be done-the signal genera-
first 40 Fourier components of a periodic positive square sigior provides REF, which is a periodic positive square signal
nal (named SIG) of amplitudel, = 0.5 V and duty cycle  TTL, SIG is generated from REF through two mono-stable
05 = 0.1, applied at the input of the SR530, will be measurediimers (see frame at the bottom of Fig. 4), the first delivers
and compared with the theoretical values. Secépdaiillbe 5 positive square signal of 100 Hz frequency, regardless of
varied to observe its effect on the first FVC [Eq. (17)] and theye frequency of REF, which is present at its input, and the
results will be compared with those of the theory of Fouriersecond is used to adjust the duty cyéleof the signal of the

predicts, namely [13]. first mono-stable. In this way, SIG is generated as a positive

A, . square wave of constant frequency of 100 Hz whose magni-
m = 2% sin (mmds) 37 tudein high state isl, = 0.5 V and duty cycle isj, = 0.1.
b —0 (38) For the first part of the experiment, the frequency of
m REF (frer) is modified according to the following equation:
Om = —mmds + O (39)  frer = m x 100 Hz, wherem = 1,2, ...40. For the second

. . o . part frer = 100 Hz andd, is varied from 0.05 to 0.95 in
The experimental set up is shown in Fig. 4, and was 'mpleincrements of 0.05.

mented with a signal generator Telulex model GS-100, an

Signal
Generator

SIG

Correlator
circuit -
REF

Signal in

SR530
lock-in

1 Reference in

Correlator circuit
.

TO REFERENCE
(REF)

RES  DIS
13 I THR
GND  CON 10nF

- .

555 86kQ

100nF

v

TO SIGNAL

(SIG)

555 20kQ

ouT Ve
RES  DIS

10nF__100nF|

FIGURE 4. Experimental set up for measuring the Fourier coeffi-

8. Results

In Fig. 5, a comparison between the theoretical values of the
magnitude of Fourier coefficients = 1, 2,...40 of SIG cal-
culated using Eqg. (40) is presented, with respect to the values
obtained experimentally by the arrangement described in the
previous section, and where two important aspects have to be
taken into account: a) To obtain the amplitudes from the rms
values that SR530 delivers, the experimental data were mul-
tiplied by v/2, and b) all SR530 Notch filters were disabled.

If the filters are not disabled, then the coefficients whose fre-
quencies are within the bands of rejection of those elements
are attenuated, because its transmittance is less than 1 within
these bands; in our case, this effect was clearly observed on
the first coefficient of SIG located at 100Hz, which had 0.83
times greater magnitude (see inset in Fig. 5) than that ob-

cients of SIG. tained with the filters disabled.
T T T T T 1
100 4 & -0~ Experimental ' ' ' ' '
= m  Theoretical 107 %eq SR —— o
L] L %, o® b
80 & oy . o e o ° °
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FIGURE 5. Theoretical and experimental amplitude of the Fourier FIGURE 6. Transmittance of the Notch filters of the lock-in SR530.

coefficients &) of

SIG.
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cycle of SIG §,). We can see an excellent concordance be-
tween these values, with the exception of an unimpogaht
shift corresponding t6, = 91° in Eq. (39). Finally, we con-
clude that a lock-in is a Fourier coefficient meter and the co-
efficient is selected by the frequency of the reference applied
to its input.

—O— Experimental |

- ®- Theoretical

9. Using a lock-in

The following example illustrates the use of a lock-in. Cur-
rently, we know that it is common to use optical fibers
to transmit pulses of light representing binary information.
Such pulses, as they travel in a fiber, suffer attenuation and
broadening due to dispersion. To measure such attenuation
and broadening with a lock-in, we can send periodic pulses
(p(t)) at the input of the fiber(¢) can also be used to gener-
ate the reference signal (REF). The attenuated amplitude of
the signal at the output of the fiber (SIG) can be considered as
p(t) multiplied by a factora < 1; therefore, the attenuation

« and the broadening of the pulses can be measured through
the magnitude and phase of any of the Fourier coefficients
of SIG, respectively, as we did in the experimental section.

Also, in reference [13], a good experiment showning the im-

For a better understanding of the effect of the filters, Wehortance of the phase and amplitude has been presented.
present the filters transmittance versus frequency (Fig. 6), and

as can be corroborated, at 100 Hz, the transmittance was 0.83.
Figure 6 was obtained by measuring the normalized ampliAcknowledgments
tude ofa; when the frequency of SIG was varied from 10 to
250 Hz, having all filters enabled. The author thanks Dr. Veronica CerdaarRirez and Dr. Ed-

In Fig. 7, the theoretical and experimental values of thenundo Reynoso for their valuable recommendations. This
magnitude and phase of Fourier coefficients () are plot- ~ work has been sponsored by CONACYT, grant 51757 and
ted in polar form, which were obtained by changing the dutyVIEP with grant DAPJ-ING-12.

180

FIGURE 7. Experimental and theoretical polar plot afi(¢1) as
function of duty cyclejs.
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The function of the AC and DC amplifiers is simply to amplify
signals, while the function of the Notch filters are to reduce 60
and 120 Hz from the electrical network. Nevertheless we shall
see that filters have, in some cases repercussions on the final
result.

It is common to use a PLL in the cannel of reference to gener-
atecos (mwot) from an arbitrary shape signal with frequency
mwo

. A practical rule isobs must be greater thasv.
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18. It can be demonstrated that amorder LPF under appropriated 20. This simple circuit may be used to synchronize the lock-

conditions carries out times the average of the average. in to third harmonic instead of using analog multipliers
and signal filters for applications of laser stabilization using

19. As a dual lock-in generates the quadrature reference [Eq. (19)] ! AT |
third—derivative absorption [11].

from Eq. (18), it is also dephased.
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