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The magnetic field of a permanent magnet is calculated analytically for different geometries. The cases of a sphere, cone, cylinder, ring and
rectangular prism are studied. The calculation on the axis of symmetry is presented in every case. For magnets with cylindrical symmetry,
we propose an approach based on an expansion in Legendre polynomials to obtain the field at points off the axis. The case of a cylinder
magnet was analyzed with this method by calculating the force between two magnets of this shape. Experimental results are presented too,
showing a nice agreement with theory.
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1. Introduction develop an alternative method of calculation and find ana-
lytical expressions for these fields. This will allow estima-
) ) ) _ ) tion of many important variables in certain applications, such
Since ancient times, magnetism has captured the interest g e force between magnets. We will see that the results

human beings. The feeling of an unseen force (but no lesgyained theoretically and experimentally are consistent with
invisible than the force of gravity) acting with great inten- each other

sity, is often astonishing. The properties of magnetite, an

iron mineral used as the needle in a compass, were known

since the eleventh century A. D. Over years, knowledge o2. Theory

magnetic phenomena has opened new perspectives and has

encouraged the development of new technologies. For extypically, the magnetic field of a permanent magnet can be
ample we now know that some living organisms have smaltalculated from the vector potentials = V x A. For a
amounts of magnetite in their tissues and use it to orient in thBody whose magnetization is constant inside its volume and
Earth’s magnetic field. Bees, salmons and some turtles ai@rops abruptly to zero outside it, as is the case of a magnet,
a few examples of such species [1]. The effect of magneti¢his potential at poing is given by the following surface in-
fields on water is a topic of current research too [2-4]. For extegral [9]:

ample, it has been found that these fields inhibit scale forma- . R
tion, by inducing changes in the crystal structure of carbonate A@) = Ho ?{ M(z") x n/ da

in the liquid. On the other hand, other researchers investi- 4n

gate to what extent cell phones and magnetism from electric

power lines affect living things. The development of technol-where M is the volume magnetization of the magnet,is

ogy has brought many important magnetic applications likehe unit vector normal to the surface at poifitandp is the
electric motors, generators and storage of information. Howvacuum magnetic susceptibility. The integral is performed
ever, it is not easy to find in the literature information aboutover the entire surface of the magnet. In this work we adopt
the magnetic fields produced by these magnets. Generallg, different method. It is assumed that the magnet is a contin-
these fields are calculated by numerical methods, such as tlheus distribution of dipoles, which occupy a voluaié and
finite-element method, [5,6] and it is rare to find analyticalhave a magnetic dipole mome#t: = Mav . Again, here
expressions. The most known cases are the spherical and the assume that the magnetization is constant, and it remains
rectangular prism magnets. The field of a ring-shaped maginchanged for any external magnetic field. That is, the mag-
net has been discussed recently [7,8]. This paper is focusetkts are supposed to be hard. To facilitate the calculations,
on the analytical calculation of the field produced by permawe always choos@l = Mk. As a starting point, we recall
nent magnets with different shapes. We studadh, Fe;4 B that the magnetic scalar potential and the induction field at
permanent magnets with the following geometries: spheregyoint ¥ produced by a magnetic dipole located at the origin
cylinder, ring, cone and rectangular prism. The aim was tare given by:
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L Lm-n 2.1. Sphere
(bdipole(l’) = E ‘f|2 s p
B L o 3n(n - ) — . Ac_cor(;ling to Fig. 1 we write the contribution of each in-
dipole(Z) = y R (1)  finitesimal dipole as:
_ o ] ) 1 dm - cosa

whereni is the magnetic dipole moment ands the unit vec- dPayis(2) = Eﬁ
tor in the direction of. To calculate the magnetic field of the r=r|
whole magnet, we integrate over its volume the contributions 1 MdV (z —2')
from the infinitesimal dipoles, either of the scalar potential or AT (22 412 — 221 cos 0')3/2

of the field. In the first case, we take finaIE/ = —uoVo.

The decision of which way to go depends on the ease of cal- The total scalar potential on theaxis is then given by:
culation in each case. In particular, the configurations with

azimuthal symmetry offer the use of interesting mathemati- u 2 m

cal properties. The basic idea is to find the scalar potential = @,s(2) = — / d¢’ / sin 0'd6’

on the symmetry axisz(axis in our case), which is relatively Am 0 5

easy to calculate, and from this function the solution is built

for off-axis points. For example, Jackson [10] used succes- i 1"2(z — 1’ cos 0') ,
sive derivatives of the axial function to find the magnetic field X / (22 + 172 — 2217 cos 0/)3/2 dr
due to a solenoid. In this work we use a property of the solu- 0
tions of the Laplace equation. This property, which is often R 1
used in the case of the electrostatic potential, [5,9] states that _ M / 20! / 2 —r'y dx
if you have the solution on the symmetry axis expressed as a 2 (22 + 172 — 22r'1)3/2
series: 0 -1

0o By usingMathematicawe find the indefinite integral in

cI)axis(z) = Z (Uzzé + Ve > (2) x results
s St
—r' +az

then the solution at any point in spaceq) is given by: 22(r'2 = 2r'xz 4 22)1/2

o0

v Evaluating in the limits and simplifying, we obtay 22,
O(r,0) = Z <UgT’Z + ﬂ) Py(cos ) which does not depend arl. Finally, performing the inte-

o+

£=0 " gration on this variable, we obtain
where P;(cos#) is the Legendre polynomial of ordet () = MR3L 3)
Therefore, all we have to do is to calculabg,s(z) and ex- axis\Z) = 3 22

pand it in powers of. Now, we illustrate this approach with
the case of a spherical magnet. The last expression is a particular case of Eq. (2), with

coefficientsU, = 0 V/ andV; = MR3/3,V, = 0 V{ # 1.
Applying the property described above, we see that the po-

zZ 5 5 12 tential at any point in space is given by:
( -_’; — r + 5 r r
. |r |_*I_| (r"+z-2zr'cos0’) MR 1
A e O(r,0) = 3 T—2P1(COSH)
B MR? cos 6 B imcosﬂ
2| 3 r2 Axn g2
| \dszdV wherem = 4rMR3/3 is the magnetic dipole moment
. Z'i ] of the sphere. This result is well known and is equiva-

| lent to that produced by a point dipole with moment

placed at the center of the sphere, as can be seen from

R\ Eqg. (1). As mentioned above, the induction field is given by
Mo oo B(r,0) = —uoV®(r, 6). Next, we present the results of the

) magnetic field on the axis of symmetry of the other magnets,

FIGURE 1. Scheme for calculating the field produced by a spheri- and compare them with measurements made in the labora-

cal magnet. tory.
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Z The additive constant is irrelevant and can be suppressed.
With the change of variable = ~ — 2/, we can write

o #2112

| = [z2 ) +p7]

Do) = M /
axis(2) = 3 Dm2+Ex+F]1/2

where

R2 2R? z Z\2
D=1 ,E:—(l—f),Fsz(l—f).
Tz h h h

After integrating, evaluating in the limits and simplifying, we

finally obtain:
p.__(Z)) D) = [y VT2
max aXIS(Z)—m[ (z—h) - +z }
FIGURE 2. Scheme for calculating the field produced by a conical
magnet. MhR?*(z — h)
2(h% + R2)3/?
2.2. Cone /12 2\ (5 —
< In (h+vh?+ R2)(z—h) @)

According to Fig. 2, each infinitesimal dipole contributes to R?+ hz +Vh? + R*VR? + 22

the potential on the axis with:

1 dncosa 1 Mp'dp'dz'd¢'(z — 2) Then, the induction field has the following dependence
dq)aXiS(Z):f_. 2 An N2 4 2132 is:
|7 — |2 4 [(z—2')2 + p2]3/ on the z axis:
Therefore, the potential on the axis is given by
o woMh| 1 ( zh—R? )
B(z)= Fh
Dayis(2) = /d(b / z—2) (2) 2 h24+R2 \ \/R24 22
oh (=) _ R? In (h + Vh?+R?)(z—h) 5)
« / p'dp' (h24+R2)3/2 " R24-hz+V/h2+R2V/R2+22
(=27 + 772
R(1—%) The double sign in the Egs. (4) and (5) apply to the val-
_M / ao ) / p'dp’ ues ofz above the apex of the magnet & h, upper sign)
[(z — 27)2 + p/2]3/2 or below the basez( < h, lower sign). Interestingly, the
model predicts that field diverges at the apex of the magnet.
Mh M (z — 2')d2’ This feature is the basis of the design of electromagnets with
9 T 9 [(z— 2)2 + R2(1 — 2)2]1/2 truncatgd F:onical polgs, which produce .high magnetic fields.
0 h The variation of this field along the z axis was calculated by
|  Kroon [11].
2.3. Cylinder
As shown in Fig. 3 (b), the potential on the z axis due to each infinitesimal dipole is given by:
1 cos ¢’ 1 z—2 M z—2 L
o= e e an i T am (= Pt P

Therefore, the total scalar potential on the axis is given by:

M z—2
dr [(z—2")2+

cylinder

M
2

Daxiz(2) = PR p'dp'dz d¢’ =

R
p'dp’
(2 — Z/)dz’/ [(z— 2)2 + p232
0

St~
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p'=R z'=L | p'=R
M
> _ (Z _ ZI)2 +pl2

p'=0

L
M 1
:7/(2—2/)d2/ -
2 ) (Z _ Z/)2 +pl2

2'=0

p'=0

P

| r-r'l = [p"2+(z-2")?]1%

Y
m=MdV

X O

FIGURE 3. (a) Schematic of a cylindrical magnet. (b) Scheme for calculating the field produced by the magnet.

Ignoring additive constants, the resulting scalar potentiall

is:
M
Pae(z) = 5 (VE—LP+ R -2+ 1) (6
Finally, the field on the z axis is given by:
poM z z—L
B(z) = - 7
() =73 <\/z2 TR Jz-LP+ R2> @

2.4. Ring
The field produced by a ring magnet of outer radiisand

inner radiusR; is obtained by the principle of superposition,
adding the fields produced by a cylindrical magnet with mag-
netization+M % and radiusR;, and another cylinder with
magnetization-M z and radiusRk,. In terms of Fig. 4, the X
scalar potential and the field on the axis are given by:

Paiz(2) = % l(\/(z ~ L2+ R} - \/z2 +R§>
- (\/<Z—L>2 + RS — \/z2 +R§)>

FIGURE 4. Schematic of a ring magnet.

2.5. Rectangular prism

(8) Even though we cannot apply the theorem on magnets with
azimuthal symmetry in this case, we calculated the field on
the z axis (defined in the direction of magnetization of the

B() = poM 2 B Z— L magnetj.e. M = Mk). According to Fig. 5, we have:
2 VE R /(- L)+ R 1 dmcos® 1 2—2z
dq)axis(z) = TS = — —
TP A P
z z—L ©)
a B !
V2+ R J/(z—L)?+RZ M 2 — 2 Loty d

T Ar @2+ g2+ (2 — )22
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12 J. M. CAMACHO AND V. SOSA

Z Finally, the field on the axis is given by:
P 20,2 w2112 M b
A 4 =[xy T +H(z-2') ] B(z) = HO®2 | arctan a
| T m (z = )y/a? + 0% + (2 = ¢)?
| or /° | ,
& b
| A e Yy — arctan = a = > (11)
dm=MdVi = GHova?+ P+ (o)
/' s For completeness we reproduce here the results of Yang
et al, [12] who calculated the magnetic field at any point in
2b space. Adapting their results to the case of a magnetization
X directed along the axis, we get:
FIGURE 5. Scheme for calculating the field of a prism-shaped mag- Bu(z,y,2) = qul Fg( x,y, —2)Fa(z,y, 2)
net. EAAS (l’ Y, — ) ( z,y,z )
Therefore,the potential on the z axis is given by: By(z,y,2) = “0M By(=y,z, —2)Fa(y, x, 2)
FQ(U,[I’, _Z)FQ( Y, z, Z)
_ M B _ Mg F
¢aXIS /dZ Z—Z /d Z(I7y7z)*7 A 1(7:177y7'2)+ 1(7I7ya 7’2)
+ Fl(_$7 -Y, Z) + Fl(_$7 -Y, _Z>
/ da’ +F1($,y72)+F1(l’ayv—Z)
[x/2 + y/2 + (z _ 2/)2}3/2
—a +F1($,7y72)+F1(I7*y,*Z)
Integration onx’ gives The functionsF; and F;, are defined as:
33/ @ Fl ((E, Y, Z)
[y/2 + (z _ z’)Q]\/wQ T y/2 i (z — z’)2 . — arctan (x + a)(y + b)
o (z+e)/(x+a)2+ (y+b)2+ (2 +c)?
= /2+Z*Z/2 a2+ /2+Z*Z/2
™+ FIVa?+y? 4 ) Fye.y.2) VE+a)?2+y—02+(z+c)2+b—y
2\L, Y, =
Integration of this result op’ gives VE+a)?2+y+b2+(z+c)2—b—y
b We can easily check that theandy field components
ay’ vanish on ther axis, while thez component is reduced to the
——— arctan . . .
z—2 (z=2)a?+y?+(z -2 |, expression given in Eq. (11).
4 ab _— .
= —— arctan 3. Results of magnetic fields on the z axis and
Z—% (z — 2')\/a2 + b2 + (z — 2/)? . ; .
comparison with experiments
Then, we obtain: Now we compare the theoretical calculations of magnetic
c fields on the symmetry axis with measurements made in the
M ab , laboratory. First, from Eq. (3) we obtain the field for the
Daxis(z) = — [ arctan dz
T (z—2)/a2 + b2+ (2 — 2/)2 sphere: o M R
B(z) = /%73 (12)
henl;/l)fathematmaglves (except additive constants omitted We measured the magnetic field using a gaussmeter with
' an estimated accuracy af5%. From a linear fitting of
this field vs. 1/23, we obtained a magnetization value
Dais(2) = M (z 4 ¢) arctan ab uoM = (0.933 £+ 0.044) T, which lies in the range expected
m (z+c)y/a? +b%>+ (z+¢)®  in these magnets. For example, A. Waltle¢r al [13] re-
ported a value of .25 T for thin films of Ndy Fe14B; in the
— (2 — ¢) arctan ab (10)  case of single crystals it has been reported [14,15] a value of
(z —c)\/a? + b2+ (2 — )2 1.6 T at room temperature. The magnetization of the other
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: ' ' ' ' ' The ring magnet offers several particular aspects. The

(a) ] first is the possibility of measuring the field in a continuous
manner through the magnet gap, resulting in a larger number
B 1 of experimental points. The second is the existence of two
points placed symmetrically on the shaft fat= —1.80 cm
andz = 3.55 cm) where the field becomes zero. To verify
4 1 this, we placed a very small magnet (1 mm thick and 1 mm
radius) in the vicinity of those positions and slid it along the z
axis with care. It was very interesting to see the small magnet
2t y turning around due to the change of sign of the field.

In general terms, we conclude that the agreement shown
in Fig. 6 between theory and experiment is quite good. We

B (kG)

o L*® ‘ . ! . can say that the method of calculation describes fairly well
. 2 g : 4 i g the field on the axis of permanent magnets with different ge-
o) ometries.

1.5 — . . . Next, we focus on the calculation of the field outside the
| symmetry axis for the case of the cylindrical magnet. This

will illustrate the use of the series expansion given in Eq. (2).
04 -

0.0

4. Field of a cylindrical magnet for points out-

Q osl ] side the axis of symmetry
“ A0t i 4.1. Analytical calculation
A 1 We tried to calculat®(p, z) usingMathematicabut did not
sl 1 succeed. Then, we intented to perform the intergration with
. ‘ . . ‘ ‘ . Maple but we failed too. Our next attempt was to calculate
v A2 ! : * B 810 the vector potential, which has the fot{p, z) = A(p, z)6.
z (em) Explicitly, we have:
FIGURE 6. (a). Magnetic field measurements as a function of ax- L
ial distance for a sphere(f), a cone ¢) and a prism ¢). Solid Alp, 2) = o RM /dz’
lines correspond to theoretical calculations (Egs. 12, 5 and 11, re- ’ vs
0

spectively) using the values of magnetization shown in Table I. (b).

Magnetic field measurements as a function of axial distance for the 27

case of a cylinder{) and a ring (). Solid lines correspond to the- o / cos ¢'d¢’

oretical calculations (Egs. 7 and 9, respectively) using the values \/pz + R2+ (z—2/)2 —2Rpcos ¢/
of magnetization shown in Table I. 0

In the first place, we calculated the compongptalong
the radius of the cylinder:

TABLE |. Volumetric magnetization and dimensions of all magnets 0A  poRM
used in this work. B,(p,z) = % = i
Magnet uoM (T) Dimensions (cm) 27 z'=L
— cos ¢'dg’
Sphere 0.933 + 0.044 R=1.5 X = > =
v _ /
Cone  1.103+0.027 R =2.46,h = 4.80 ) NP+ R+ (2= 2)? = 2Rpeos ¢ |,
Cylinder 0.830 £ 0.031 R=381,L=127 By usingMaple we obtained:
Ring  1.08640.028 R; =5.35, Ry =2.25,L = 1.75
. MQM R ’ 1
Prism  0.870+0.070  2a = 5.0,2b = 2.5,2¢ = 1.25 B,(p,z) = —|Fla(z), ——=
2 \l p a(z)
magnets was obtained accordingly by scaling each theoreti- 2'=L
cal function (Egs. (5), (7), (9) and (11)) to its corresponding —2B| a(¢), 1
measured field. Table | shows the magnetization of all mag- al) )|,
nets and their geometric dimensions. where
Figure 6 shows the measured and calculated field as a
function of axial distance for (a) sphere, cone and prism, and a(z) =2 Rp
(b) cylinder and ring. (p+R)2+ (2 —2')?

Rev. Mex. Fis. 59 (2013) 8-17



14 J. M. CAMACHO AND V. SOSA

and F(x,y) and E(x,y) are the Incomplete Elliptical Inte- Akounet. al[19]. Also, recently it has been possible to cal-

grals of first and second class respectively. culate the torque between these magnets [20].
To calculate the vertical component of the field, we need  To realize our study, we placed the two magnets coaxially
to take as shown in Fig. 7. The vertical force was measured with a

1 0(4p) Pasco Scientific CI-6537 sensor mounted onto a homemade
_294ap) universal base. The upper magnet was attached to the sen-
p 9p sor and the lower one was attached to a mobile stage which
could be displaced vertically with a screw. Each 36@n of
the screw produced a displacementlof9 mm. This way,
the distance between the magnetsdould be varied with a
high precision. The sensor has an accuracy@f3 N.
The force exerted by magnet 1 on magnet 2 is given by

Bz(p,z)

Unfortunately, none of the programs that we triédathe-
maticaandMaple) were able to provide an analytical result
in this case. As we can see, the magnetic induction field ou
side the cylinder axis is difficult to obtain. In several previ-
ous interesting works published in educational journals, the
field of cylindrical magnets or solenoids has been calculated. - R

For example, Labinaet al[16] calculated the field for a thin F= / V(dfi - B)

solenoid and a thick coil using a series expansion of Gauss magnet-2

hypergeometric functions. Derby and Olbert [17] calculated S ,

the field from a solenoid to study the speed of fall of perma-  1€re, B is the the field produced by the lower magnet.
nent cylindrical magnets inside a copper tube. Lerner [18] anMOre specifically, the vertical force is

alyzed the role of the permeable core of a finite solenoid, by 0B,

comparing its field with that produced by an infinite solenoid. F= /magnet—2 Ma 2 av (13)

In each case, the calculation involved elliptic integrals, whose

evaluation is difficult. This is where the expansionigf;s(z) The first step of the calculation is to expand the function

proposed in the present work will exhibit its usefulness. ~ given by Eq. (6) in powers of z. The terms to expand can be
written in the form:

4.2. Force between two cylindrical magnets m 14 }x2 _ }x4 n ixG Sy

2" T8 T16" T 138"
As we just showed, it is very difficult to obtain closed ex- Thi ionis valid 1 Forthi iR~ L
pressions of the field for a cylindrical magnet. To illustrate h IS éxpansion s \(/ja :c qj’f‘ <| sl(’-z orthis ;gas_on, >d '
the method of approximation in power series, we decidecg ree regions are defined: closk € z < K), intermediate

to calculate the force between two cylindrical magnets with R SES L + RI) a?]d _far € > dL JEER)' I LL> IZno c(;ofse
uniform magnetization, and compare our results with experi-reglon exists; only the intermediaté ( = < L + R) and far

mental measurements. Before that, we want to mention thfﬁf; L+R) rzgtlons rer.galnihSTﬁBl = 1.27cm> 0.95 cm
similar calculations have been reported previously. The forcé ~1 We need to consider the three regions . .
The infinite series can be truncated by taking a finite num-

between two cubic magnets was calculated analytically b%er of terms, up to a maximum power oftg,§,). The approx

7 imation to the exact potential improves as more terms are in-
cluded, but the calculation of the force becomes increasingly

A

tM,

B2

M. ! - ; : ; ;

z-L (cm)

FIGURE 8. Magnetic scalar potential on the axis of the magnet 1,
FIGURE 7. Arrangement of two coaxial cylindrical magnets, whose normalized to the valué//2, for points outside the magnet (.
repulsive force was measured and calculated. The experimental pdor z > L ). We show the finite series expansion, Eq. (2) with
rameters areuoM; = 0.89 T, Ry = 1.27 cm, L; = 0.95 cm, coefficients given in the appendig)), and the exact Eq. (6) (solid
MoMz =0.92 T, Ry =0.635¢cm, Lo = 0.485cm Iine).
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elaborate. The choice @f,.x depends on these two factors. potential and goes liké/r, the second term corresponds to
The expansion coefficients for each zone are listed in the aghe dipolar distribution and goes like/r2, the third term is
pendix. The coefficients were taken up to the greatest valuthe quadrupole one and goes liké¢r3, the octupole term
the computer could handlé(,x = 10, 9 or 8). goes likel /74, and so on. Therefore, it is possible to identify
Figure 8 shows the plots of the exact potential due to théeq. (14) as the multipole expansion of the magnetic scalar
magnet 1 on its axis, and the approximation of the finite sepotential produced by the permanent magnet. As expected,
ries. As it can be seen, the approximation is quite good exthe monople term vanishes because of the nonexistence of
cept near the borders between neighbor zonesl; =0.58 magnetic monopoles. The leading term in this equation is
and 0.93 cm), where convergence of the series is slower. As
mentioned, one uses a certain number of terms to give a good
balance between accuracy and computation time. In Ref. 7,
the author used up to 20 terms in the series he proposed, get-
ting an excellent agreement with the exact calculation; how-
ever, he found discrepancies of the order of 100% in certaime. the dipole contribution. In all the geometries studied
regions. In our example, the maximum difference observediere, we expandediayis(z) in a power series of /~ around
with respect to the exact value on the axis was about 15%&ero. We found in every case that the dipole contribution
We just want to bring in the idea that in any finite series ap-given by Eq. (1) was the leading term, which makes a lot
proximation, there will be regions of very slow convergence,of sense since at large distances the magnet “looks” like a
in which there will be significant deviations from the exact point dipole. The similiarity between the electrostatic multi-

MLR?cos 1 mcosf
4 r2 dxr r2

function. pole expansion and the present one is not casual: it is easy to
Now, it is interesting to take a close view at the explicit demonstrate [22] that the scalar potential due to a uniformly
expression in the far region. The series expansion is: magnethed body of arbitrary form may be written in the form
= —M -V(eorp), wherey is the electrostatic potential due
B~ Z LiR2k <1/2> (Qk -2+ Z) 1 toauniformly charged body (with. = 1) of the same form
— 2k —2 ) z2k—ltd and dimensions. Indeed, the dipole term of the magnet ex-

pansion (14) can be obtained by applying the latest formula
Therefore, the scalar potential at any point of this regiong the monople term of the expansion®f. (z), with p, = 1.

is given by: The second term of Eq. (14) can be obtained from the sec-
LR cosf  L2R%3cos2f — 1 onq term .of the electrqstatic series, an so on. _Therefore, there

®(r,0) = + exists a tight connection between electrostatic and magneto-
2\ 2 2 4 rs static potentials due to uniform sources, and the present cal-

50 . 5 culation is a nice and educational manifestation of this char-
4L°R* — 3LR* 5cos®> 6 — 3cos @ n ) (14) acteristic.
1 e

16 r .
Next, we calculated the vertical component of the mag-

This expression resembles the multipole expansion of th@etic induction field:
electrostatic potentia®,, (Z) outside the region containing
all source charges [9]:

P, (%) = ! (* 2 + ZQszf )

47eg ]
where
= /ped?’l- i
3
is the total charge, w i
P = / Tped®x |
is the dipole moment of the charge distribution,
Qij = /(3%% — 1%8;5) ped’x a (cm)

is the traceless quadrupole moment tengoris the charge  Fgure 9. Force between the two cylindrical magnets as a func-
density, ¢ is the vacuum permitivity and =| & |. Grif-  tjon of their separation distance a. We show the measured values
fiths [21] presents a nice graphic discussion of the latter ex¢) and the calculated ones using the method described in the text
pansion. The first term is the monopole contribution to the(solid line).
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oP(r, 0 Lz _ 13 L8 5L8 710
B,(r,0) = —uoﬁ 0 58 ~ 85 T Tem5  T2si” | 25680
0z 1 L, L3 _ 3L° 517 35L°
R +2ﬁ - %? + 1%1«27 - 1288R9
i i i i L L L L
and changed from spherlcal,'e) to cylindrical coordlnates' 2 -+ }235 — 557 + 35emo
(p, z) before performing the integral of Eq. (13) to obtain 3 Ly — 51L2‘3 355; _ 1051597
the vertical force between the two magnets. The expressions 4 ? 15L24_ m;f i 7352%
are too large to be reproduced here, therefore we preferred to 167 G4l T 18R
present the results in a plot. TMathematicdile containing 5 “sRs T J6RT — 16RY
. . . . 6 _ 35L 4 735L
the full expression of the force in the far region (the simplest 3287 T 12810
case) can be downloaded freely at 7 oL 10517
Figure 9 shows the forcé' as a function otz. We can 8 g;glgi
see that the theoretical calculation describes fairly well the 9 _85L
experimental behavior. Comparing Figs. 8 and 9, we see that L280
the largest differences between model and experiment occur
near the boundaries betvx_/een zones of the potential expag:2.  |ntermediate region
sion. Apart from these discrepancies, we can say that our
method works adequately. This methodology was used to ¢ Ut v,
calculate the force between a cylinder magnet and a super- o L2 1t IS5 5L8 7010 _R?
. . . . R+ 2R 8R3 + 16R5 128R7 + 256 RY 2
conductor in the Meissner state [23]. The interaction between 1 L. L aLb 4 LT _ ssLd ' o
a ring magnet and any other magnet can be studied using the A I S S e
principle of superposition and a similar approach to the one 2 2R T 4R® T 16RS — 32RT T 256R° 3
followed in this section. The task of calculating with this 3 gz — 2Ly 4 5L 105D 0
method the field outside the axis of symmetry for the cone 4 — gk + Ly  USLL | TSL =
magnet is left to smart challenge hunters. 5 _ 8L | 3503  a41L® 0
8R5 16R7 64R9
6 1 - 35Li + 735L3 5R®
16R 32R 128 R* 128
7 5L 105L5 0
5. Conclusions e 710
8 —12sr7 T 256m0 T 7256
An alternative method to calculate the magnetic field at any 9 — ooy 0
point in space produced by a permanent magnet with az- 10 EaET 2115’;12
imuthal symmetry is presented. The method is based on a
power series expansion of the magnetic scalar potential value
on the axis of symmetry. The resulting series can be identified 3. Far region
as the multipole expansion of the potential. This approach
allowed us to obtain the force between cylindrical magnets Uf=0 N4
without using the hard-to-manage exact solutions. The mag- / -
netic fields on the axis of a sphere, rectangular prism, cone, ¢
cylinder and ring were calculated. The calculations showed 0 0
. . 2
good agreement with the experiments. 1 Lo
2 L?R?
3 4L3R2273LR4
. 8
6. Appendix 4 214 R? 312 R*
8L5R2720L43R4+5LR6
- . . . 5
Coefficients of the expansion of the scalar magnetic potential 16
. . . 8LSR2-30L4R*415L2 RS
on the symmetry axis for a cylindrical magnet. 6 16
7 64L7 R?2—336L5R*4280L3 RS —35LR®
128
M 8 16L8R?—1121L.5R*4+140L* RS —351.2 RS

cI)axis(z ) =

6.1. Close region

5 (et

£=0

Vit=0 Wt
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