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Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong
gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations
describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop
research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic
requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We
describe in this paper the construction of the exact solution and a detailed procedure of its implementation.
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1. Introduction

High energy astrophysics has become one of the most impor-
tant subjects in astrophysics because it involves phenomena
associated to high energy radiation, modeled with sources
traveling at high speeds or sources under the influence of
strong gravitational fields like those due to black holes or
compact stars. Current models involve a hydrodynamical de-
scription of the luminous source, and therefore hydrodynam-
ical equations have to be solved.

In this scenario, due to the complexity of the system of
equations it is required to apply numerical methods able to
control the physical discontinuities arising during the evolu-
tion of initial configurations, for example the evolution of the
front shock in a supernova explosion, the front shock of a jet
propagating in space, the edges of an accretion disk, or any
shock formed during a violent process. The study of these
systems involve the implementation of advanced numerical
methods, being two of the most efficient and robust ones the
high resolution shock capturing methods and smooth particle
hydrodynamics which are representative of Eulerian and La-
grangian descriptions of hydrodynamics, each one with pros
and cons.

It is traditional that a first step to evaluate how appropri-
ate the implementation of a numerical method is, requires the
comparison of numerical results with an exact solution in a
simple situation. The simplest problem in hydrodynamics is
the 1D Riemann problem. This is an excellent test case be-
cause it has an exact solution in the Newtonian case (e.g.[1])
and also in the relativistic regime [2,3], where codes deal-
ing with high Lorentz factors are expected to work properly.
From our experience we have found that the existent liter-
ature about the construction of the exact solution is not as
explicit as it may be expected by students having their first
contact with this subject. This is the reason why we present
a paper that is very detailed in the construction and imple-

mentation of the solution. We focus on the solution of the
problem and omit some of the mathematical background that
is actually very well described in the literature.

The paper is organized as follows. In Sec. 2 we present
the Newtonian Riemann problem and how to implement it;
in Sec. 2 we present the exact solution to the relativistic case
and how to implement it. Finally in Sec. 3 we present some
final comments.

2. Riemann problem for the Newtonian Euler
equations

The Riemann problem is an initial value problem for a gas
with discontinuous initial data, whose evolution is ruled by
Euler’s equations. The set of Euler’s equations determine the
evolution of the density of gas, its velocity field and either its
pressure or total energy. A comfortable way of writing such
equations involves a flux balance form as follows

∂tu + ∂xF(u) = 0 (1)

whereu = (u1, u2, u3)T = (ρ, ρv, E)T is a set of conser-
vative variables andF is a flux vector, whereρ is the mass
density of the gas,v its velocity andE = ρ((1/2)v2 + ε),
with ε the specific internal energy of the gas. The enthalpy
of the system is given by the expressionH = (1/2)v2 + h,
whereh is the specific internal enthalpy given byh = ε+p/ρ,
wherep is the pressure of the gas. The fluxes are explicitly
in terms of the primitive variablesρ, v, p and the conservative
variables [1]

F(u)=




ρv
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The initial data of the Riemann problem is defined as fol-
lows

u =
{

uL, x < x0

uR, x > x0,

whereuL anduR represent the values of the gas properties
on a chamber at the left and at the right from an interface
between the two states atx = x0 that exists only at initial
time.

The evolution of the initial data is described by the char-
acteristic information of the system of equations, and this
is why the properties of the Jacobian matrix are impor-
tant. The Jacobian matrix of the system of equations is
A(u) = ∂F/∂u and explicitly reads

A =




0 1 0
1
2 (Γ− 3)v2 (3− Γ)v Γ− 1

(Γ− 1)v3 − ΓvE
ρ

ΓE
ρ − 3

2 (Γ− 1)v2 Γv


 .

Its eigenvalues satisfy the conditionλ1(u) < λ2(u) < λ3(u)
and are given by

λ1 = v − a (2)

λ2 = v (3)

λ3 = v + a (4)

wherea =
√

(∂p/∂ρ)|s is the speed of sound in the gas,
which depends on the equation of state. For the ideal gas
p = ρε(Γ − 1), whereΓ is the ratio between the specific
heats at constant pressure and volumeΓ = cp/cv, the speed
of sound isa =

√
(Γp/ρ). On the other hand, the eigenvec-

tors of the Jacobian matrix read

r1 =




1
v − a

H − av


 ,

r2 =




1
v

1
2v2


 , r3 =




1
v + a

H + av


 .

The eigenvectorsr1, r2, r3 are classified in the following
way:

• they are called genuinely non-linear when satisfy the
condition∇uλi · ri(u) 6= 0.

• and linearly degenerate when∇uλi · ri(u) = 0.

It happens thatr2 is linearly degenerate and represents
a contact discontinuity, however the other two are genuinely
non-linear.

Depending on the particular region of the solution we
will use both the Riemann invariant conditions for rarefaction
waves and the Rankine Hugoniot conditions for shocks and
contact discontinuities. The Riemann invariants are based on
the self-similarity property of the solution in some regions,
in the sense that the solution depends on the spatial and time

coordinates(x, t) with the combination(x− x0)/t; it can be
seen that such behavior implies that the following conditions
hold [4]

du1

ri
1

=
du2

ri
2

=
du3

ri
3

(5)

wherei indicates the component of a given eigenvector. On
the other hand, the Rankine Hugoniot conditions relate states
on both sides of a shock wave or a contact discontinuity

∆F = V ∆u, (6)

which are simply jump conditions, where∆u is the size of
the discontinuity in the variables,V is the velocity of either
the contact discontinuity or shock and∆F is the change of
the flux across the discontinuity.

2.1. Contact discontinuity waves

The contact discontinuity is described by the second eigen-
vector and evolves with velocityλ2. Let us then analyze the
second eigenvector. In this case the Riemann invariant con-
ditions read

dρ

1
=

d(ρv)
v

=
dE
1
2v2

.

These relations implies thatd(ρε) = dv = 0, further imply-
ing thatp = constant andv = constant across the contact
wave. In order to relate the two sides from the contact dis-
continuity we use the Rankine-Hugoniot conditions, which
are given by

ρLvL − ρRvR = Vc(ρL − ρR), (7)

ρLv2
L + p2

L − ρRv2
R + p2

R = Vc(ρLvL − ρRvR), (8)

vL(EL + pL)− vR(ER + pR) = Vc(vL(EL + pL)

− vR(ER + pR)). (9)

HereVc is the velocity of propagation of the contact discon-
tinuity.

The discontinuity travels at speedλ0 = v therefore the
Vc = v. For this reason from Eq. (7) follows thatvL = vR

= Vc. As a consequence of this, Eq. (8) gives the condition
pL = pR, which implies (9) is satisfied. Notice that no con-
dition on the density arises, which allows the density to be
discontinuous.

2.2. Rarefaction waves

At this point we do not know the nature of waves 1 and 3, and
we can assume they may be rarefaction waves. Once again
we use the Riemann invariant equalities, which for vectors 1
and 3 read

dρ

1
=

d(ρv)
v − a

=
dE

H − av
,

dρ

1
=

d(ρv)
v + a

=
dE

H + av
.
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Manipulation of these equalities results in the following
equations

dρ

dv
= −ρ

a
for λ1, (10)

dρ

dv
=

ρ

a
for λ3, (11)

dε

dρ
=

p

ρ2
for both λ1 and λ3. (12)

The next step is to integrate these equations assuming an
equation of state, in our case the ideal gas. From (12) we
obtain

p = KρΓ (13)

whereK is a constant. A rarefaction process is isentropic
(unlike a shock), and therefore the states at the left and at the
right from the wave obey (13) with the same constantK.

Using this expression forp in the speed of sound we have
a =

√
KΓρΓ−1 =

√
Γp/ρ, which substituted into (10,11)

results in

v = ±
∫ √

KΓρΓ−3dρ + k = ± 2a

Γ− 1
+ k, (14)

where+ stands for the wave moving to the right (the case of
λ3 andr3 corresponding to a rarefaction wave) and− when
moving to the left (the case ofλ1 andr1 corresponding to
a rarefaction wave), wherek is an integration constant and
therefore the velocity is constant as well. This property al-
lows us to set relations between the velocity of the gas on
the state at the left and at the right from the rarefaction wave,
explicitly there are two possible cases:

i) When the wave is moving to the left, condition (14)
implies that

vL +
2aL

Γ− 1
= vR +

2aR

Γ− 1
. (15)

ii) When the wave is moving to the right, condition (14)
implies

vL − 2aL

Γ− 1
= vR − 2aR

Γ− 1
(16)

When the wave is moving to the left, we assume informa-
tion from the left state is available and we look for expression
of the variables on the state to the right from the wave. For the
velocity of the fluid at the right state we then have from (15)

vR = vL − 2
Γ− 1

[aR − aL], (17)

now considering that the speed of sound on both sides obeys
a =

√
KΓρΓ−1 =

√
Γp/ρ (see (13))

aR = aL

(
pR

pL

)Γ−1
2Γ

, (18)

a useful expression forvR arises

vR = vL − 2aL

Γ− 1

[(
pR

pL

)Γ−1
2Γ

− 1

]
. (19)

The only unknown quantity ispR.
On the other hand, when the wave is moving to the right

we assume we know the information at the state at the right
from the wave, then we search for expressions of the vari-
ables on the state at the left. For the velocity we find accord-
ing to (16)

vL = vR − 2
Γ− 1

[aR − aL], (20)

and the speed of sound on both sides obeys

aL = aR

(
pL

pR

)Γ−1
2Γ

, (21)

which finally implies

vL = vR − 2aR

Γ− 1

[
1−

(
pL

pR

)Γ−1
2Γ

]
. (22)

The only unknown quantity in this case ispL.
The rarefaction zone has a finite size, bounded by two

curves, the tail and the head. The head of the wave is the line
of the front of the wave and the tail is the boundary left be-
hind the wave. The region in the middle is called the fan of
the rarefaction wave.

The velocity of all the particles between the head and the
tail obeys the following expression

x− x0

t
= v ± a, (23)

where + is used when the wave is propagating to the right
and the - when it is moving to the left. Then, when the
wave is moving to the left, using this expression we have
aR = vR − (x− x0)/t, which substituted into (19) provides
the following expression for the velocity of the gas on the
state at the right from the wave is

vR =
2

Γ + 1

[
aL +

1
2
(Γ− 1)vL +

x− x0

t

]
. (24)

Then it is possible to calculate the pressure and density
as well. Substituting (24) into (15) and (18) we obtain an
expression for the pressure also at the state to the right

pR=pL

[
2

Γ + 1
+

Γ− 1
aL(Γ + 1)

(
vL−x− x0

t

)] 2Γ
Γ−1

. (25)

Now, using this into (13) implies the expression for the den-
sity

ρR=ρL

[
2

Γ + 1
+

Γ− 1
aL(Γ + 1)

(
vL−x− x0

t

)] 2
Γ−1

. (26)
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Then finally we have expressions for the velocity, pressure
and density on the state at the right when the wave is moving
to the left.
Similarly when the wave is moving to the right we have
from (23) thataL = vL + (x − x0)/t, which substituted
into (22) implies the following for the velocity on the state at
the left from the wave

vL =
2

Γ + 1

[
−aR +

1
2
(Γ− 1)vR +

x− x0

t

]
. (27)

In order to obtain the expressions for the pressure and the
density, we substitute this last expressions into (16) in order
to relate the speeds of sound, and then using (21) we finally
obtain the expression for the pressure at the left

pL=pR

[
2

Γ + 1
− Γ− 1

aR(Γ + 1)

(
vR−x− x0

t

)] 2Γ
Γ−1

. (28)

Finally using the Eq. (13) we obtain the density

ρL=ρR

[
2

Γ+1
− Γ−1

aR(Γ+1)

(
vR−x−x0

t

)] 2
Γ−1

. (29)

In this way we have relations between the variables on to the
state at the left and at the right from a rarefaction wave. These
relations will be useful when solving the Riemann problem.

2.3. Shock waves

Similar to the previous case, the shock can move either to
the right (if λ3 andr3 correspond to a shock wave) or to the
left (if λ1 andr1 correspond to a shock wave), and for each
of the two cases there is known and unknown information.
When a shock is moving to the right one is expected to have
information of the state at the right from the shock and con-
versely, when the shock is moving to the left one accounts
with information of the state at the left.

Shocks require the use of Rankine Hugoniot condi-
tions (6). We express these conditions in terms of the primi-
tive variables as follows

ρLvL − ρRvR = S(ρL − ρR),

ρLv2
L + pL − ρRv2

R − pR = S(ρLvL − ρRvR),

vL(EL + pL)− vR(ER + pR) = S(EL − ER),

whereS is the speed of the wave, which may take the values
v − a or v + a depending on whether the wave moves to the
left or to the right respectively. Manipulating these equations
one gets

ρLv̂L = ρRv̂R, (30)

ρLv̂2
L + pL = ρRv̂2

R + pR, (31)

v̂L(ÊL + pL) = v̂R(ÊR + pR), (32)

where v̂L = vL − S, v̂R = vR − S are velocities in the
rest frame of the shock and̂EL = ρL

(
(1/2)v̂2

L + εL

)
and

ÊR = ρR

(
(1/2)v̂2

R + εR

)
. These expressions correspond to

the Rankine Hugoniot jump conditions measured by an ob-
server located in the rest frame of the shock wave.

From Eq. (30), we introduce the mass flux definition

j = ρLv̂L = ρRv̂R. (33)

Then, from Eq. (31) and the mass flux definition before men-
tioned, we can get an expression forj, which is given by

j = −pR − pL

v̂R − v̂L
= −pR − pL

vR − vL
, (34)

which is a consequence ofj being invariant under Galilean
transformations. Considering the shock is moving to the left,
we would be interested in constructing the variables on the
state at the right from the shock and we can start with the
velocity, which can be written as

vR = vL − pR − pL

j
. (35)

Now, in order to express the velocity in terms of the pressure
and the variables of the state at the left from the shock, we
can rewrite (33) as follows

vR − S =
j

ρR
, vL − S =

j

ρL
. (36)

Thus, substituting this into (34) we obtain

j2 = − pR − pL
1

ρR
− 1

ρL

. (37)

On the other hand, using Eq. (32) and the expression for the
specific internal enthalpyh we can easily get the following
expression for the difference of internal specific enthalpies

hR − hL =
1
2

[
v̂2

L − v̂2
R

]
, (38)

wherehL = εL + pL/ρL andhR = εR + pR/ρR. Now,
from Eqs. (30) and (31) we give expressions for the veloci-
tites measured by the observer located in the rest frame of the
shock wave

v̂2
R =

ρL

ρR

pL − pR

ρL − ρR
,

v̂2
L =

ρR

ρL

pL − pR

ρL − ρR
.

With the substitution of these last equations into (38) and
considering the definitions for the specific internal enthalpy
mentioned above, we obtain

εR − εL =
1
2

(pL + pR)(ρR − ρL)
ρLρR

.

Assuming the gas obeys an ideal equation of state we get an
expression for the density as follows

ρR

ρL
=

pL(Γ− 1) + pR(Γ + 1)
pR(Γ− 1) + pL(Γ + 1)

. (39)
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Notice that this expression relates the density among the
two sides from the shock. Now, substituting this expression
into (37) we obtain

j2 =
pR + BL

AL
,

AL =
2

(Γ + 1)ρL
, BL =

Γ− 1
Γ + 1

pL. (40)

Thus, the expression for the velocity (35) can be written as
follows

vR = vL − (pR − pL)

√
AL

pR + BL
. (41)

From expression (36) and using (40) we express the shock
velocity as follows

S = vL −
√

pR(Γ + 1) + pL(Γ− 1)
2ρL

.

Finally, using the sound speed expressionaL=
√

pLΓ/ρL we
obtain the final expression for the shock velocity

S = vL − aL

√
(Γ + 1)pR

2pLΓ
+

Γ− 1
2Γ

. (42)

Analogously, when the shock moves to the right, it is pos-
sible to construct the expressions for the variables for the state
at the left from the shock

vL = vR + (pL − pR)

√
AR

pL + BR
, (43)

ρL = ρR
pR(Γ− 1) + pL(Γ + 1)
pL(Γ− 1) + pR(Γ + 1)

, (44)

S = vR + aR

√
(Γ + 1)pL

2pRΓ
+

Γ− 1
2Γ

. (45)

and we let this as an exercise to the reader.

2.4. Classical Riemann Problem

The Riemann problem is physically a tube filled with gas
which is divided into two chambers separated by a remov-
able membrane atx = x0. At the initial time the membrane
is removed and the gas begins to flow. Once the membrane is
removed, the discontinuity decays into two elementary, non-
linear waves that move in opposite directions.

Depending on the values of the thermodynamical vari-
ables in each chamber, four cases can occur. Considering the
fluid is described on a one-dimensional spatial domain, rar-
efaction and shock waves can evolve toward the left or right
from the location of the membrane.

In general the solution in all the cases can be studied in
six following regions:

Region 1: initial left state that has not been yet influ-
enced by rarefaction or shock waves

Region 2: wave traveling to the left (may be rarefaction
or shock)

Region 3: region between the wave moving to the left
and the contact discontinuity, called region star-left

Contact discontinuity

Region 4: region between the contact discontinuity and
the wave moving to the right, called region star-right

Region 5: wave traveling to the right (may be rarefac-
tion or shock)

Region 6: initial right state that has not been yet influ-
enced by rarefaction or shock waves

Regions 2 and 5 are special. If the wave propagating in such
regions is a rarefaction wave the region involves a head-fan-
tail structure, whereas if it is a shock the region becomes only
a discontinuity. Counting from left to right on the spatial do-
main, the results can be reduced to the following four possible
combinations of waves:

1) rarefaction-shock

2) shock-rarefaction

3) rarefaction-rarefaction

4) shock-shock

with a contact discontinuity between the two waves in all
cases. It is worth noticing that these combinations can occur
under a wide variety of possible combinations of the initial
values of the thermodynamical variables. In this paper we il-
lustrate each of these scenarios using particular sets of initial
conditions.

2.4.1. Case 1: Rarefaction-Shock

This case corresponds to the typical case used to test numer-
ical codes, a test called the Sod’s shock tube problem [5].
A traditional set of initial values that produces this scenario
corresponds to a gas with higher density and pressure in the
left chamber than in the right chamber, and the velocity is set
initially to zero in both.

A rarefaction wave travels into the high density region
(moves to the left), whereas a shock moves into the low den-
sity region (moves to the right).

Summarizing, the problem then involves five regions
only. Regions 1 correspond to the initial state to the left that
has not been influenced by the evolution of the system. Re-
gion 2 corresponds to a rarefaction wave containing the head-
fan-tail structure, region 3 and 4 are the left and right states
separated by the contact discontinuity. Region 5 reduces to
the shock. Finally region 6 is the initial state at the right
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chamber that has not been influenced by the evolution of the
system.

The goal is to determine the state in all the regions using
the relations between the thermodynamical quantities con-
structed before.

The starting point to construct the solution happens at the
contact discontinuity, where the velocity and pressure obey
the conditionsp3 = p4 = p∗ andv3 = v4 = v∗.

Region 3 plays the role of the state at the right from the
rarefaction wave and region 1 the state at the left. Then we
can use (19) to obtain an expression forv3

v3 = v1 − 2a1

Γ− 1

[(
p3

p1

)Γ−1
2Γ

− 1

]
. (46)

On the other hand, region 4 plays the role of a state at the left
from the shock wave and region 6 the role of the state at the
right. Then we use (43) to calculatev4:

v4 = v6 + (p4 − p6)

√
A6

p4 + B6
. (47)

whereA6 = 2/ρ6/(Γ + 1) andB6 = p6(Γ − 1)/(Γ + 1).
Given thatv3 = v4 = v∗, equating both expressions one
obtains a trascendental equation forp∗:

(p∗ − p6)

√
A6

p∗ + B6

+
2a1

Γ− 1

[(
p∗

p1

)Γ−1
2Γ

− 1

]
+ v6 − v1 = 0. (48)

Unfortunately as far as we can tell, no exact solution is known
for p∗, and then we proced to construct its solution numeri-
cally. Once this equation is solved,p3 andp4 are automat-
ically known, andv3 and v4 can be calculated using (46)
and (47) respectively.

Then, it is possible to calculateρ3 using (13) at both sides
of the rarefaction zone, givenC is the same on both sides be-
cause it is an isentropic process:

ρ3 = ρ1

(
p3

p1

)1/Γ

(49)

where nowp1, ρ1 andp3 are known. On the other hand one
can also calculateρ4 using (44)

ρ4 = ρ6

(
p6(Γ− 1) + p4(Γ + 1)
p4(Γ− 1) + p6(Γ + 1)

)
(50)

also in terms of known information. With this information it
is already possible to construct the solution in the whole do-
main. We explain how to do it region by region. A scheme of
how the regions are distributed is shown in Fig. 1.

1. Region 1 is defined by the conditionx − x0 < tVhead,
whereVheadis the velocity of the head of the rarefaction
wave given by the characteristic value of the Jacobian

matrix evaluated at the location next to the head from
the left side, that is, considering (2)Vh = v1−a1. The
solution there is simply

pexact = p1,

vexact = v1,

ρexact = ρ1.

2. Region 2 is defined by the conditiontVhead < x −
x0 < tVtail, whereVtail is the same characteristic value
again, but this time evaluated at the tail curve, that is
Vtail = v3 − a3. This is the fan region for a rarefaction
wave moving to the left, for which we simply use ex-
pressions (24,25,26) that need only information from
region 1 and obtain

ρexact=ρ1

[
2

Γ+1
+

Γ−1
a1(Γ+1)

(
v1−x− x0

t

)] 2
Γ−1

,

pexact=p1

[
2

Γ+1
+

Γ−1
a1(Γ+1)

(
v1−x− x0

t

)] 2Γ
Γ−1

,

vexact=
2

Γ+1

[
a1+

1
2
(Γ−1)v1+

x−x0

t

]
. (51)

3. Region 3 is defined by the conditiontVtail < x− x0 <
tVcontact, whereVcontact is the velocity of the contact
discontinuity, which is the second eigenvalue (3) of
the Jacobian matrix evaluated at this region, that is
Vcontact= v3 = v4. The solution there finally reads

pexact = p3,

vexact = v3,

ρexact = ρ3.

4. Region 4 is defined by the conditiontVcontact < x −
x0 < tVshock, where according to (45), the velocity of
a shock moving to the right separating regions 4 and 6
is

Vshock = v6 + a6

√
(Γ + 1)p4

2Γp6
+

Γ− 1
2Γ

,

wherea6 =
√

p6Γ/ρ6. Then the solution in this region
is

pexact = p4,

vexact = v4,

ρexact = ρ4.

as calculated

5. There is no region 5.
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6. Region 6 is defined bytVshock < x− x0. In this region
the solution is simply

pexact= p6,

vexact= v6,

ρexact= ρ6.

An example of how the solution looks like is shown in
Fig. 2 for initial data in Table I.

TABLE I. Table with the initial data for the four different cases. We
choose the spatial domain to bex ∈ [0, 1] and the location of the
membrane atx0 = 0.5. In all cases we useΓ = 1.4.

Case pL pR vL vR ρL ρR

Rarefaction-Shock 1.0 0.1 0.0 0.0 1.0 0.125

Shock-Rarefaction 0.1 1.0 0.0 0.0 0.125 1.0

Rarefaction-Rarefaction 0.4 0.4 -1.0 1.0 1.0 1.0

Shock-Shock 0.4 0.4 1.0 -1.0 1.0 1.0

FIGURE 1. Description of the relevant regions for the Rarefaction-
Shock case.

FIGURE 2. Exact solution for the Rarefaction-Shock case at time
t = 0.25 for the parameters in Table I.

2.4.2. Case 2: Shock-Rarefaction

This case is identical to the previous one, except that we
choose the initial pressure and density are higher on the right
chamber. After initial time, the wave traveling to the left is
a shock, while the one moving to the right is a rarefaction
wave. This implies that region 2 plays the role of region 5 in
the previous case and region 5 has the tail-fan-head structure
of a rarefaction wave.

Starting from the contact discontinuity, the conditions
v3 = v4 = v∗ and p3 = p4 = p∗ hold. The conditions
on a shock wave moving to the left imply according to (41)
that the velocity of the state at the right is

v3 = v1 − (p3 − p1)

√
A1

p3 + B1
, (52)

and information from the rarefaction wave interface can be
obtained from (27) forv4 as the velocity on the state at the
left from a rarefaction wave moving to the right

v4 = v6 − 2a6

Γ− 1

[
1−

(
p4

p6

)Γ−1
2Γ

]
. (53)

Equating these two expression one obtains a trascendental
equation forp∗:

− (p∗ − p1)

√
A1

p∗ + B1

+
2a6

Γ− 1

[
1−

(
p∗

p6

)Γ−1
2Γ

]
+ v1 − v6 = 0 (54)

that one solves numerically forp∗. This information pro-
vides the necessary information to construct the solution in
the whole domain as described below. The different regions
are illustrated in Fig. 3 and the exact solution region by re-
gion is as follows.

1. Region 1 is defined byx− x0 < tVshock, where the ve-
locity of the shock is given by (42) because the shock
is traveling to the left:

Vs = v1 − a1

√
(Γ + 1)p3

2p1Γ
+

Γ− 1
2Γ

,

and the exact solution here reads

pexact= p1,

vexact= v1,

ρexact= ρ1.

2. There is no region 2.
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3. Region 3 is defined by the conditiontVs < x − x0 <
tVcontact. Vcontact is the characteristic value (3) evalu-
ated at this region:Vcontact = v3 = v4 = v∗. Using
(39) explicitly for the density and (52) for the velocity,
the solution in this region reads

pexact = p3,

vexact = v3,

ρexact = ρ1
p1(Γ− 1) + p3(Γ + 1)
p3(Γ− 1) + p1(Γ + 1)

.

4. Region 4 is defined by the conditiontVcontact < x −
x0 < tVt, where the velocity of the tail of the rarefac-
tion waveVt is the third eigenvalue (4) evaluated at the
region behind the tailVt = v4 + a4.

One uses (53) to calculatev4 and (13) impliesp4/p6 =
(ρ4/ρ6)Γ for a constant value ofK, which implies an
expression forρ4. The resulting exact solution is

pexact= p4,

vexact= v4

ρexact= ρ6

(
p4

p6

)1/Γ

.

5. Region 5 is a fan region defined by the conditiontVt <
x − x0 < tVh where the velocity of the head of the
wave is again the third eigenvalue, but this time evalu-
ated at the headVh = v6 + a6. One uses the expres-
sions for a fan region of a rarefaction wave moving to
the right (27,28,29) to calculate the exact solution

pexact=p6

[
2

Γ+1
− Γ−1

a6(Γ+1)

(
v6−x−x0

t

)] 2Γ
Γ−1

,

vexact=
2

Γ+1

[
−a6+

1
2
(Γ−1)v6+

x−x0

t

]
,

ρexact=ρ6

[
2

Γ+1
− Γ−1

a6(Γ+1)

(
v6−x−x0

t

)] 2
Γ−1

.

6. Region 6 is defined by the conditiontVh < x − x0.
The exact solution is given by the initial states at the
right chamber.

pexact = p6,

vexact = v6,

ρexact = ρ6.

An example is shown in Fig. 4 for initial data in Table I.

FIGURE 3. Description of the relevant regions for the Shock-
Rarefaction case.

FIGURE 4. Exact solution for the Shock-Rarefaction case at time
t = 0.25 for the parameters in Table I.

2.4.3. Case 3: Rarefaction-Rarefaction

A physical situation that provides this scenario ispL = pR,
ρL = ρR and−vL = +vR > 0. In this case both, regions 2
and 5 correspond to rarefaction waves. In this particular case
since one of the rarefaction waves moves to the left and the
other one to the right, we distinguish them using the labels
for each of their parts.

Again the contact discontinuity defines a relationship be-
tween velocity and pressure. In the present case, there is an
expression forv3 in terms ofv1 for a rarefaction wave mov-
ing to the left given by (19) and another one forv4 in terms
of v6 for a rarefaction wave moving to the right (22):

v3 = v1 − 2a1

Γ− 1

[(
p3

p1

)Γ−1
2Γ

− 1

]
, (55)

v4 = v6 − 2a6

Γ− 1

[
1−

(
p4

p6

)Γ−1
2Γ

]
. (56)
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The conditionv3 = v4 = v∗ at the contact discontinuity im-
plies a trascendental equation forp∗ = p3 = p4:

2a6

Γ− 1

[
1−

(
p∗

p6

)Γ−1
2Γ

]

− 2a1

Γ− 1

[(
p∗

p1

)Γ−1
2Γ

− 1

]
+ v1 − v6 = 0 (57)

Again, oncep∗ is calculated numerically, the solution in
all the regions of the domain can be calculated as follows.
The first implication is thatp3 = p4 = p∗, and thusv3 andv4

can be calculated using (55) and (56). The different regions
are illustrated in Fig. 5.

1. Region 1 is defined by the conditionx − x0 < tVh,2,
whereVh,2 is the velocity of the head of the wave mov-
ing to the left, and is obtained from the characteristic
value of such rarefaction wave evaluated at the left in-
terface, that isVh,2 = v1 − a1. In this region the gas
has not affected the initial state on the left, then the
solution is

pexact= p1,

vexact= v1,

ρexact= ρ1.

2. Region 2 is a fan region defined by the condition
tVh,2 < x − x0 < tVt,2, where the velocity of the
tail Vt,2 is that of the state left behind by the wave, that
is Vt,2 = v3 − a3.

The exact solution is that of a fan region of a rarefac-
tion wave moving to the left (24-26)

pexact=p1

[
2

Γ+1
+

Γ−1
a1(Γ+1)

(
v1−x− x0

t

)] 2Γ
Γ−1

,

vexact=
2

Γ+1

[
a1+

1
2
(Γ− 1)v1+

x− x0

t

]
,

ρexact=ρ1

[
2

Γ + 1
+

Γ− 1
a1(Γ + 1)

(
v1−x− x0

t

)] 2
Γ−1

.

3. Region 3 is defined by the conditiontVt,2 < x− x0 <
tVcontact. The velocity of the contact discontinuity is
Vcontact = v3 = v4 = v∗ according to the eigen-
value (3). In this regionp3 = p∗ and v3 = v∗ are
already known fromp∗. Finally, the density is obtained
from (13) for an isentropic process like the rarefaction
wave for a constantC on both sides of such wave as
found in the previous two cases. Thus the solution is

pexact = p3,

vexact = v3.

ρexact = ρ1

(
p3

p1

)1/Γ

,

4. Region 4 is defined by the conditiontVcontact < x −
x0 < tVt,5, where the velocity of the tail of the wave
moving to the rightVt,5 is given by the eigenvalue (4)
evaluated at the state left behind the rarefaction wave
moving to the right, that isVt,5 = v4 +a4, where again
we point out thatv4 = v∗ and p4 = p∗ are known
oncep∗ is calculated. The solution is obtained in the
same way as for the previous region, but now the wave
relates states in regions 4 and 6:

pexact= p4,

vexact= v4.

ρexact= ρ6

(
p4

p6

)1/Γ

,

5. Region 5 is defined by the conditiontVt,5 < x− x0 <
Vh,5, where the velocity of the head of the wave mov-
ing to the right isVh,5 = v6+a6, and the solution is ob-
tained using the values of the state variables for the fan
of a rarefaction wave moving to the right (27,28,29):

pexact=p6

[
2

Γ + 1
− Γ− 1

a6(Γ + 1)

(
v6−x− x0

t

)] 2Γ
Γ−1

,

vexact=
2

Γ + 1

[
−a6+

1
2
(Γ− 1)v6+

x− x0

t

]
,

ρexact=ρ6

[
2

Γ + 1
− Γ− 1

a6(Γ + 1)

(
v6 − x− x0

t

)] 2
Γ−1

.

6. Finally, region 6 is defined by the conditionVh,5 <
x−x0. The exact solution is given by the initial values
at the chamber on the right because in this region the
gas has not been affected yet by the dynamics of the
gas:

pexact = p6,

vexact = v6,

FIGURE 5. Description of the relevant regions for the Rarefaction-
Rarefaction case.
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FIGURE 6. Exact solution for the Rarefaction-Rarefaction case at
time t = 0.25 for the parameters in Table I.

ρexact = ρ6.

An example is shown in Fig. 6 for initial data in Table I.

2.4.4. Case 4: Shock-Shock

A physical situation that provides this scenario corresponds
to two streams colliding with opposite directions. We choose
in this casepL = pR, ρL = ρR and−vL = +vR < 0. In this
case regions 2 and 5 are shock waves.

Again the contact discontinuity defines a relationship be-
tween velocity and pressure. In the present case there is an
expression forv3 in terms ofv1 for a shock-wave moving to
the left given by (41) and another one forv4 in terms ofv6

for a shock-wave moving to the right (43):

v3 = v1 − (p3 − p1)

√
A1

p3 + B1
, (58)

v4 = v6 + (p4 − p6)

√
A6

p4 + B6
. (59)

The conditionv3 = v4 = v∗ at the contact discontinuity im-
plies a trascendental equation forp∗ = p3 = p4:

− (p∗ − p1)

√
A1

p∗ + B1

− (p∗ − p6)

√
A6

p∗ + B6
+ v1 − v6 = 0. (60)

Again, oncep∗ is calculated numerically, the solution in
all the regions of the domain can be calculated as follows.
Immediately one has thatp3 = p4 = p∗ andv3 andv4 can be
calculated using (58) and (59).

In this particular case regions 2 and 5 reduce to lines. The
solution in each region reads as follows and the regions are
illustrated in Fig. 7.

1. Region 1 is defined by the conditionx − x0 < tVs,2,
where the velocity of the shock moving to the leftVs,2

is given by (42) and reads

Vs,2 = v1 − a1

√
(Γ + 1)p3

2p1Γ
+

Γ− 1
2Γ

.

The solution there is that of the initial values of the
variables on the left chamber:

pexact = p1,

vexact = v1,

ρexact = ρ1.

2. There is no region 2.

3. Region 3 is defined by the conditiontVs,2 < x − x0

< tVcontact, whereVcontact = v3 = v4 = v∗. Once (54)
is solved one can calculate all the required informa-
tion. Using (58) forv3 and (39) forρ3 the solution in
this region reads

pexact= p3,

vexact= v3

ρexact= ρ1
p1(Γ− 1) + p3(Γ + 1)
p3(Γ− 1) + p1(Γ + 1)

.

4. Region 4 is defined bytVcontact < x − x0 < tVs,5,
where the velocity of the shock moving to the right is
given by (45) and reads

Vs,5 = v6 + a6

√
(Γ + 1)p4

2p6Γ
+

Γ− 1
2Γ

.

Finally, using (59) forv4 and (44) forρ4 the solution
in this region reads

pexact= p4,

vexact= v4,

ρexact= ρ6
p6(Γ− 1) + p4(Γ + 1)
p4(Γ− 1) + p6(Γ + 1)

.

5. There is no region 5.

6. Finally region 6 is defined by the conditionVs,5 <
x−x0. The exact solution is given by the initial values
at the chamber on the right:

pexact = p6,

vexact = v6,

ρexact = ρ6.

An example is shown in Fig. 8.
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FIGURE 7. Description of the relevant regions for the Shock-Shock
case.

FIGURE 8. Exact solution for the Shock-Shock case at timet=0.25

for the parameters in Table I.

3. Relativistic shock tube

First of all one needs to define a model for the gas. In our case
we use the perfect fluid defined because it has no viscosity
nor heat transfer, is shear free and is non-compressible. Such
system is described by the stress energy tensor

Tµν = ρ0huµuν + pηµν , (61)

whereρ0 is the rest mass density of a fluid element,uµ its
four velocity,p the pressure,h = 1 + ε + p/ρ0 is the specific
enthalpy andηµν are the components of the metric describing
Minkowski space-time.

The set of relativistic Euler equations is obtained from the
local conservation of the rest mass and the local conservation
of the stress energy tensor of the fluid, which are respectively

(ρ0u
µ),µ = 0,

(Tµν),ν = 0,

whereuµ = W (1, vx, 0, 0) andW = 1/
√

1− vivi is the
Lorentz factor andvx is the Eulerian velocity of the fluid el-
ements. It is possible to arrange these equations as a flux
balance set of equations as in the Newtonian case

∂tu + ∂xF(u) = 0, (62)

where conservative variables are defined byu = (D, Sx, τ)T

and the resulting fluxes areF = (Dv, Sv + p, S), where
we assume that specificallyv = vx andS = Sx, since we
are only considering one spatial dimension. The conservative
variables are defined in terms of the primitive ones as follows

D = ρ0W,

S = ρ0hW 2v,

τ = ρ0hW − p. (63)

The flux balance equations are explicitly:

∂tD + ∂x(Dv) = 0, (64)

∂tS + ∂x(Sv + p) = 0, (65)

∂tτ + ∂xS = 0. (66)

The eigenvalues of the Jacobian matrix of this system of
equations are

λo = v, λ± =
v ± cs

1± vcs
. (67)

Each of the characteristic values (67) may correspond to
eigenvectors with different properties exactly as in the New-
tonian case, that is,λ0 corresponds to a contact discontinuity,
whereas the eigenvaluesλ± may correspond to rarefaction or
shock waves. The shock tube problem in this case is defined
as in the Newtonian case:

u =
{

uL, x < x0

uR, x > x0.
(68)

Next we describe the treatment of each of the wave or
discontinuities that develop during the evolution.

3.1. Rarefaction Waves

Rarefaction waves are self-similar solutions of the flow equa-
tions [4]. They are self-similar solutions in the sense that
all quantities describing the fluid depend on the variable
ξ = (x − x0)/t. In order to explore the change of all phys-
ical quantities along the straight lineξ, we define the useful
change on the derivative operators

∂t = −1
t
ξ∂ξ, ∂x =

1
t
∂ξ. (69)

Using the advective derivativeda = ∂t + v∂x, we obtain
the expressions

∂xp = −Dda(hWv), (70)

∂tp = Dda(hW ), (71)
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where we have used the rest mass conservation law to sim-
plify the expressions. From (69) we obtain for the advective
derivativeda = (1/t)(ξ − v)d/dξ, for which we will use
d := d/dξ from now on. With this in mind we obtain from
(70,71) the differential equation

(v − ξ)ρhW 2dv + (1− ξv)dp = 0. (72)

On the other hand, the change of variable in (64) from
t, x to ξ implies

(v − ξ)dρ + ρW 2(1− vξ)dv = 0. (73)

and from Eqs. (72) and (73) we obtain a relation between the
density and pressure

dp = h

[
v − ξ

1− vξ

]2

dρ. (74)

Since the process alongξ is isentropic [6] the sound speed is

c2
s =

1
h

∂p

∂ρ

∣∣∣∣
s

,

which combined with the previous expression implies the
speed of sound

cs(v, ξ) =
∣∣∣∣

v − ξ

1− vξ

∣∣∣∣ . (75)

Besides, we can find a useful expression for an isentropic pro-
cess usingp = KρΓ (we are using a politropic equation of
state).

cs =

√
Γp

ρh
. (76)

From system (67) we obtain the speed of sound in terms of
the eigenvalues of the Jacobian matrix

cs =
{ −(v − λ+)/(1− vλ+) if ξ = λ+,

(v − λ−)/(1− vλ−) if ξ = λ−.
(77)

Comparing with (75) we find thatcs(v, λ+) is the speed
of sound for a rarefaction wave traveling to the right and
cs(v, λ−) for a wave traveling to the left.

According to this equation we get from (73) that

W 2dv ± cs

ρ
dρ = 0. (78)

Here the+ sign refers to the wave traveling to the left and
the− sign when it travels to the right. From this equation we
obtain the Riemann invariant because this differential equa-
tion is valid along a straight line along thex − t plane, as
long as it is not a shock. Integrating the first term of (78) we
obatain

1
2

ln
1 + v

1− v
±

∫
cs

ρ
dρ = constant. (79)

In order to calculate the integral we use the definition of the
sound speed and the polytropic equation of statep = KρΓ,
from which we obtain

c2
s(ρ) =

KΓ(Γ− 1)ρΓ−1

Γ− 1 + KΓρΓ−1
, (80)

or in terms of the pressure instead of the density the speed of
sound reads

c2
s(p) =

Γ− 1
1−Γ
KΓ

(
p
K

)Γ−1
Γ + 1

. (81)

Conversely, if the speed of sound is known one can cal-
culate the density using (80):

ρ =
1

[
KΓ

(
1
c2

s
− 1

Γ−1

)] 1
Γ−1

. (82)

Then the integral can be written as

∫
cs

ρ
dρ=

∫
cs

[
KΓ

(
1
c2
s

− 1
Γ− 1

)] 1
Γ−1 dρ

dcs
dcs. (83)

Integrating by parts and using (79) we find the useful con-
straint

1
2

ln
1 + v

1− v
± 1

(Γ− 1)1/2
ln

[√
Γ− 1 + cs√
Γ− 1− cs

]
=constant,

(84)
which in turn simplifies as follows

1 + v

1− v
A± = constant, (85)

whereA± is

A± =
[√

Γ− 1 + cs√
Γ− 1− cs

]±2(Γ−1)−1/2

. (86)

Equation (85) is valid only across straight lines arising
from the origin(x0, t = 0) and evolving alongξ = (x−x0)/t
inside the rarefaction zone. For this family of straight lines
the Riemann invariant is the same. This allows us to relate
any two different states in the rarefaction zone, particularly
we are going to take the statesL andR as the states just next
to the left and to the right from the rarefaction wave.

1 + vL

1− vL
A±L =

1 + vR

1− vR
A±R. (87)

Assuming that when the wave is propagating to the left
we account with information from the left state, we can cal-
culate the velocity of the fluid on the region at the right from
the wave in terms of the state variables on the state at the left
andA+:

vR =
(1 + vL)A+

L − (1− vL)A+
R

(1 + vL)A+
L + (1− vL)A+

R

. (88)

Analogously when the wave is moving to the right we
expect to account with information on the state to the right.
Then we can express the velocity on the left in terms of the
variables on the state at the right andA−

vL =
(1 + vR)A−R − (1− vR)A−L
(1 + vR)A−R + (1− vR)A−L

. (89)
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3.1.1. The fan

The fan is the region where the rarefaction takes place, prop-
agating with velocity eitherλ+ if the wave is moving to the
right orλ− when moving to the left. The fan will be bounded
by two values ofξ corresponding to the head and the tail of
the wave:

ξh =
vL,R ± c

(L,R)
s

1± vc
(L,R)
s

, (90)

ξt =
vR,L ± c

(R,L)
s

1± vc
(R,L)
s

, (91)

where the− sign applies to waves traveling to the left and+
when the wave moves to the right. In order to construct the
solution inside the fan, we use the constraint (87). We have
two cases according to the direction of the rarefaction wave.
If the rarefaction wave travels to left we use

1 + vL

1− vL
A+

L −
1 + vR

1− vR
A+

R = 0 (92)

and solve the equation forvR. When the rarefaction wave
travels to right we use

1 + vL

1− vL
A−L −

1 + vR

1− vR
A−R = 0, (93)

and solve the equation forvL. We calculate in each caseA±

using (86) in the appropriate region

A±(L,R) =

[√
Γ− 1 + c±s,(L,R)√
Γ− 1− c±s,(L,R)

]±2(Γ−1)−1/2

, (94)

where the sound speed is given by (75) and (77)

c±s,(L,R) = ± v(L,R) − ξ

1− v(L,R)ξ
, (95)

where the+ sign is used when the wave moves to the left
and − when moving to the right. Finally since we are
in the rarefaction zone we can express a point(x, t) with
ξ = (x − x0)/t in (95) and using this expression in (94)
and substituting into (92) or (93) depending on the direction
of propagation we finally obtain a trascendental equation for
the velocityv(L,R). We assume that if the wave moves to the
left we know the variables on the state to the leftL and ignore
those of the state to the rightR and viceversa. Then we look
for a solution ofvL when the wave moves to the left and of
vR when moving to the right. Instead of looking for a closed
solution to this equation we solve it numerically to obtain
v(L,R) assuming we knowv(R,L). Oncev(L,R) is calculated
we can substitute back, and using Eq. (95) obtain the sound
speed; next, using (82) obtain the densityρ; finally with the
help of the EOS we can calculate the pressurep = KρΓ. This
completes the solution in the fan region.

The particular cases described later illustrate how to im-
plement this procedure.

3.2. Shock Waves

Shocks require the use of the relativistic Rankine-Hugoniot
jump conditions[ρ0u

µ]nµ = 0 and[Tµν ]nν = 0 across the
shock [6], wherenµ = (−VsWs, Ws, 0, 0) is a normal vec-
tor to the shock’s front,Ws is the shock’s Lorentz factor and
Vs is the speed of the shock. Here we have used the nota-
tion [F ] = FL − FR, whereFL andFR are the values of the
functionF at both sides of the shock’s surface. These condi-
tions reduce to the following system of equations, in terms of
primitive and conservative variables, as

DLvL −DRvR = Vs(DL −DR), (96)

SLvL + pL − (SRvR + pR) = Vs(SL − SR), (97)

SL − SR = Vs(τL − τR). (98)

The subindices(L,R) represent two arbitrary states at left
and at the right from the shock. These equations can be writ-
ten in the reference rest frame of the shock by considering a
Lorentz transformation, that is

D̂Lv̂L = D̂Rv̂R, (99)

ŜLv̂L + pL = ŜRv̂R + pR, (100)

ŜL = ŜR, (101)

where the hatted quantities are evaluated at the rest frame of
the shock. Here

v̂(L,R) =
Vs − v(L,R)

1− Vsv(L,R)
,

D̂(L,R) = ρ(L,R)ŴL,R,

Ŝ(L,R) = ρ(L,R)h(L,R)Ŵ
2
(L,R)v̂(L,R) and

Ŵ(L,R) =
1√

1− v̂2
(L,R)

.

From (99), we can introduce the invariant relativistic
mass flux across the shock as

j = WsDL(Vs − vL) = WsDR(Vs − vR), (102)

whereWs = 1/
√

1− V 2
s . It is important to point out that

when the shock moves to the right the mass flux is positive
j > 0, whereas when the shock moves to the left it has to be
negativej < 0.

Now, using the expression for the mass flux (102) into
the Rankine-Hugoniot conditions (96,97,98) we can obtain
the following system of equations in terms of a combination
of primitive and conservative variables

vL − vR = − j

Ws

(
1

DL
− 1

DR

)
, (103)

pL − pR =
j

Ws

(
SL

DL
− SR

DR

)
, (104)

vLpL − vRpR =
j

Ws

(
τL

DL
− τR

DR

)
. (105)
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Considering the shock is moving to the right and thus that
the stateR is known, we will write an expression for the ve-
locity vL in terms of the state variablesR and also in terms of
j, Vs andpL. In order to do this, we rewrite expressions (104)
and (105) using the definitions for the conservative variables
in terms of the primitive variables (63) as follows

Ws

jvL
(pL − pR) = hLWL − hRWR

vR

vL
, (106)

Ws

j
(vLpL − vRpR) = hLWL − pL

ρLWL

− hRWR +
pR

ρRWR
. (107)

Subtracting these expressions and dividing bypL we get

Ws

j

(
vL − vRpR

pL
− 1

vL
+

pR

vLpL

)
= (108)

hRWR

pL

(
vR

vL
− 1

)
+

pR

pLρRWR
− 1

ρLWL
.

Inserting this into (103) we finally obtain an expression for
the velocityvL

vL =
hRWRvR + Ws

j (pL − pR)

hRWR + (pL − pR)
(

WsvR

j + 1
ρRWR

) . (109)

When the shock moves to the left and the stateL is known,
the velocity on the state to the right is

vR =
hLWLvL + Ws

j (pR − pL)

hLWL + (pR − pL)
(

WsvL

j + 1
ρLWL

) , (110)

where the conditionj < 0 has to be satisfied.
In order to obtain the shock velocityVs, we start form

the mass flux conservation across the shock (102), which
relates the shock velocity with the mass flux. Substitut-
ing Ws = 1/

√
1− V 2

s , it is possible to solve the resulting
quadratic equation and obtain the two roots for the shock ve-
locity

Vs =
ρ2

RW 2
RvR +

√
j4 + j2ρ2

R

ρ2
RW 2

R + j2
, (111)

Vs =
ρ2

LW 2
LvL −

√
j4 + j2ρ2

L

ρ2
LW 2

L + j2
, (112)

which correspond respectively to a shock moving to the right
and to the left. The signs of the quadratic formula are chosen
such that they are physically possible, that is, for the case of a
shock moving to the rightj > 0 we use (111) and for a shock
moving to the leftj < 0 we use (112) [3].

In order to solve completely the problem across the
shock, we first express Eq. (100) as

ρLhL(Vs − vL)2

1− V 2
s − v2

L + V 2
s v2

L

− ρRhR(Vs − vR)2

1− V 2
s − v2

R + V 2
s v2

R

= −(pL − pR). (113)

Considering that

WsW(L,R) =
1√

1− V 2
s

√
1− v2

(L,R)

=
1√

1− V 2
s − v2

(L,R) + V 2
s v2

(L,R)

the last equation takes the following form

ρLhLW 2
s W 2

L(Vs − vL)2

− ρRhRW 2
s W 2

R(Vs − vR)2 = −(pL − pR). (114)

As we can see from this equation, the definition of the con-
served mass flux is present, then using Eq. (102) in this last
equation, we obtain a useful expression for the square of the
flux

j2 =
−(pL − pR)(

hL

ρL
− hR

ρR

) , (115)

where the positive root corresponds to a shock moving to the
right whereas the negative root to a shock moving to the left.

Another useful expression comes from Eq. (101), which
can be rewritten directly in the form

hLŴL = hRŴR, (116)

which combined with Eq. (115) implies

h2
L − h2

R = (pL − pR)
(

hL

ρL
+

hR

ρR

)
. (117)

This last equation is commonly called theTaub’s adiabat.
Moreover Eqs. (115), (116) and (117) are known as relativis-
tic Taub’sjunction conditions for shock waves [6,7].

Finally, in order to obtain the densityρL and pressurepL

for a shock moving to the right in terms of the variables in
the region to the right, we consider the definition of the spe-
cific internal enthalpy and that the fluid obeys and ideal gas
equation of state. With these assumptions Eq. (117) can be
rewritten in the form

1
ρL

[pL(2σ−1)+pR]+
σ

ρ2
L

[p2
L(σ − 1)+pLpR]

=
1

ρR
[pR(2σ − 1)+pL]+

σ

ρ2
R

[p2
R(σ−1)+pLpR], (118)

whereσ = Γ/(Γ−1). The solution for the quadratic equation
reads
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TABLE II. Initial data for the four different cases. We choose the spatial domain to bex ∈ [0, 1] and the location of the membrane at
x0 = 0.5. In all cases we useΓ = 4/3.

Case pL pL υL υR ρL ρR

Rarefaction-Shock 13.33 0 0 0 10 1

Shock-Rarefaction 0 13.33 0.0 0.0 1 10

Rarefaction-Rarefaction 0.05 -0.05 -0.2 0.2 0.1 0.1

Shock-Shock 3.333e-9 -3.333e-9 0.999999 0.999999 0.001 0.001

1
ρL

=
−[pL(2σ − 1) + pR]±

√
[pL(2σ − 1) + pR]2 + 4ζLσ[p2

L(σ − 1) + pLpR]
2σ[p2

L(σ − 1) + pLpR]
, (119)

1
ρR

=
−[pR(2σ − 1) + pL]±

√
[pR(2σ − 1) + pL]2 + 4ζRσ[p2

R(σ − 1) + pRpL]
2σ[p2

R(σ − 1) + pRpL]
, (120)

where

ζL =
1

ρR
[pR(2σ − 1) + pL]+

σ

ρ2
R

[p2
R(σ − 1) + pLpR],

and

ζR =
1
ρL

[pL(2σ − 1) + pR]+
σ

ρ2
L

[p2
L(σ − 1) + pRpL].

A physically acceptable solution requiresρ > 0, which re-
stricts the sign to be positive one in both cases.

3.3. Contact Wave

The equations describing the jump conditions (96,97,98) ad-
mit the solution usingVs = vR = vL = λ◦ = Vcontactwhere
vR andvL are the values of the velocity of the fluid at the right
and at the left from the contact discontinuity. This represents
the contact wave traveling along the linex− x0 = λ0t.

Then (96) is trivial and (97) reads

(SL − SR)Vs + pL − pR = (SL − SR)Vs, (121)

which impliespR = pL and Eq. (98) is satisfied.
We are now in the position of analyzing each of the pos-

sible combinations of shock and rarefaction waves in a Rie-
mann problem. We then proceed in the same way as in the
Newtonian case studying each combination.

3.4. The four different cases

In what follows, as we did for the Newtonian case, we present
the four combinations of rarefaction and shock waves associ-
ated to the relativistic Riemann problem. We illustrate each
case with a particular set of parameters contained in Table II.

3.4.1. Case 1: Rarefaction-Shock

The contact wave conditions arev3=v4=v∗ andp3=p4=p∗.
The velocity in region 3 is given by Eq. (88) that provides

the velocity on the state at the right from a rarefaction wave
moving to the left:

v3 =
(1 + v1)A+

1 − (1− v1)A+
3

(1 + v1)A+
1 + (1− v1)A+

3

. (122)

where according to (94)

A+
(1,3) =

[√
Γ− 1 + c+

s,(1,3)√
Γ− 1− c+

s,(1,3)

]+2(Γ−1)−1/2

. (123)

Here c+
s,1 := cs(p1) =

√
Γp1/(ρ1h1), h1 = 1 +

(p1Γ/ρ1(Γ− 1)) andc+
s,3 := cs(p3) is given by Eq. (81)

c+
s,3(p3) =

√√√√ Γ− 1
Γ−1
KΓ

(
p3
K

) 1−Γ
Γ + 1

, K =
p1

ρΓ
1

, (124)

where we remind the reader that in the rarefaction region the
polytopic constant remains the same during the process, that
is, it is the same in regions 1, 2 and 3. On the other hand the
velocity of the gas in region 4 corresponds to the velocity on
the state at the left of a shock moving to the right (109)

v4 =
h6W6v6 + Ws,5

j (p4 − p6)

h6W6 + (p4 − p6)
(

Ws,5v6
j + 1

ρ6W6

) , (125)

where Ws,5 = 1/
√

1− V 2
s,5 is the Lorentz factor of the

shock, where we use the subindex 5 in order to denote the
shock occurring in region 5. In order to obtainv4 in terms of
p4 we need to perform the following steps:

• The rest mass densityρ4 is given in terms ofp4 and
other known information can be expressed using (119)
as
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1
ρ4

=
−[p4(2σ − 1) + p6] +

√
[p4(2σ − 1) + p6]2 + 4ζ4σ[p2

4(σ − 1) + p4p6]
2σ[p2

4(σ − 1) + p4p6]
, (126)

ζ4 =
1
ρ6

[p6(2σ − 1) + p4] +
σ

ρ2
6

[p2
6(σ − 1) + p4p6], whereσ =

Γ
Γ− 1

. (127)

• Onceρ4 is given in terms ofp4 it is possible to compute
the enthalpy in region 4 ash4 = 1 + σ(p4/ρ4).

• Then Eq. (115) reads

j2 = − (p4 − p6)
h4
ρ4
− h6

ρ6

, (128)

whereh6 = 1 + σ(p6/ρ6). Something to remember
here is the fact that as the shock moves to the right, we
considerj to be the positive square root.

• Oncej is obtained, the shock velocity can be found
from expression (111) as

Vs,5 =
ρ2
6W

2
6 v6 + |j|

√
j2 + ρ2

6

j2 + ρ2
6W

2
6

. (129)

• Finally one calculatesWs,5 = 1/
√

1− V 2
s,5 and in this

way v4 in terms ofp4 and the known state in region 6
using (125).

According to the contact discontinuity condition
v3=v4=v∗, we equate (122) and (125) and obtain a tran-
scendental equation forp∗:

(1 + v1)A+
1 − (1− v1)A+

3 (p∗)
(1 + v1)A+

1 + (1− v1)A+
3 (p∗)

−

h6W6v6 + Ws

j (p∗ − p6)

h6W6 + (p∗ − p6)
(

Wsv6
j + 1

ρ6W6

) = 0, (130)

which has to be solved using a root finder.
Once this equation is solved,p3 and p4 are automati-

cally known andv3 and v4 can be calculated using (122)
and (125), respectively. It is possible to calculateρ3 using
the fact that in the rarefaction zone the process is adiabatic
and thenρ3 = ρ1(p3/p1)1/Γ. On the other hand we can also
calculateρ4 using (126). With this information it is already
possible to construct the solution in the whole domain.

Up to this point we account with the known initial states
(p1, v1, ρ1) and(p6, v6, ρ6), the solution in regions 3 and 4
given by(p3, v3, ρ3) and(p4, v4, ρ4), andVs,5 which repre-
sents the velocity of propagation of the shock 5. The exact
solution region by region is described next.

1. Region 1 is defined by the conditionx − x0 <
tξh, where according to (90)ξh is the velocity of
the head of the rarefaction wave traveling to the left

ξh = v1 − cs,1/1− v1cs,1. The values of the physical
variables are known from the initial conditions:

pexact = p1, (131)

vexact = v1, (132)

ρexact = ρ1. (133)

2. Region 2 is defined by the conditiontξh < x − x0 <
tξt, where according to (91)ξt is the characteristic
value again, but this time evaluated at the tail of the rar-
efaction wave, that isξt = (v3 − cs,3)/(1− v3cs,3).
In order to computev2 we use (92)

1 + v1

1− v1
A+

1 −
1 + v2

1− v2
A+

2 (v2) = 0 (134)

considering Eqs. (76), (94) and (95) as follows

A+
(1,2) =

[√
Γ− 1 + c+

s,(1,2)√
Γ− 1− c+

s,(1,2)

]+2(Γ−1)−1/2

, (135)

c+
s,1 =

√
Γp1

ρ1h1
, h1 = 1 +

p1

ρ1

(
Γ

Γ− 1

)
(136)

c+
s,2 =

v2 − ξ

1− v2ξ
⇒ v2 =

ξ + c+
s,2

1 + c+
s,2ξ

. (137)

whereξ = (x − x0)/t. In this way, Eq. (134) is tran-
scendental and has to be solved equivalently forv2 or
for c+

s,2 using a root finder for each point of region 2.
We recommend solving forc+

s,2 and then constructv2

using (137). Finally we calculateρ2 using Eq. (82):

ρ2 =
1

[
KΓ

(
1

(c+
s,2)

2 − 1
Γ−1

)] 1
Γ−1

, K =
p1

ρΓ
1

.

(138)
Finally we obtainp2 using the fact that in the process
K is constant

p2 = p1

(
ρ2

ρ1

)Γ

. (139)

3. Region 3 is defined by the conditiontξt < x − x0 <
tVcontact, whereVcontact = λo = v3 = v4. The solution
there reads
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pexact= p3, (140)

vexact= v3, (141)

ρexact= ρ3. (142)

4. Region 4 is defined by the conditiontVcontact < x −
x0 < tVs,5, whereVs,5 is given by (129) and explicitly

pexact= p4, (143)

vexact= v4, (144)

ρexact= ρ4. (145)

5. There is no region 5. Only the shock traveling with
speedVs,5.

6. Region 6 is defined bytVs,5 < x − x0. In this region
the solution is simply

pexact= p6, (146)

vexact= v6, (147)

ρexact= ρ6. (148)

As an example we show in Fig. 9 the primitive variables
at t = 0.35 for the initial parameters in Table II.

3.4.2. Case 2: Shock-Rarefaction

This is pretty much the previous case, except that one has to
be careful at using the correct signs and conditions. We then
start again with the contact wave conditionsv3 = v4 = v∗

FIGURE 9. Exact solution for the Rarefaction-Shock case at time
t = 0.35 for the parameters in Table II.

andp3 = p4 = p∗. The velocity of the gas in region 3 cor-
responds to the velocity on the state at the right from a shock
moving to the left (110)

v3 =
h1W1v1 + Ws,2

j (p3 − p1)

h1W1 + (p3 − p1)
(

Ws,2v1
j + 1

ρ1W1

) , (149)

where Ws,2 = 1/
√

1− V 2
s,2 is the Lorentz factor of the

shock. In order to obtainv3 in terms ofp3 and other known
information we need to perform the following steps:

• The rest mass density is given in terms ofp3 using the
expression (120) as

1
ρ3

=
−[p3(2σ − 1) + p1] +

√
[p3(2σ − 1) + p1]2 + 4ζ3σ[p2

3(σ − 1) + p3p1]
2σ[p2

3(σ − 1) + p3p1]
, (150)

ζ3 =
1
ρ1

[p1(2σ − 1) + p3] +
σ

ρ2
1

[p2
1(σ − 1) + p3p1], whereσ =

Γ
Γ− 1

. (151)

• Onceρ3 is given in terms ofp3 it is possible to compute
the enthalpy in region 3 ash3 = 1 + σ(p3/ρ3).

• Then from Eq. (115) we obtain

j2 = − (p3 − p1)
h3
ρ3
− h1

ρ1

, (152)

whereh1 = 1 + σ(p1/ρ1). As the shock is moving
to the left we consider the negative root of the above
expression forj.

• Oncej is obtained, the shock velocity can be found
from expression (112) in terms ofp3 as

Vs,2 =
ρ2
1W

2
1 v1 − |j|

√
j2 + ρ2

1

j2 + ρ2
1W

2
1

. (153)

• Finally one calculatesWs,2 = 1/
√

1− V 2
s,2 and in this

way v3 in terms ofp3 and the known state in region 1
using (149).

The velocity in region 4 is given by Eq. (89) that pro-
vides the velocity on the state at the left from a rarefaction
wave moving to the right:

v4 =
(1 + v6)A−6 − (1− v6)A−4
(1 + v6)A−6 + (1− v6)A−4

, (154)

where following (94)

A−(4,6) =

[√
Γ− 1 + c−s,(4,6)√
Γ− 1− c−s,(4,6)

]−2(Γ−1)−1/2

. (155)
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Here
c−s,6 := cs(p6) =

√
Γp6/(ρ6h6),

h6 = 1 +
p6Γ

ρ6(Γ− 1)
and

c−s,4 := cs(p4)

is given by Eq. (81)

c−s,4(p4) =

√√√√ Γ− 1
Γ−1
KΓ

(
p4
K

) 1−Γ
Γ + 1

, K =
p6

ρΓ
6

. (156)

becauseK is the same in regions 4 and 6.
We obtain a transcendental equation forp∗ using the con-

tact discontinuity conditionv3 = v4 = v∗, and equate (149)
and (154):

(1 + v6)A−6 − (1− v6)A−4 (p∗)
(1 + v6)A−6 + (1− v6)A−4 (p∗)

−

h1W1v1 + Ws

j (p∗ − p1)

h1W1 + (p∗ − p1)
(

Wsv1
j + 1

ρ1W1

) = 0, (157)

which has to be solved using a root finder.
Once this equation is solved,p3 and p4 are automati-

cally known andv3 and v4 can be calculated using (149)
and (154), respectively. It is possible to calculateρ4 using
the fact that in the rarefaction zone the process is adiabatic
and thenρ4 = ρ6(p4/p6)1/Γ. We can also calculateρ3 using
(150). With this information it is already possible to construct
the solution in the whole domain.

Up to this point we have the known initial states
(p1, v1, ρ1) and(p6, v6, ρ6), the solution in regions 3 and 4
given by(p3, v3, ρ3) and(p4, v4, ρ4), andVs,2 which repre-
sents the velocity of propagation of the shock 2. The exact
solution region by region is described next.

1. Region 1 is defined by the conditionx − x0 < tVs,2,
whereVs,2 is given by (153) and the solution there is
that of the initial state on the left chamber

pexact = p1, (158)

vexact = v1, (159)

ρexact = ρ1. (160)

2. There is no region 2. Only the shock traveling with
speedVs,2.

3. Region 3 is defined by the conditiontVs,2 < x− x0 <
tVcontact, whereVcontact = λo = v3 = v4. The solution
is

pexact = p3, (161)

vexact = v3, (162)

ρexact = ρ3. (163)

4. Region 4 is defined by the conditiontVcontact < x
−x0 < tξt, where according to (91)ξt is
the characteristic value again, but this time eval-
uated at the tail of the rarefaction wave, that is
ξt=(v4 + cs,4)/(1 + v4cs,4). The solution in this re-
gion is

pexact = p4, (164)

vexact = v4, (165)

ρexact = ρ4. (166)

5. Region 5 is defined by the conditiontξt < x − x0 <
tξh, where according to (90)ξh is the velocity of
the head of the rarefaction wave traveling to the right
ξh = (v6 + cs,6)/(1 + v6cs,6). In order to computev5

we use (93)

1 + v6

1− v6
A−6 −

1 + v5

1− v5
A−5 (v5) = 0, (167)

whoch requires the information in (76), (94) and (95):

A−(5,6) =

[√
Γ− 1 + c−s,(5,6)√
Γ− 1− c−s,(5,6)

]−2(Γ−1)−1/2

, (168)

c−s,6 =

√
Γp6

ρ6h6
, h6 = 1 +

p6

ρ6

(
Γ

Γ− 1

)
(169)

c−s,5 =
v5 − ξ

1− v5ξ
⇒ v5 =

ξ − c−s,5

1− c−s,5ξ
. (170)

whereξ = (x − x0)/t. In this way, Eq. (167) is tran-
scendental and has to be solved equivalently forv5 or
for c−s,5 using a root finder for each point of region 5.
We recommend solving forc−s,5 and then constructv5

using (170). Finally we calculateρ5 using Eq. (82):

ρ5 =
1

[
KΓ

(
1

(c−s,5)
2 − 1

Γ−1

)] 1
Γ−1

, K =
p6

ρΓ
6

,

(171)
sinceK is the same in regions 5 and 6, and by the same
reason we obtainp5 using

p5 = p6

(
ρ5

ρ6

)Γ

. (172)

6. Region 6 is defined bytξh < x−x0. In this region the
solution is simply

pexact = p6, (173)

vexact = v6, (174)

ρexact = ρ6. (175)
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FIGURE 10. Exact solution for the Shock-Rarefaction case at time
t = 0.35 for the parameters in Table II.

As an example we show in Fig. 10 the primitive variables
at t = 0.35 for the initial data in Table II.

3.4.3. Case 3: Rarefaction-Rarefaction

In this case the transcendental equation for the pressure at the
contact discontinuity is given again by the conditionv3 = v4

where both velocities are constructed using the information
of the unknown state aside rarefaction waves. The velocity in
region 3 is given by Eq. (88) for the velocity on the state at
the right from a rarefaction wave moving to the left:

v3 =
(1 + v1)A+

1 − (1− v1)A+
3

(1 + v1)A+
1 + (1− v1)A+

3

, (176)

where according to (94)

A+
(1,3) =

[√
Γ− 1 + c+

s,(1,3)√
Γ− 1− c+

s,(1,3)

]+2(Γ−1)−1/2

. (177)

Here
c+
s,1 := cs(p1) =

√
Γp1/(ρ1h1),

h1 = 1 +
p1Γ

ρ1(Γ− 1)

and
c+
s,3 := cs(p3)

is given by Eq. (81)

c+
s,3(p3) =

√√√√ Γ− 1
Γ−1
KΓ

(
p3
K

) 1−Γ
Γ + 1

, K =
p1

ρΓ
1

. (178)

On the other hand the velocity of the gas in region 4 cor-
responds to the velocity on the state at the left of a rarefaction
wave moving to the right (89)

v4 =
(1 + v6)A−6 − (1− v6)A−4
(1 + v6)A−6 + (1− v6)A−4

, (179)

where according to (94)

A−(4,6) =

[√
Γ− 1 + c−s,(4,6)√
Γ− 1− c−s,(4,6)

]−2(Γ−1)−1/2

, (180)

and the speed of sound in region 4 is given by

c−s,4(p4) =

√√√√ Γ− 1
Γ−1
KΓ

(
p4
K

) 1−Γ
Γ + 1

, K =
p6

ρΓ
6

. (181)

Then using the contact discontinuity conditionv3 = v4 =
v∗, we equate (176) and (179) and obtain a transcendental
equation forp∗:

(1 + v1)A+
1 − (1− v1)A+

3 (p∗)
(1 + v1)A+

1 + (1− v1)A+
3 (p∗)

−

(1 + v6)A−6 − (1− v6)A−4 (p∗)
(1 + v6)A−6 + (1− v6)A−4 (p∗)

= 0, (182)

which has to be solved using a root finder.
Once this equation is solved,p3 andp4 are automatically

known andv3 andv4 can be calculated using (176) and (179),
respectively. As in the previous two cases, it is possible to
calculateρ3 andρ4 using the fact that in the rarefaction zone
the process is adiabatic and thenρ3 = ρ1(p3/p1)1/Γ and
ρ4 = ρ6(p4/p6)1/Γ. Thus we have the known initial states
(p1, v1, ρ1), (p6, v6, ρ6) and the solution in regions 3 and 4
given by (p3, v3, ρ3) and (p4, v4, ρ4). The solution in each
of the fan regions aside the rarefaction zones has to be con-
structed in terms of the position and timeξ = (x − x0)/t as
described below for regions 2 and 5.

1. Region one is defined by the conditionx− x0 < tξh2,
where according to (90)ξh2 is the velocity of the head
of the rarefaction wave traveling to the leftξh2 =
(v1 − cs,1)/(1− v1cs,1). The values of the physical
variables are known from the initial conditions:

pexact= p1, (183)

vexact= v1, (184)

ρexact= ρ1. (185)

2. Region 2 is defined by the conditiontξh2 < x− x0 <
tξt2, where according to (91)ξt2 is the characteristic
value again, but this time evaluated at the tail of the rar-
efaction wave, that isξt2 = (v3 − cs,3)/(1− v3cs,3).
In order to computev2 we use (92)

1 + v1

1− v1
A+

1 −
1 + v2

1− v2
A+

2 (v2) = 0, (186)

where using (76), (94) and (95)
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A+
(1,2) =

[√
Γ− 1 + c+

s,(1,2)√
Γ− 1− c+

s,(1,2)

]+2(Γ−1)−1/2

, (187)

c+
s,1 =

√
Γp1

ρ1h1
, h1 = 1 +

p1

ρ1

(
Γ

Γ− 1

)
(188)

c+
s,2 =

v2 − ξ

1− v2ξ
⇒ v2 =

ξ + c+
s,2

1 + c+
s,2ξ

. (189)

whereξ = (x − x0)/t. In this way, Eq. (186) is tran-
scendental and has to be solved equivalently forv2 or
for c+

s,2 using a root finder for each point of region 2.
We solve forc+

s,2 and constructv2 using (189). Finally
we calculateρ2 using Eq. (82):

ρ2 =
1

[
KΓ

(
1

(c+
s,2)

2 − 1
Γ−1

)] 1
Γ−1

,

K =
p1

ρΓ
1

. (190)

Finally we obtainp2 using

p2 = p1

(
ρ2

ρ1

)Γ

. (191)

3. Region 3 is defined by the conditiontξt2 < x − x0 <
tVcontact, whereVcontact = λo = v3 = v4. The solution
there reads

pexact = p3, (192)

vexact = v3, (193)

ρexact = ρ3. (194)

4. Region 4 is defined by the conditiontVcontact < x −
x0 < tξt5, whereξt5 is the third characteristic value
calculated at the tail of rarefaction moving to the right,
and according to (91)ξt5 = (v4 + cs,4)/(1 + v4cs,4).
In this region thus

pexact = p4, (195)

vexact = v4, (196)

ρexact = ρ4. (197)

5. Region 5 is defined by the conditiontξt5 < x − x0 <
tξh5, whereξh5 = (v6 + cs,6)/(1 + v6cs,6) according
to (90). In order to computev5 we use (93)

1 + v5

1− v5
A−5 (v5)− 1 + v6

1− v6
A−6 = 0, (198)

where according to (76), (94) and (95)

A−(5,6) =

[√
Γ− 1 + c−s,(5,6)√
Γ− 1− c−s,(5,6)

]−2(Γ−1)−1/2

, (199)

c−s,6 =

√
Γp6

ρ6h6
, h6 = 1 +

p6

ρ6

(
Γ

Γ− 1

)
, (200)

c−s,5 = − v5 − ξ

1− v5ξ
⇒ v5 =

ξ − c−s,5

1− c−s,5ξ
, (201)

whereξ = (x−x0)/t. Again (198) is a transcendental
equation either forv5 or for c−s,5. Oncec−s,5 has been
calculated use (201) to constructv5 or directly solve
(198) forv5. It is possible to calculateρ5 using (82):

ρ5 =
1

[
KΓ

(
1

(c−s,5)
2 − 1

Γ−1

)] 1
Γ−1

, K =
p6

ρΓ
6

,

(202)
and finally the pressure

p5 = p6

(
ρ5

ρ6

)Γ

. (203)

6. Region 6 is defined bytξh5 < x − x0. In this region
the solution is simply

pexact = p6, (204)

vexact = v6, (205)

ρexact = ρ6. (206)

As an example we show in Fig. 11 the primitive variables
at t = 0.25, for the initial parameters in Table II.

FIGURE 11. Exact solution for the Rarefaction-Rarefaction case at
time t = 0.25 for the parameters in Table II.
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3.4.4. Shock-Shock

We proceed as always, by establishing a relationship between
the velocity in regions 3 and 4. We start by expressingv3 as
the velocity of the gas on a region at the right from a shock
moving to the left, that is, according to (110)

v3 =
h1W1v1 + Ws,2

j2
(p3 − p1)

h1W1 + (p3 − p1)
(

Ws,2v1
j2

+ 1
ρ1W1

) , (207)

where Ws,2 = 1/
√

1− V 2
s,2 is the Lorentz factor of the

shock moving to the left. In this particular case we dis-
tinguish between the two values ofj depending using the
subindices 2 and 5. In order to obtainv3 in terms ofp3 we
can proceed following these steps:

• The rest mass density is given in terms ofp3 using the
expression (120) as

1
ρ3

=
−[p3(2σ − 1) + p1] +

√
[p3(2σ − 1) + p1]2 + 4ζ3σ[p2

3(σ − 1) + p3p1]
2σ[p2

3(σ − 1) + p3p1]
, (208)

ζ3 =
1
ρ1

[p1(2σ − 1) + p3] +
σ

ρ2
1

[p2
1(σ − 1) + p3p1], whereσ =

Γ
Γ− 1

. (209)

• Onceρ3 is given in terms ofp3 it is possible to compute
enthalpy in region 3 ash3 = 1 + σ(p3/ρ3).

• Then from Eq. (115) we obtain

j2
2 = − (p3 − p1)

h3
ρ3
− h1

ρ1

, (210)

where we choosej2 to be the negative root since the
shock is moving to the left; hereh1 = 1 + σ(p1/ρ1).

• Oncej2 is obtained, the shock velocity can be found
from expression (112) in terms ofp3 as

Vs,2 =
ρ2
1W

2
1 v1 − |j2|

√
j2
2 + ρ2

1

j2
2 + ρ2

1W
2
1

. (211)

• Finally we calculateWs,2 = 1/
√

1− V 2
s,2 and thusv3

in terms ofp3 and the known state in region 1 using
(207).

Using the information of the shock moving to the right
we obtain the velocity at the left from the shock, that isv4

using (109)

v4 =
h6W6v6 + Ws,5

j5
(p4 − p6)

h6W6 + (p4 − p6)
(

Ws,5v6
j5

+ 1
ρ6W6

) , (212)

where Ws,5 = 1/
√

1− V 2
s,5 is the Lorentz factor of the

shock. In order to obtainv4 in terms ofp4 we need to perform
the following steps:

• The rest mass density is given in terms ofp4 using the
expression (119) as

1
ρ4

=
−[p4(2σ − 1) + p6] +

√
[p4(2σ − 1) + p6]2 + 4ζ4σ[p2

4(σ − 1) + p4p6]
2σ[p2

4(σ − 1) + p4p6]
, (213)

ζ4 =
1
ρ6

[p6(2σ − 1) + p4] +
σ

ρ2
6

[p2
6(σ − 1) + p4p6], where σ =

Γ
Γ− 1

. (214)

• Onceρ4 is given in terms ofp4, we are able to compute
enthalpy in region 4 ash4 = 1 + σ(p4/ρ4).

• Then Eq. (115) reads

j2
5 = − (p4 − p6)

h4
ρ4
− h6

ρ6

, (215)

hereh6 = 1+σ(p6/ρ6). In this case, since the shock is
moving to the right we choose thej5 to be the positive
root.

• Oncej5 is obtained, the shock velocity can be found
from expression (111)

Vs,5 =
ρ2
6W

2
6 v6 + |j5|

√
j2
5 + ρ2

6

j2
5 + ρ2

6W
2
6

. (216)

• Finally we calculateWs,5 = 1/
√

1− V 2
s,5 and in this

way we can obtainv4 in terms ofp4 with (212) and the
known state in region 6.

According to the contact discontinuity conditionv3 =
v4 = v∗, we equate (207) and (212) and obtain a transcen-
dental equation forp∗:
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FIGURE 12. Exact solution for a Shock-Shock case at timet = 0.5

for the parameters in Table II.

h1W1v1 + Ws,2
j2

(p∗ − p1)

h1W1 + (p∗ − p1)
(

Ws,2v1
j2

+ 1
ρ1W1

)−

h6W6v6 + Ws

j5
(p∗ − p6)

h6W6 + (p∗ − p6)
(

Wsv6
j5

+ 1
ρ6W6

) = 0, (217)

which has to be solved using a root finder.
Once this equation is solved,p3 and p4 are automati-

cally known, andv3 and v4 can be calculated using (207)
and (212), respectively. It is possible to calculateρ3 andρ4

using (208) and (213), respectively. With this information
it is already possible to construct the solution in the whole
domain.

Up to this point we have the known initial states
(p1, v1, ρ1) and (p6, v6, ρ6), the solution in regions 3 and
4 given by(p3, v3, ρ3) and (p4, v4, ρ4), together withVs,2

andVs,5 which represent the velocities of propagation of the
shocks.

1. Region 1 is defined by the conditionx − x0 < tVs,2,
where the velocity of the shock is (211). The solution
there is that of the initial values of the variables on the
left chamber:

pexact = p1,

vexact = v1,

ρexact = ρ1.

2. There is no region 2, only the shock wave traveling at
speedVs,2.

3. Region 3 is defined by the conditiontVs,2 < x− x0 <
tVcontact, where the velocity of the contact discontinu-
ity is the characteristic valueλ0 = v evaluated in this
regionVcontact= v3 = v4 = v∗.

pexact = p3,

vexact = v3

ρexact = ρ3.

4. Region 4 is defined bytVcontact < x − x0 < tVs,5 and
the solution is

pexact = p4,

vexact = v4,

ρexact = ρ4.

5. There is no region 5, only the shock wave traveling
with speedVs,5.

6. Finally region 6 is defined by the conditionVs,5 <
x−x0. The exact solution is given by the initial values
at the chamber at the right:

pexact = p6,

vexact = v6,

ρexact = ρ6.

As an example we show in Fig. 12 the primitive variables
at t = 0.55, for the initial parameters in Table II.

4. Final comments

In this academic article we have described in detail the im-
plementation of the exact solution of the 1D Riemann in
the newtonian and relativistic regimes, which according to
our experience is not presented in a straightforward enough
recipe in literature.

The contents in this article can be used in various man-
ners, specially to: i) test numerical solutions of the Newto-
nian Riemann problem in basic courses of hydrodynamics,
ii) test numerical implementations of codes solving hydro-
dynamical relativistic equations, iii) understand the different
properties of the propagation of the different type of waves
developing in a gas and the different conditions on the hydro-
dynamical variables in each case.

It is also helpful because with our approach it is possible
to straightforwardly implement the exact solution, and this
will save some time to a student starting a career in astro-
physics involving hydrodynamical processes.
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