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Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong
gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations
describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop
research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic
requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We
describe in this paper the construction of the exact solution and a detailed procedure of its implementation.
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1. Introduction mentation of the solution. We focus on the solution of the
problem and omit some of the mathematical background that

High energy astrophysics has become one of the most impois actually very well described in the literature.

tant subjects in astrophysics because it involves phenomena The paper is organized as follows. In Sec. 2 we present

associated to high energy radiation, modeled with sourcethe Newtonian Riemann problem and how to implement it;

traveling at high speeds or sources under the influence ah Sec. 2 we present the exact solution to the relativistic case

strong gravitational fields like those due to black holes orand how to implement it. Finally in Sec. 3 we present some

compact stars. Current models involve a hydrodynamical definal comments.

scription of the luminous source, and therefore hydrodynam-

ical equations have to be solved.

In this scenario, due to the complexity of the system of2. Riemann problem for the Newtonian Euler

equations it is required to apply numerical methods able to equations

control the physical discontinuities arising during the evolu-

tion of initial configurations, for example the evolution of the The Riemann problem is an initial value problem for a gas

front shock in a supernova explosion, the front shock of a jetwith discontinuous initial data, whose evolution is ruled by

propagating in space, the edges of an accretion disk, or arjuler’'s equations. The set of Euler’s equations determine the

shock formed during a violent process. The study of thes@volution of the density of gas, its velocity field and either its

systems involve the implementation of advanced numericabressure or total energy. A comfortable way of writing such

methods, being two of the most efficient and robust ones th@quations involves a flux balance form as follows

high resolution shock capturing methods and smooth particle

hydrodynamics which are representative of Eulerian and La- ou+ 9, F(u) =0 1)
grangian descriptions of hydrodynamics, each one with pros
and cons. whereu = (uy,us,u3)” = (p,pv, E)T is a set of conser-

It is traditional that a first step to evaluate how appropri-vative variables and is a flux vector, where is the mass
ate the implementation of a numerical method is, requires thédensity of the gasy its velocity andE = p((1/2)v? + ¢),
comparison of numerical results with an exact solution in awith ¢ the specific internal energy of the gas. The enthalpy
simple situation. The simplest problem in hydrodynamics isof the system is given by the expressifin= (1/2)v? + h,
the 1D Riemann problem. This is an excellent test case bawvhere is the specific internal enthalpy given by= e+p/p,
cause it has an exact solution in the Newtonian cesg[(]) wherep is the pressure of the gas. The fluxes are explicitly
and also in the relativistic regime [2,3], where codes dealin terms of the primitive variables, v, p and the conservative
ing with high Lorentz factors are expected to work properly.variables [1]

From our experience we have found that the existent liter-

ature about the construction of the exact solution is not as ov U

explicit as it may be expected by students having their firstg ,y_ % +p _ %(3 _ F)Zj + (T = Dug
contact with this subject. This is the reason why we present o(E +p) 2y, —11(1“ _ 1)£
a paper that is very detailed in the construction and imple- up 372 uj
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The initial data of the Riemann problem is defined as fol-coordinategz, ¢t) with the combinatior{z — z)/t; it can be
lows seen that such behavior implies that the following conditions

hold [4]
- ur,, r<=2xo
u = { ur, I > X, dU1 N @ _ dU3 (5)

R Y
ri ry ry

whereuy, andug represent the values of the gas properties

on a chamber at the left and at the right from an interfacevherei indicates the component of a given eigenvector. On
between the two states at= =, that exists only at initial the other hand, the Rankine Hugoniot conditions relate states

time. on both sides of a shock wave or a contact discontinuity

The evolution of the initial data is described by the char- AF = VAu, (6)
acteristic information of the system of equations, and this
is why the properties of the Jacobian matrix are impor-which are simply jump conditions, whergu is the size of
tant. The Jacobian matrix of the system of equations ighe discontinuity in the variable$] is the velocity of either
A(u) = OF /0u and explicitly reads the contact discontinuity or shock addF is the change of
0 ) 0 the flux across the discontinuity.

A= 5T =3)° 3T I'-1 |. 21. Contactdiscontinuity waves

(F—l)v3—¥ %—%(1—‘—1)02 T'v

The contact discontinuity is described by the second eigen-

Its eigenvalues satisfy the conditian(u) < A\2(u) < Az(u)  vector and evolves with velocity,. Let us then analyze the

and are given by second eigenvector. In this case the Riemann invariant con-
ditions read
AM=v—a (2) dp _dlpv)  dE
)\2 = (3) 1 B v N %1}2 '
A3=v+a (4)  These relations implies thdfps) = dv = 0, further imply-

_ . ing thatp = constant andv = constant across the contact
wherea = /(9p/9dp)|s is the speed of sound in the gas, wave. In order to relate the two sides from the contact dis-

which depends on the equation of state. For the ideal gagontinuity we use the Rankine-Hugoniot conditions, which
p = pe(I' — 1), wherel is the ratio between the specific are given by

heats at constant pressure and voldme ¢, /c,, the speed

of sound isa = /(T'p/p). On the other hand, the eigenvec- prvrL = prvr = Ve(pL — pR), )
tors of the Jacobian matrix read pLv2 + p2 — prvd +p% = Vilpror — prur), (8)
1
N vr(EL +pr) —vr(ER +pr) = Ve(vr(EL + pr)
1— - )
H — av —vr(ER + pR))- )
1 1 HereV, is the velocity of propagation of the contact discon-
ry = v , Tr3= v+a . tinuity.
%112 H +av The discontinuity travels at speed = v therefore the

V. = v. For this reason from Eq. (7) follows that = vg

The eigenvectors;, ry, rs are classified in the following _ V.. As a consequence of this, Eq. (8) gives the condition

way- pL = pr, Which implies (9) is satisfied. Notice that no con-
e they are called genuinely non-linear when satisfy thed?tion on the density arises, which allows the density to be
conditionV,, \; - r;(u) # 0. discontinuous.
e and linearly degenerate wh&n,\; - r;(u) = 0. 2.2. Rarefaction waves

It happens that; is linearly degenerate and representsAt this point we do not know the nature of waves 1 and 3, and
a contact discontinuity, however the other two are genuinelyove can assume they may be rarefaction waves. Once again

non-linear. we use the Riemann invariant equalities, which for vectors 1
Depending on the particular region of the solution weand 3 read
will use both the Riemann invariant conditions for rarefaction dp  d(pv) dE

waves and the Rankine Hugoniot conditions for shocks and —_— = =

contact discontinuities. The Riemann invariants are based on 1 voa  H-av
the self-similarity property of the solution in some regions, dp _d(pv) _dE
in the sense that the solution depends on the spatial and time 1 v+a H+av
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Manipulation of these equalities results in the following a useful expression farg arises

equations ) -
ar, Pr
d =L — — —-1]. 19
@w _ _P for A1, (10) A A | [(pL> ] (19)
dv a
dp _p for A (11) The only unknown quantity isg.
dv  a » On the other hand, when the wave is moving to the right
de p we assume we know the information at the state at the right
dp = 02 for both A; and A;s. (12)  from the wave, then we search for expressions of the vari-

ables on the state at the left. For the velocity we find accord-
The next step is to integrate these equations assuming gfg to (16)
equation of state, in our case the ideal gas. From (12) we

obtain 2

vr =vr — g lar —azl, (20)

r
p=Kp (13) and the speed of sound on both sides obeys
where K is a constant. A rarefaction process is isentropic r1
(unlike a shock), and therefore the states at the left and at the ar = ag <pL> . , (21)
right from the wave obey (13) with the same const&nt PR
Using this expression fgrin the speed of sound we have
a = /KTpr'—! = /Tp/p, which substituted into (10,11)

results in =
2ap PL
2a UL:UR—F_1[1—<> ] (22)

U::I:/\/KI‘pF*?’dp-l-k::I:F 1 +k, (14) Pr

where+ stands for the wave moving to the right (the case o
A3 andrs corresponding to a rarefaction wave) andvhen
moving to the left (the case of; andr; corresponding to

which finally implies

fThe only unknown quantity in this casejig.
The rarefaction zone has a finite size, bounded by two
curves, the tail and the head. The head of the wave is the line

. . . X of the front of the wave and the tail is the boundary left be-
a rarefaction wave), wherk is an integration constant and

therefore th locity i tant I Thi w al hind the wave. The region in the middle is called the fan of
erefore the velocity is constant as well. This property al-, .-t 0 wave.

ltﬁws tuf totiﬁt Tellctatlogs ?S]Meeﬂtﬁche v<terIIOC|ty Off trt]_e gas on - rpge velocity of all the particles between the head and the
e state at the left and at the right from the rarefaction wave,_, obeys the following expression

explicitly there are two possible cases:

. . . L. T — To
i) When the wave is moving to the left, condition (14) =v+ta, (23)
implies that
where + is used when the wave is propagating to the right
oL + 2ap _ VR + 2ar (15)  and the - when it is moving to the left. Then, when the

-1 -1 wave is moving to the left, using this expression we have
= vgr — (¢ — o) /t, which substituted into (19) provides

. . . . L. aRr
ii) When the wave is moving to the right, condition (14) the following expression for the velocity of the gas on the

implies state at the right from the wave is
2ar, 2ag
_ = — 16 —
R At | (16) vR:Fil{aL+;(F—1)vL+xtxo}. (24)

i n\/f\:hﬁqnt:]helvxftav;a Its rinov\;nﬁ tgltherﬁf\tlilwle aﬁu?iw;forr?ar-] Then it is possible to calculate the pressure and density
o?the(\)/ariat?lees osn ?hz ;’t:tea t(;:1 thi ﬁght freorﬁc'zhe?/vaevg Iezsosr ?h as well. Substituting (24) into (15) and (18) we obtain an
velocity of the fluid at the right state we then have from (15) xpression for the pressure also at the state to the right

2T
2 2 I'-1 T — X0 r—1
o - _ S ) . (@5
VR = VL F_l[aR arl, (17) PR=PL {F+1+a,;(1“+1) <UL ; ﬂ (25)

now considering that the speed of sound on both sides obeysow, using this into (13) implies the expression for the den-

a=+/KTpr-1 = VI'p/p (see (13)) sity
_ PR e _ 2 r-1 T =X =
Gr = ar, (m) ) (18) PR=PL [F n 1+aL(I‘ ) ('UL p )] . (26)
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Then finally we have expressions for the velocity, pressurésr = pr ((1/2)9% + er). These expressions correspond to
and density on the state at the right when the wave is movinthe Rankine Hugoniot jump conditions measured by an ob-
to the left. server located in the rest frame of the shock wave.

Similarly when the wave is moving to the right we have  From Eg. (30), we introduce the mass flux definition
from (23) thata;, = v + (& — x0)/t, which substituted

into (22) implies the following for the velocity on the state at J = pLoL = pRUR. (33)

the left from the wave Then, from Eq. (31) and the mass flux definition before men-

2 1 Tr—T i i ich is ai
v = —ar+ (T = 1)vg + ol @27) tioned, we can get an expression fomvhich is given by
'+1 2
j:_PR—PL:_PR—pL (34)
In order to obtain the expressions for the pressure and the Up — UL, vRp — U1’

density, we substitute this last expressions into (16) in orde\;vhiCh is a consequence gfbeing invariant under Galilean

to re]ate the speeds of sound, and then using (21) we flr1alI%’rr:msformr:ltions. Considering the shock is moving to the left,
obtain the expression for the pressure at the left we would be interested in constructing the variables on the
9 -1 _ = state at the right from the shock and we can start with the
= — e 28)  velocity, which can be written as
PLEPRA D " aq@+ )\ ¢ ( ’

Finally using the Eq. (13) we obtain the density vg = vy, — LELPL (35)
2
_ 2 Il o T =t (29) Now, in order to express the velocity in terms of the pressure
PL=PR |77 ar(T+1) A ' and the variables of the state at the left from the shock, we
In this way we have relations between the variables on to th(e:an rewrite (33) as follows
state at the left and at the right from a rarefaction wave. These on— G — J oy — G — J (36)
relations will be useful when solving the Riemann problem. r  pr’ L oL

23 Shock waves Thus, substituting this into (34) we obtain

. . . . PrR —PL
Similar to the previous case, the shock can move either to j* = - 1 (37)
the right (if \3 andr; correspond to a shock wave) or to the PR PL

left (if A, andr, correspond to a shock wave), and for eachon the other hand, using Eqg. (32) and the expression for the
of the two cases there is known and unknown informationspecific internal enthalpy we can easily get the following

When a shock is moving to the right one is expected to havexpression for the difference of internal specific enthalpies
information of the state at the right from the shock and con- )

versely, when the shock is moving to the left one accounts hp —hp = = [U% _ 1,12%] , (38)
with information of the state at the left. 2

Shocks require the use of Rankine Hugoniot condi-whereh; = ¢, + pr/pr andhg = eg + pr/pr. Now,
tions (6). We express these conditions in terms of the primifrom Egs. (30) and (31) we give expressions for the veloci-
tive variables as follows tites measured by the observer located in the rest frame of the

shock wave
prLvr, — prvRr = S(pL — PR):
52 = PL PL — PR

pLV} + pL — prVE — PR = S(PLVL — PRUR), R orpL —pr
vr(EL +pr) — vr(ER + pr) = S(EL — ER), 02 — PRPL — PR
PL PL — PR

whereS is the speed of the wave, which may take the values o _ _
v — a or v 4+ a depending on whether the wave moves to theWith the substitution of these last equations into (38) and

left or to the right respectively. Manipulating these equationsc:onsidering the definitions for the specific internal enthalpy

one gets mentioned above, we obtain
. . 1 + -
PLUL = PROUR, (30) ER—ELZf(pL Pr)(PR pL)_
2 PLPR
pLd7 + pL = prO% + PR (31) - . .
L R ’ Assuming the gas obeys an ideal equation of state we get an
op(Erp +pr) = or(ERr + pR), (32)  expression for the density as follows
whered, = vy — S, 9p = vg — S are velocities in the pr _ pr(T=1) +pr(l + 1). (39)
rest frame of the shock anfl, = p; ((1/2)9? + &) and pr. pr('—=1)+pr(I'+1)
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Notice that this expression relates the density among the Region 1: initial left state that has not been yet influ-
two sides from the shock. Now, substituting this expression enced by rarefaction or shock waves

into (37) we obtain . ] .
Region 2: wave traveling to the left (may be rarefaction

2= pr+ BL or shock)
==
¢ Region 3: region between the wave moving to the left
Ap = #7 L= I'— 1le (40) and the contact discontinuity, called region star-left
T+ pr, r+1

. . , Contact discontinuity
Thus, the expression for the velocity (35) can be written as

follows Region 4: region between the contact discontinuity and
the wave moving to the right, called region star-right
[ Ap
vr =vr — (PR = Pr) PR+ B (41) Region 5: wave traveling to the right (may be rarefac-

tion or shock)
From expression (36) and using (40) we express the shock

velocity as follows Region 6: initial right state that has not been yet influ-

enced by rarefaction or shock waves

2pL, regions is a rarefaction wave the region involves a head-fan-
tail structure, whereas if it is a shock the region becomes only
Finally, using the sound speed expressigr-1/p.I'/pr, we  a discontinuity. Counting from left to right on the spatial do-

S =uvy — \/pR(F +D+pT—1) Regions 2 and 5 are special. If the wave propagating in such

obtain the final expression for the shock velocity main, the results can be reduced to the following four possible
combinations of waves:
T+pr T'—1
=L — . 42 ion-
S=uvg aL\/ op T T or (42) 1) rarefaction-shock

Analogously, when the shock moves to the right, it is pos- 2) shock-rarefaction

sible to construct the expressions for the variables for the state 3) rarefaction-rarefaction

at the left from the shock
4) shock-shock

AR _ . o .
v =VR + (PL — PRI\ — 5> (43)  with a contact discontinuity between the two waves in all
L+ Bgr . .. . .
cases. Itis worth noticing that these combinations can occur
pr(l' = 1) +pr(I' +1) under a wide variety of possible combinations of the initial
pPL = PR (44)

values of the thermodynamical variables. In this paper we il-
lustrate each of these scenarios using particular sets of initial

r+1 r—-1 conditions.
SZUR+GR\/( + )pL+ . (45)

2prl’ o2r
2.4.1. Case 1: Rarefaction-Shock

pr(—=1) +pr(T'+1)’

and we let this as an exercise to the reader.
This case corresponds to the typical case used to test numer-

2.4. Classical Riemann Problem ical codes, a test called the Sod's shock tube problem [5].
A traditional set of initial values that produces this scenario
The Riemann problem is physically a tube filled with gascorresponds to a gas with higher density and pressure in the
which is divided into two chambers separated by a removieft chamber than in the right chamber, and the velocity is set
able membrane at = x,. At the initial time the membrane initially to zero in both.
is removed and the gas begins to flow. Once the membrane is A rarefaction wave travels into the high density region
removed, the discontinuity decays into two elementary, non{moves to the left), whereas a shock moves into the low den-
linear waves that move in opposite directions. sity region (moves to the right).

Depending on the values of the thermodynamical vari- Summarizing, the problem then involves five regions
ables in each chamber, four cases can occur. Considering tloaly. Regions 1 correspond to the initial state to the left that
fluid is described on a one-dimensional spatial domain, rarhas not been influenced by the evolution of the system. Re-
efaction and shock waves can evolve toward the left or righgion 2 corresponds to a rarefaction wave containing the head-

from the location of the membrane. fan-tail structure, region 3 and 4 are the left and right states
In general the solution in all the cases can be studied iseparated by the contact discontinuity. Region 5 reduces to
six following regions: the shock. Finally region 6 is the initial state at the right
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EXACT SOLUTION OF THE 1D RIEMANN PROBLEM IN NEWTONIAN AND RELATIVISTIC HYDRODYNAMICS 33

chamber that has not been influenced by the evolution of the
system.

The goal is to determine the state in all the regions using
the relations between the thermodynamical quantities con-
structed before.

The starting point to construct the solution happens at the
contact discontinuity, where the velocity and pressure obey
the condition®s = ps = p* andvz = vy = v*.

Region 3 plays the role of the state at the right from the
rarefaction wave and region 1 the state at the left. Then we
can use (19) to obtain an expressiondgr

r—1
2 2r
V3 = V1 — T ill [(zj) — 1] . (46)

On the other hand, region 4 plays the role of a state at the left
from the shock wave and region 6 the role of the state at the
right. Then we use (43) to calculate:

As
ps+ Bs'

vy = v6 + (pa — o) (47)

whereAs = 2/ps/(I' + 1) andBg = p(I' — 1)/(T" + 1).
Given thatvs = v4 = v*, equating both expressions one
obtains a trascendental equation #or

As
p* + Bg

(P* — pe)

2 F}l
*\ 2
+ (BT
-1 P1

Unfortunately as far as we can tell, no exact solution is known
for p*, and then we proced to construct its solution numeri-
cally. Once this equation is solvegs andp, are automat-
ically known, andvs and vy can be calculated using (46)
and (47) respectively.

Then, itis possible to calculatg using (13) at both sides
of the rarefaction zone, givefi is the same on both sides be-
cause it is an isentropic process:

D3 1/T
p3m<> (49)
P1

+uvg—v1=0. (48)

where nowpy, p; andps are known. On the other hand one
can also calculatg, using (44)

_ (ps(I'=1) +pa(T' +1)
() O

also in terms of known information. With this information it
is already possible to construct the solution in the whole do-
main. We explain how to do it region by region. A scheme of
how the regions are distributed is shown in Fig. 1.

1. Region 1 is defined by the conditian— zy < tVheaq
whereVieaqdis the velocity of the head of the rarefaction

matrix evaluated at the location next to the head from
the left side, that is, considering (B), = v1 —a;. The
solution there is simply

DPexact= P1,
Vexact = V1,
Pexact= P1-

. Region 2 is defined by the conditidVheaq < = —

xo < tViail, Wherely,; is the same characteristic value
again, but this time evaluated at the tail curve, that is
Viail = vs — ag. This is the fan region for a rarefaction
wave moving to the left, for which we simply use ex-
pressions (24,25,26) that need only information from
region 1 and obtain

2 n I'-1
_ V1 —
Pexact=pL1 T+l (FJrl) 1

B 2 n I'—1 T—x0)\ |71
Pexact=P1 T+1 al(r+1) U1 7 )
2 1 T—T
Uexact:m [GH‘Q(F—UUH- ; 0] . (51)

. Region 3 is defined by the conditiohi,) < z — z¢ <

tVeontacs Where Veontact iS the velocity of the contact
discontinuity, which is the second eigenvalue (3) of
the Jacobian matrix evaluated at this region, that is
Veontact= v3 = v4. The solution there finally reads

Pexact= P3,
VUexact = V3,
Pexact= P3-

. Region 4 is defined by the conditiad;ontact < = —

o < tVshock Where according to (45), the velocity of
a shock moving to the right separating regions 4 and 6

IS
I'+1 -1
Vshock = U6 + GG\/( )p4 +

2Tps or '

whereag = /psI'/ps. Then the solution in this region
is

Dexact= P4,
Vexact = V4,
Pexact = P4-

as calculated

wave given by the characteristic value of the Jacobian 5. There is no region 5.
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6. Region 6 is defined b¥Vshock < © — x. In this region

the solution is simply

Pexact= P6,
Vexact = U6,
Pexact = P6-

An example of how the solution looks like is shown in

Fig. 2 for initial data in Table I.

TABLE |. Table with the initial data for the four different cases. We

choose the spatial domain to bec [0, 1] and the location of the

membrane ato = 0.5. In all cases we usE = 1.4.

Case PL PR VL VR PL PR
Rarefaction-Shock 1.0 01 00 00 1.0 0.125
Shock-Rarefaction 0.1 1.0 00 0.0 0125 1.0
Rarefaction-Rarefaction 0.4 0.4 -1.0 10 1.0 1.0
Shock-Shock 04 04 10 -10 1.0 1.0

I \
LR '
\i \\\ \\ ” .
\s\ m /
N |
N\
N\
N I
1 \\\\\ / VI
\ '
\\\\ /
\ |/
x B
N\ |/
¢ N\, |/ /
1 f
2
3
4
5 1 I m i v vi
6
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2.4.2. Case 2: Shock-Rarefaction

This case is identical to the previous one, except that we
choose the initial pressure and density are higher on the right
chamber. After initial time, the wave traveling to the left is
a shock, while the one moving to the right is a rarefaction
wave. This implies that region 2 plays the role of region 5 in
the previous case and region 5 has the tail-fan-head structure
of a rarefaction wave.

Starting from the contact discontinuity, the conditions
V3 vy = v* andps = py = p* hold. The conditions
on a shock wave moving to the left imply according to (41)
that the velocity of the state at the right is

( ) Al
V3 = V1 — — —_—,
3 1 b3 —Pp1 73+ B

and information from the rarefaction wave interface can be
obtained from (27) fow, as the velocity on the state at the
left from a rarefaction wave moving to the right

(52)

S
2
1- (;)4) .
Pe
Equating these two expression one obtains a trascendental
equation forp*:

2@6
I'-1

(53)

Vg4 = Vg —

. Ay
- (" —p) m
=
4 2as [1(1’) Tl du—w=0  (59)
F—l Pe

that one solves numerically fgr*. This information pro-
vides the necessary information to construct the solution in
the whole domain as described below. The different regions

FIGURE 1. Description of the relevant regions for the Rarefaction- are illustrated in Fig. 3 and the exact solution region by re-

Shock case.

. \ ‘ \

/

/

/

n
x

7
b2

gion is as follows.

1. Region 1 is defined by — g < tVghock Where the ve-
locity of the shock is given by (42) because the shock
is traveling to the left:

Vs=U1—a1\/

and the exact solution here reads

r-1
or -’

(I'+ Dps
2p1F

Pexact= P1,
VUexact = V1,
Pexact= P1-

FIGURE 2. Exact solution for the Rarefaction-Shock case at time

t = 0.25 for the parameters in Table I.

2. There is no region 2.
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3. Region 3 is defined by the conditiagiy; < x — zg <
tVeontact  Veontact IS the characteristic value (3) evalu-

35

\\\ ////;/ /
ated at this region¥ontact = v3 = v4 = v*. Using \ ///i//
(39) explicitly for the density and (52) for the velocity, N\ ‘ Vi
the solution in this region reads \ ’///

\ // /
Pexact= P3, ) N \\ ////////
Vexact = V3, I N \\‘ /
o= pr AL =D P+ 1) 2’
exact 1 (F )—i—pl(F—i— j
o]

4. Region 4 is defined by the conditioWconiact < = —

m v VI

(=2}

xo < tV;, where the velocity of the tail of the rarefac- FIGURE 3. Description of the relevant regions for the Shock-
tion waveV; is the third eigenvalue (4) evaluated at the Rarefaction case.

region behind the talV, = v4 + a4.

One uses (53) to calculate and (13) implie®y /ps = . ’
(pa/ps)* for a constant value ok’, which implies an g

expression fop,. The resulting exact solution is

Pexact = P4,

Vexact = V4

1T
D4

Pexact= P6 | — .
De

5. Region 5 is a fan region defined by the conditidf < . /
x — xg < tV; where the velocity of the head of the ™
wave is again the third eigenvalue, but this time evalu-

x

ated at the heall;, = vg + ag. One uses the expres- FIGURE 4. Exact solution for the Shock-Rarefaction case at time
sions for a fan region of a rarefaction wave moving to ¢ = 0.25 for the parameters in Table I.

the right (27,28,29) to calculate the exact solution

2 r—1 a—z0\]T T
Pexact=DPe6 T+1 aﬁ(r+1) Vg p ,

2 1 T—x
Uexact:m |:_a6+2(r_1)v6+ n 0] )

- 2 _ I'-1 " _LU—.’E() %
Pexact=pL6 T+1 aﬁ(F+1) 6 7 .

6. Region 6 is defined by the conditiafy;, < = — xq.

The exact solution is given by the initial states at the

right chamber.

Pexact = D6,
Vexact = U6,
Pexact = P6-

An example is shown in Fig. 4 for initial data in Table I.

2.4.3. Case 3: Rarefaction-Rarefaction

A physical situation that provides this scenaripjs = pg,

prL = pr and—vy = +vg > 0. In this case both, regions 2
and 5 correspond to rarefaction waves. In this particular case
since one of the rarefaction waves moves to the left and the
other one to the right, we distinguish them using the labels
for each of their parts.

Again the contact discontinuity defines a relationship be-
tween velocity and pressure. In the present case, there is an
expression fows in terms ofv; for a rarefaction wave mov-
ing to the left given by (19) and another one fgrin terms
of vg for a rarefaction wave moving to the right (22):

- r—1 -

9 5
V3 = V1 — T il]_ (ii) -1 5 (55)

206 [ (P4> =
V4 = Vg — 1—-(— . 56
= LN O R B
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4. Region 4 is defined by the conditidWeontact < * —
zo < tVi 5, where the velocity of the tail of the wave
r_1 moving to the rightl; 5 is given by the eigenvalue (4)
2a6 |, _ (p* ) o evaluated at the state left behind the rarefaction wave
r—-1 D6 moving to the right, that i%} 5 = v4 + a4, where again
we point out thaty, = v* andp, = p* are known

The conditionvs = vy = v* at the contact discontinuity im-
plies a trascendental equation for= p3 = p4:

r-1
2ay pr\ oncep* is calculated. The solution is obtained in the
— —_— 7]. +’U17’l}6:0 (57) . .
'-1|\p same way as for the previous region, but now the wave
_ _ ) . relates states in regions 4 and 6:
Again, oncep* is calculated numerically, the solution in _
all the regions of the domain can be calculated as follows. Pexact= P4
The first implication is thaps = p, = p*, and thusys andv, Vexact = V4.
can be calculated using (55) and (56). The different regions LT
are illustrated in Fig. 5. _ D4
Pexact= P6 ];) )

1. Region 1 is defined by the condition— z¢ < tV}, 2,
whereV}, o is the velocity of the head of the wave mov-
ing to the left, and is obtained from the characteristic
value of such rarefaction wave evaluated at the left in-

5. Region 5 is defined by the conditiol, 5 < © — z¢ <
V1,5, where the velocity of the head of the wave mov-
ing to the rightisV}, 5 = vs+ae, and the solution is ob-

terface, that id}, » = v; — a;. In this region the gas . | >
has not affected the initial state on the left, then the tained using the values of the state variables for the fan
solution is of a rarefaction wave moving to the right (27,28,29):

Pexact= P1, { 2 -1 < m_xo)}Fl

— _ Ve ’
Vexact = V1, Pexact=P6 | +1 a(T+1) ‘ t
_ 2 1 xr — Xo
Pexact= P1- N (T = 1Doe
Uexact—r 1 |: a6+2( Jve+ ] )

2. Region 2 is a fan region defined by the condition
tVho < x —x9 < tVio, where the velocity of the Dexact=Po { 2 -1 <v6 T $0>} e
tail V; » is that of the state left behind by the wave, that F+1 ag(T'+1) t
is ‘/t,Q = U3 — as3.

The exact solution is that of a fan region of a rarefac-

6. Finally, region 6 is defined by the conditidr, 5 <
x —xo. The exact solution is given by the initial values

tion wave moving to the left (24-26)
o at the chamber on the right because in this region the
- 2 -1 x—x0 || gas has not been affected yet by the dynamics of the
Pexact=P1 {I‘+1+a1(F+1) (Ul_ ¢ )} ’ gas:
UexacFm [a1+;(r — 1)U1+l 1‘0] , Pexact= P6,
Vexact = V6,

2 n r-1 T—1xo\|T 7
= v ———— .
Pexact=pP1 C+1 al(F—i— 1) 1 ; .

3. Region 3 is defined by the conditiof; » < z — zp < g
tVeontace  The velocity of the contact discontinuity is " i
Veontact = v3 = wvg = ov* according to the eigen- :
value (3). In this regiorps = p* andvs = v* are /
already known fromp*. Finally, the density is obtained ' ! "
from (13) for an isentropic process like the rarefaction /’ ‘

wave for a constant’ on both sides of such wave as ff /
found in the previous two cases. Thus the solutionis 1 )
2
Pexact= P3, 3
4
Vexact — V3. 5} 1 s m v v VI
6
1T
Pexact = P1 <p3> , FIGURE 5 Description of the relevant regions for the Rarefaction-
b1 Rarefaction case.
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x X

FIGURE 6. Exact solution for the Rarefaction-Rarefaction case at

time¢ = 0.25 for the parameters in Table I.

Pexact = P6-

An example is shown in Fig. 6 for initial data in Table I.

2.4.4. Case 4: Shock-Shock

A physical situation that provides this scenario corresponds
to two streams colliding with opposite directions. We choose

in this casey;, = pg, pr, = pr @and—vy = +wvg < 0. In this
case regions 2 and 5 are shock waves.

Again the contact discontinuity defines a relationship be-
tween velocity and pressure. In the present case there isan ™

expression fows in terms ofv; for a shock-wave moving to
the left given by (41) and another one for in terms ofvg
for a shock-wave moving to the right (43):

Al
=vi—(p3 — P )| — =, 58
U3 = U1 (p3 pl) ps + B (58)
A6
= —_ » —_— 59
v4 = V6 + (P4 po)“ 1 + Bo (59)

The conditionws = vy = v* at the contact discontinuity im-
plies a trascendental equation fdr= p3 = py:

e
b P1 »+ B
A
—(p* — ps) = +686 +v; —vg = 0. (60)

Again, oncep* is calculated numerically, the solution in

all the regions of the domain can be calculated as follows.

Immediately one has that = p4, = p* andvs andwv, can be
calculated using (58) and (59).

In this particular case regions 2 and 5 reduce to lines. The
solution in each region reads as follows and the regions are

illustrated in Fig. 7.

1. Region 1 is defined by the condition— zo < tV; o,
where the velocity of the shock moving to the &t
is given by (42) and reads

_ T+Dps I'—1
%2_”1‘“¢ oD | ar

The solution there is that of the initial values of the
variables on the left chamber:

Pexact= P1,
Vexact = V1,
Pexact = P1-

2. There is no region 2.

3. Region 3 is defined by the conditiai; » < « — x¢
< tVeontact WhereVeontact= v3 = v4 = v*. Once (54)
is solved one can calculate all the required informa-
tion. Using (58) forvuz and (39) forps the solution in
this region reads

Pexact= P3,

Vexact = U3

peract= py L= D s+ 1)
exact pg(T "1+ (F T )

4. Region 4 is defined byVeontact < = — zp < tVs 5,
where the velocity of the shock moving to the right is
given by (45) and reads

T+Lps =1
Vs = :
5 = U + ae\/ 2pal’ + T

Finally, using (59) forv, and (44) forp, the solution
in this region reads

Pexact= P4,
Vexact = V4,
Deract = pGPG(P — 1) +pa(T' + 1)
exact =
pa(l = 1) +ps(T + 1)

[

. There is no region 5.

6. Finally region 6 is defined by the conditior 5 <
x — xo. The exact solution is given by the initial values
at the chamber on the right:

DPexact= D6,
Vexact = V6,
Pexact = P6-

An example is shown in Fig. 8.
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FIGURE 7. Description of the relevant regions for the Shock-Shock
case.
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whereu# = W(1,v%,0,0) andW = 1/v/1 — vv; is the
Lorentz factor and® is the Eulerian velocity of the fluid el-
ements. It is possible to arrange these equations as a flux
balance set of equations as in the Newtonian case

opua + 0, F(u) =0, (62)

where conservative variables are definediby (D, 5%, 7)T

and the resulting fluxes a® = (Dwv, Sv + p,S), where

we assume that specifically = +* andS = 5%, since we

are only considering one spatial dimension. The conservative
variables are defined in terms of the primitive ones as follows

D= p0W7
S = pohW?v,

7= pohW —p. (63)

The flux balance equations are explicitly:

E
e

x x

FIGURE 8. Exact solution for the Shock-Shock case at tim®.25
for the parameters in Table I.

3. Relativistic shock tube

(64)
(65)
(66)

0tD + 81(D’U) = 07
;S + 0,(Sv+p) =0,
8,57' + 815 =0.

The eigenvalues of the Jacobian matrix of this system of
equations are

(67)

ach of the characteristic values (67) may correspond to
igenvectors with different properties exactly as in the New-

tonian case, that is\” corresponds to a contact discontinuity,
whereas the eigenvalugs may correspond to rarefaction or
shock waves. The shock tube problem in this case is defined

as in the Newtonian case:

r < X
x* > xg.

ur,
up,

u= { (68)

Next we describe the treatment of each of the wave or

First of all one needs to define a model for the gas. In our casdiscontinuities that develop during the evolution.

we use the perfect fluid defined because it has no viscosity
nor heat transfer, is shear free and is non-compressible. Suéal.

system is described by the stress energy tensor

T = pohu"u” + pn*¥, (61)
wherepg is the rest mass density of a fluid elememnt, its

four velocity,p the pressureh = 1+ ¢ + p/po is the specific
enthalpy and)*¥ are the components of the metric describing

Rarefaction Waves

Rarefaction waves are self-similar solutions of the flow equa-
tions [4]. They are self-similar solutions in the sense that
all quantities describing the fluid depend on the variable
¢ = (x — x9)/t. In order to explore the change of all phys-
ical quantities along the straight lirge we define the useful
change on the derivative operators

Minkowski space-time. 1 1
The set of relativistic Euler equations is obtained from the O = _2585’ Or = 585' (69)
local conservation of the rest mass and the local conservation Using the advective derivativé, = 8; + vd,, we obtain
of the stress energy tensor of the fluid, which are respectively, expressions o
(pout),,, =0, Ozp = —Dd,(hWwv), (70)
(TW)),V = Oa 6tp = Dda(hw)a (71)
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where we have used the rest mass conservation law to sinor in terms of the pressure instead of the density the speed of
plify the expressions. From (69) we obtain for the advectivesound reads

derivatived, = (1/t)(¢ — v)d/d¢&, for which we will use r—1
d := d/d¢ from now on. With this in mind we obtain from cp) = ————- (81)
(70,71) the differential equation = (B) T +1

(v — &)phW?2dv + (1 — &v)dp = 0. (72) Conversely, if the speed of sound is known one can cal-

. ] culate the density using (80):
On the other hand, the change of variable in (64) from

t,2 to & implies b= 1 . (82)
(v=E)dp+pW2(1 —vE)do =0.  (73) KT (& - 4)] "
and from Egs. (72) and (73) we obtain a relation between the Then the integral can be written as
density and pressure )
2 cs , 11 ™ dp
dph[l”_ fg] dp. w ]G] [Kr<cz F—lﬂ ac, % 3
Since the process alogs isentropic [6] the sound speed is Isrt‘:zgnrf‘ting by parts and using (79) we find the useful con-
10p
2 = - —
° hopl/ Iptte, 1 m| YL+ =constant
_ _ _ _ S 2 1—v (C-1Y2 " [JT—1-c¢,
which combined with the previous expression implies the (84)
speed of sound which in turn simplifies as follows
v—_§ 14+
s\U, = . 75 + _
es(v,€) = |1 o€ (75) —, A" = constant (85)
Besides, we can find a useful expression for an isentropic prGyhere A is
cess using = Kp' (we are using a politropic equation of i
state). . T—T+e, +2(I—1)
Tp AT =\ . (86)
cs =] = (76) TG
_ P . Equation (85) is valid only across straight lines arising
From' system (67) we obtaln'the spegd of sound in terms ofrom the origin(, ¢ = 0) and evolving along = (z—()/t
the eigenvalues of the Jacobian matrix inside the rarefaction zone. For this family of straight lines
o —(v=AT)/(L—oXt) if &€=AT, a7 the Riemgnn invariant is_ the same. This allows us t_o relate
s (v—A")/(1—vA~) if &=\ any two different states in the rarefaction zone, particularly

we are going to take the stattsaand R as the states just next
Comparing with (75) we find that, (v, A™) is the speed  to the left and to the right from the rarefaction wave.
of sound for a rarefaction wave traveling to the right and
¢s(v, A7) for a wave traveling to the left.
According to this equation we get from (73) that L—vp

Assuming that when the wave is propagating to the left

we account with information from the left state, we can cal-

d culate the velocity of the fluid on the region at the right from
the wave in terms of the state variables on the state at the left

1+vp o+ 1+og
L

+
= AR (87)

W2dv + Sdp = 0. (78)
p

Here the+ sign refers to the wave traveling to the left an
the — sign when it travels to the right. From this equation we i
obtain the Riemann invariant because this differential equaqndA :
tion is valid along a straight line along the— ¢ plane, as 1+ vp)AF — (1 - vL)AE

long as it is not a shock. Integrating the first term of (78) we VRS U o)A + (1= o)A (88)
obatain

Tptfv % dp = constant (79) Analogously when the wave is moving to the right we

2 1-w P expect to account with information on the state to the right.
In order to calculate the integral we use the definition of theThen we can express the velocity on the left in terms of the
sound speed and the polytropic equation of state Kp', variables on the state at the right and
from which we obtain

2(p) =

oy = (1+wvp)Az — (1 —wvp)AL
(1+op)AR + (1 —vr)AL

KT(T — 1)pF 1
I —1+KIpr—1’

(89)

C

(80)
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3.1.1. Thefan 3.2. Shock Waves

The fan is the region where the rarefaction takes place, progshocks require the use of the relativistic Rankine-Hugoniot
agating with velocity eitheA™ if the wave is moving to the jump conditionspyu*|n, = 0 and[T*"|n, = 0 across the
right or A~ when moving to the left. The fan will be bounded shock [6], wheren* = (—V,W,, Ws,0,0) is a normal vec-

by two values of corresponding to the head and the tail of tor to the shock’s frontlV; is the shock’s Lorentz factor and

the wave: Vs is the speed of the shock. Here we have used the nota-
(L.R) tion [F] = F, — Fgr, whereFy, and Fi, are the values of the
€ = LR+ Cs , (90)  function F" at both sides of the shock’s surface. These condi-
1+ vch’R) tions reduce to the following system of equations, in terms of
R.L primitive and conservative variables, as
_WRL T {Fb) 91
S A (91) Drvg — Drog = V(D — Dg),  (96)
where the— sign applies to waves traveling to the left apd Srvr +pr = (Sror +pr) = Vs(SL = Sr), (97)
when the wave moves to the right. In order to construct the Sp — Sr = V(1L — Tr). (98)

solution inside the fan, we use the constraint (87). We have o .
two cases according to the direction of the rarefaction wave! "€ subindicesL, ) represent two arbitrary states at left

If the rarefaction wave travels to left we use and at the right from the shock. These equations can be writ-
ten in the reference rest frame of the shock by considering a
1+ Af — 1+ vk AL =0 (92)  Lorentz transformation, that is
1-— vy, 1-— VR A A
_ _ Dpor = DRog, (99)
and solve the equation farg. When the rarefaction wave . .
travels to right we use Spor 4+ pr = SrOR + PR, (100)
1 1 S, =5
+’ULAZ _ +URA1_% o, 93) Sr, = Sg, (101)
1-— VL 1-— VR

where the hatted quantities are evaluated at the rest frame of
and solve the equation fer;. We calculate in each casg®  the shock. Here

using (86) in the appropriate region Sz.r) = Vs —v(r,Rr)
L,R) — 7 ~xr . >
N +2(D—1)"1/2 1- VS‘U(L»R)
" vE—1te wm Do o — o
A = . (94) (L,R) = P(L,R)WL,R;
L,R +
(L) r—-1- Cs (L,R)

&LmZPmmmamWﬁﬂﬁwm and

where the sound speed is given by (75) and (77) 1

W(L,R) = 74

(95) L =90 Ry
From (99), we can introduce the invariant relativistic

where the+ sign is used when the wave moves to the leftmass flux across the shock as
and — when moving to the right. Finally since we are )
in the rarefaction zone we can express a pgintt) with J=WsDr(Vs —vr) = WsDg(Vs — vr), (102)
§ = (z — )/t in (95) and using this expression in (94) whereW, = 1/,/1 — V2. It is important to point out that
and substituting into (92) or (93) depending on the directionyhen the shock moves to the right the mass flux is positive

of propagation we finally obtain a trascendental equation for; > o, whereas when the shock moves to the left it has to be
the velocityvr, r). We assume that if the wave moves to the negativej < 0.

left we know the variables on the state to the lefind ignore Now, using the expression for the mass flux (102) into
those of the state to the righit and viceversa. Then we look the Rankine-Hugoniot conditions (96,97,98) we can obtain

for a solution ofv;, when the wave moves to the left and of the following system of equations in terms of a combination
vr When moving to the right. Instead of looking for a closed of primitive and conservative variables

U(L,R) — ¢

Ci =
s,(L,R) 1 _U(L,R)g

solution to this equation we solve it numerically to obtain :
. . J 1 1

v(1,r) @ssuming we knowr ). Oncev(, gy is calculated UL = VR = (D — D) , (103)
we can substitute back, and using Eq. (95) obtain the sound s L R
speed; next, using (82) obtain the dengityfinally with the j (S Sr
help of the EOS we can calculate the presgute K p''. This PL —Pr = W, <DL - DR> ) (104)
completes the solution in the fan region. )

The particular cases described later illustrate how to im- VLPL — VRPR = = (TL _ TR) . (105)
plement this procedure. Ws\DL Drgr
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Considering the shock is moving to the right and thus thatConsidering that
the stateR is known, we will write an expression for the ve-

locity vy, in terms of the state variablésand also in terms of 1
4, Vs andpy,. In order to do this, we rewrite expressions (104) WaWir.r) = m 1_ 2
and (105) using the definitions for the conservative variables s (L. R)
in terms of the primitive variables (63) as follows 1
W v -
—*(pr, — pr) = hi Wi, — hpWr—, (106) \/1 = VZ = 0f gy + V3L R
Jur vL
%(’UL])L —vRpR) = hyWp, — PL the last equation takes the following form
J pLWr
— Wi + —E . (107)  prLh WEWE(V, — )
prWR
Subtracting these expressions and dividingbyve get — prRhRWZWR (Vs —vr)® = —(pL —pr).  (114)
Ws(, _vepr 1 L Pr) (108)
i \UET g v, vepr) As we can see from this equation, the definition of the con-
T 1 served mass flux is present, then using Eq. (102) in this last
RV R (”R _ 1) 4+ PR . equation, we obtain a useful expression for the square of the
DL (73 pLPrRWRrR  pLWyL flux
Inserting this into (103) we finally obtain an expression for —(p1 — pr)
the velocityv;, j2= _PLTPR) (115)
(i)
B hrWrur + 5 (pr, — pr) SR
v, = o ’ (109)
heWr + (pr = pr) ( ot pRWR> where the positive root corresponds to a shock moving to the
When the shock moves to the left and the stats known,  right whereas the negative root to a shock moving to the left.
the velocity on the state to the right is Another useful expression comes from Eq. (101), which
W, can be rewritten directly in the form
B heWrvr + = (pr — pL) y
vR = - — (110
hLWL + (pR _pL) ( ; L + /)LWL) hLWL _ hRWR, (116)

where the conditiorj < 0 has to be satisfied.

In order to obtain the shock velocity,, we start form  \yhich combined with Eqg. (115) implies
the mass flux conservation across the shock (102), which
relates the shock velocity with the mass flux. Substitut-

. o . : h h

ing W, = 1/,/1— V2, it is possible to solve the resulting h2 — h% = (pL — pr) (L + R) . (117)

guadratic equation and obtain the two roots for the shock ve- PL PR

locity
This last equation is commonly called tAaub’s adiabat

2 2 ; -
V. = PrWRVR + v 34_+ 329?%7 (111) Moreover Egs. (115), (116) and (117) are known as relativis-
PEWE + 52 tic Taub’sjunction conditions for shock waves [6,7].
B P2 Wivy, — 35 j2p2 7202 112) Finally, in ord_er to obtain_ the_densim and pressurg;
s = W+ 52 ) for a shock moving to the right in terms of the variables in

. the region to the right, we consider the definition of the spe-

bific internal enthalpy and that the fluid obeys and ideal gas

gquation of state. With these assumptions Eq. (117) can be
fowritten in the form

and to the left. The signs of the quadratic formula are chose
such that they are physically possible, that is, for the case of
shock moving to the right > 0 we use (111) and for a shock
moving to the leftj < 0 we use (112) [3].

In order to solve completely the problem across the

g

! [pr(20—1)+pr)+—[p7 (0 — 1)+pLpR]

- >
shock, we first express Eq. (100) as L L
1
pLhL(Vs - UL)2 = f[pR(Q(T — 1)+pL}+%[p%(J—l)+prR], (118)
1-V2—0v} +V20? PR Pr
prIR(Vs — vr)? wheres = I'/(I'—1). The solution for the quadratic equation
— = —(pL — PR). 113 : q q
1-V2 v} + V203 (P ~pr) (113) reads
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TABLE Il. Initial data for the four different cases. We choose the spatial domain to &0, 1] and the location of the membrane at
2o = 0.5. In all cases we use = 4/3.

Case pL pL vL UR PL PR
Rarefaction-Shock 13.33 0 0 0 10 1
Shock-Rarefaction 0 13.33 0.0 0.0 1 10
Rarefaction-Rarefaction 0.05 -0.05 -0.2 0.2 0.1 0.1
Shock-Shock 3.333e-9 -3.333e-9 0.999999 0.999999 0.001 0.001
1 —[pr(20—1)+pgr] £ VIpr (2o — 1) + pr]2 + 4¢rop (o — 1) + pLpR]
1 : , (119)
PL 20[p7 (0 — 1) + prLprR]
1 _ —[pr(20 = 1) +pi] £ VIpr(20 — 1) + pr]? + 4Cro[pR (0 — 1) + PRPL] (120)
PR 20[p%(0 — 1) + prpr] ’
where
1 oo, Ithe velocity on the state at the right from a rarefaction wave
(L= p*R[PR(QU -1 +PL]+/T2 [Pr(0c —1) +pLPR], moving to the left:
R
and 1 Af — (1 —v)AT
1 v El ivI;Ai + El vl;Ai' (122)
ag U1 — U1
Cr=—1[pr(20 — 1) + prl+—[p} (0 — 1) + prpL]. ' °
PL PL where according to (94)
A physically acceptable solution requirgs> 0, which re- e
stricts the sign to be positive one in both cases. - + +2(0-07
g p ?_ - l\/l" 1+ 037(1’3)] (123)
1,3 ¥
3.3. Contact Wave I=1-¢
The equations describing the jump conditions (96,97,98) adHere ¢/, := ci(p1) = Tpi/(p1h1), b1 = 1 +

mit the solution usind/s = vk = vy = A° = VeontactWhere  (p,I'/py (I' — 1)) andc! 5 := c,(ps) is given by Eq. (81)
vg anduy, are the values of the velocity of the fluid at the right

and at the left from the contact discontinuity. This represents r—1 Py
the contact wave traveling along the line- 2y = A\°¢. ci3lps) = | —————, K==, (124)
Then (96) is trivial and (97) reads ()T +1 P
(St — Sr)Vs +pL — pr = (SL — Sr) Vs, (121)  where we remind the reader that in the rarefaction region the

L B . - polytopic constant remains the same during the process, that
Whlwelzzlizﬁ?i;tﬁé Sggitlizfr; é??;;;;tgligéh of the pos_is, it is the same in regions 1, 2 and 3. On the other hand the
sible combinations of shock and rarefaction waves in a RieveIOCity of the gas in region 4 corresponds to the velocity on

mann problem. We then proceed in the same way as in th'%Je state at the left of a shock moving to the right (109)

Newtonian case studying each combination. heWevg + Wes (P4 — pe)
J
vy = , (125
3.4. The four different cases heWs + (pa — p6) (% + p(}vﬁ)

In what follows, as we did for the Newtonian case, we present
the four combinations of rarefaction and shock waves assocwhere W s = 1/,/1 — V2, is the Lorentz factor of the
ated to the relativistic Riemann problem. We illustrate eactshock, where we use the subindex 5 in order to denote the
case with a particular set of parameters contained in Table I8hock occurring in region 5. In order to obtaipin terms of

p4 We need to perform the following steps:

3.4.1. Case 1: Rarefaction-Shock o ]
e The rest mass density, is given in terms ofp, and

The contact wave conditions arg=v,=v* andps=p,=p*. other known information can be expressed using (119)
The velocity in region 3 is given by Eq. (88) that provides as
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1 —[pa(20 = 1) +pe] + V/[pa(20 — 1) + ps]? + 4Cs0[pi(0 — 1) + papg] (126)
P4 20[pi(c — 1) + paps] 7
1 o r
Co=—[ps(20 = 1) +pa] + = [ps(0 — 1) + paps], ~ Whereo = ——. (127)
Pe Pé r-1
e Oncep, is given in terms of itis possible to compute I
the enthalpy in region 4 ds, = 1 + o(pa/pa). &, = v1 — ¢s,1/1 — vics 1. The values of the physical
e Then Eq. (115) reads variables are known from the initial conditions:
. Pa— D Pexact= P1, (131)
.]2 = - (hj h?;) ’ (128)
pa Po Vexact = V1, (132)
wherehg = 1 + o(ps/ps). Something to remember Pexact= P1- (133)
here is the fact that as the shock moves to the right, we
consider; to be the positive square root. 2. Region 2 is defined by the conditiaty, < = — 2o <

t&, where according to (91, is the characteristic
value again, but this time evaluated at the tail of the rar-
efaction wave, that i§; = (v3 — cs,3)/(1 — v3cs3).

e Oncej is obtained, the shock velocity can be found
from expression (111) as

o PRW2ve + |j|\/m (129) In order to compute, we use (92)
= 2+ p2W2 ' 1 1
AUl Uy 1R ) =0 (134)
1— V1 1-— (%)

» Finally one calculate®’; s = 1/,/1 — V25 and in this

way v, in terms ofp, and the known state in region 6 considering Eqgs. (76), (94) and (35) as follows

using (125).
r—1)-1/2
According to the contact discontinuity condition N VI -1+ C;(L?) +2(I—1)
vg=v,=v*, we equate (122) and (125) and obtain a tran- Al = ei_o , (135)
scendental equation for: 5,(1,2)
* r r
(1+ o)A — (1= 0) AT (") =y =1+ 2 () ase
(1+v1) AT + (1 — v1) A (p*) prin P
+
hﬁWG'UG + WS (p* — p6) + Vo —5 . f‘i’ Cs,2
. =0, (130) G2 Tt T T i T (137)

heWs + (p* — pe) (% + pe%%)
where¢ = (z — x¢)/t. In this way, Eq. (134) is tran-

which has to be solved using a root finder. scendental and has to be solved equivalentlysfoor

Once this equation is solveg; and p, are automati- for ¢}, using a root finder for each point of region 2.
cally known andvgl and vy can be.calculated using (122) We recommend solving far!, and then construat,
and (125), respectively. It is possible to calculateusing using (137). Finally we calculate, using Eq. (82):
the fact that in the rarefaction zone the process is adiabatic
and therps = p1(p3/p1)*/". On the other hand we can also py = 1 Kb
calculatep, using (126). With this information it is already 2 = oL
possible to construct the solution in the whole domain. [KF <(c+12)2 - r%)}

Up to this point we account with the known initial states ’ (138)
(p1,v1, p1) and(ps, v, ps), the solution in regions 3 and 4 Finally we obtainp, using the fact that in the process
given by (ps, vs, p3) and(pa, va, pa), andV; 5 which repre- K is constant
sents the velocity of propagation of the shock 5. The exact r
solution region by region is described next. P2 =1 <P2> ) (139)

1. Region 1 is defined by the condition — z, <

t&,, where according to (90§, is the velocity of 3. Region 3 is defined by the conditidt, < = — zy <
the head of the rarefaction wave traveling to the left tVeontacs WhereVeontact = Ao = v3 = v4. The solution

there reads
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44
Pexact= P3, (140) \ "
Vexact = U3, (141) \ * \
[N \
Pexact = P3- (142) ° \\
4. Region 4 is defined by the conditidcontact < © — ‘ :

xo < tVs 5, WhereV s is given by (129) and explicitly = e
Pexact= P4, (143) . %
Vexact= Va4, 144) . . \
Pexact= Pa- (145) . / I
f’ : |

5. There is no region 5. Only the shock traveling with
speedV; 5.

6. Region 6 is defined byV; 5 < = — x¢. In this region
the solution is simply

x x

FIGURE 9. Exact solution for the Rarefaction-Shock case at time
t = 0.35 for the parameters in Table II.

andps = p, = p*. The velocity of the gas in region 3 cor-

Pexact= s, (146) responds to the velocity on the state at the right from a shock
Vexact = V6, (147)  moving to the left (110)
Pexact = P6- (148) hy Wiy + ij (p3 . p1)

(149)

U3

where W, = 1/,/1—V2, is the Lorentz factor of the
shock. In order to obtaingz in terms ofps and other known

This is pretty much the previous case, except that one has ioformation we need to perform the following steps:
be careful at using the correct signs and conditions. We then

As an example we show in Fig. 9 the primitive variables hiWi + (ps — p1) (@ +

att = 0.35 for the initial parameters in Table II.

p1Wi

3.4.2. Case 2: Shock-Rarefaction

start again with the contact wave conditions= v, = v*
|

e The rest mass density is given in termspgfusing the
expression (120) as

1 —[p3(20 — 1) + p1] + /[p3(20 — 1) + p1]2 + 4¢30[p3 (0 — 1) + p3p1] (150)
p3 20[p3(c — 1) + p3p1] 7
(3= i[pl(% —1)+ps] + p%[pf(ff —1)+psp],  whereo = pi T (151)

e Onceps is given in terms opy it is possible to compute
the enthalpy in region 3 ds; = 1+ o(p3/ps3)-

e Then from Eqg. (115) we obtain

I
e Finally one calculate®’; , = 1/,/1 — V2, and in this
way vs in terms ofps and the known state in region 1
using (149).

9 (p3 — p1)
‘7* hi_ﬂ’

(152) The velocity in region 4 is given by Eq. (89) that pro-

o . . vides the velocity on the state at the left from a rarefaction
whereh; = 1+ o(p1/p1). As the shock is moving ; I
. ) wave moving to the right:
to the left we consider the negative root of the above

expression foy. v, = A+ ve)Ag — (1 —vs) Ay (154)

4 — — >

e Oncej is obtained, the shock velocity can be found (14 v)Ag + (1= vs) A
from expression (112) in terms pf as where following (94)
2 2 ; 2 2
PlW1U1_|J|\/JTP _ —2(I'—1)~1/2
V2= J2 + p2WE = (153) _ VI-T+ Cs,(4,6) Y
Wi W= | . (155)
— L7 G (46)
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Here
6= cs(ps) = V/I'ps/(pehs),
pel’
he =1+ —260
‘ pe(I' = 1)
and

Cou i=Cs (pa)

is given by Eq. (81)

r—1
c;alps) = — K= (156)
TR T+ Pe

becausdy is the same in regions 4 and 6.

We obtain a transcendental equationgbdusing the con-
tact discontinuity condition; = v, = v*, and equate (149)

and (154):
(1+v6)A5 — (1 —ve)A; (p*)
(1+v6)Ag + (1 —ve)Aj (p*)
haWivy + We (p* —
Wior + 2= (p* — p1) ~0, (157)
hiWi + (p* — p1) (@ T ﬁ)

which has to be solved using a root finder.

Once this equation is solveghs and p, are automati-
cally known andvsz andv4 can be calculated using (149)

and (154), respectively. It is possible to calculateusing

the fact that in the rarefaction zone the process is adiabatic

and therp, = pg(ps/ps)'/T. We can also calculaie; using

(150). With this information it is already possible to construct

the solution in the whole domain.

Up to this point we have the known initial states
(p1,v1, p1) and (ps, v, ps), the solution in regions 3 and 4
given by (ps, vs, p3) and(p4, v4, p4), andV; o which repre-
sents the velocity of propagation of the shock 2. The exact

solution region by region is described next.

1. Region 1 is defined by the conditian— z < tV 2,

whereV; » is given by (153) and the solution there is

that of the initial state on the left chamber

Pexact= P1, (158)
Vexact = V1, (159)
Pexact= P1- (160)

2. There is no region 2. Only the shock traveling with

speedV s.

3. Region 3 is defined by the conditiol; » < z —xp <

tVeontact WhereVeontact= Ao = v3 = v4. The solution

is
Pexact = D3, (161)
Vexact = U3, (162)
Pexact= P3- (163)

. Region 4 is defined by the conditioiVcontact < «

—x9 < t&, where according to (91)¢ is
the characteristic value again, but this time eval-
uated at the tail of the rarefaction wave, that is
&=(va + ¢s5,4)/(1 4+ vacs 4). The solution in this re-
gion is

DPexact= P4, (164)
Vexact = V4, (165)
Pexact = P4- (166)

. Region 5 is defined by the conditia, < x — z¢ <

t&n, where according to (90), is the velocity of
the head of the rarefaction wave traveling to the right
&n = (vs + ¢s,6)/(1 + vscs,6). In order to computes

we use (93)

1+U6Agf 14"05
— U5

- A (vs) =0, (167)

whoch requires the information in (76), (94) and (95):

_ —2(r—1)"1%/2
e [\/r — 1+ 087(5}6)]

_ 168)
5,6 - o
>0 I=1-¢ 50
_ I'ps De r
=4 — he=14+Z2( — 169
Cor6 \ pohe’ ¥ * P6 (F - 1> (169)
I —C. =
— vs — & = s 7 Cus (170)

I Tl
where¢ = (z — x¢)/t. In this way, Eq. (167) is tran-
scendental and has to be solved equivalentlyvfoor
for c, 5 using a root finder for each point of region 5.
We recommend solving far; ; and then construats
using (170). Finally we calculaig; using Eq. (82):

1 D6

P5 = K:—F’

1 b
T—1 Pe
{KP ((c:.l5>2 a Fl—l)}
(171)
sinceK is the same inregions 5 and 6, and by the same

reason we obtaips; using

r
A (”“”) . (172)
P6

. Region 6 is defined by¢;, < x — x¢. In this region the

solution is simply

Pexact= P6 (173)
Vexact = V6, (174)
Pexact = P6- (175)
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— —] where according to (94)
° 0 “;“J Co(T_1y-1/2
o 2 / VI =1+4c¢, 46 ey
. ’ A(_4,6) = ﬁ ) (180)
L7 % 0
N g . and the speed of sound in region 4 is given by
/
/ ’ _ -1 D
o // Cs,4(p4) = 1 (p % , K= pilé (181)
> / w — 4
- / : T (BT o+ 6
/ Then using the contact discontinuity condition= v, =
o e e e e e v*, we equate (176) and (179) and obtain a transcendental
FIGURE 10. Exact solution for the Shock-Rarefaction case at time €duation forp*:
t = 0.35 for the parameters in Table II. N N
(A+v)Ay — (1 —v)AS(p7)
As an example we show in Fig. 10 the primitive variables (1+v1)AT + (1 —v) A5 (p)
att = 0.35 for the initial data in Table I1. _ .
(1+wve)Ag — (1 —ve)Ay (p*)
- —— =0, (182)
3.4.3. Case 3: Rarefaction-Rarefaction (1+vs)Ag + (1 —v) Ay (")

In this case the transcendental equation for the pressure at tH&Cch has to be solved using a root finder.

contact discontinuity is given again by the condition= v, Once this equation is solveps andp, are automatically
where both velocities are constructed using the informatiokNOWn andvs andv, can be calculated using (176) and (179),
of the unknown state aside rarefaction waves. The velocity ifieSpectively. As in the previous two cases, it is possible to
region 3 is given by Eq. (88) for the velocity on the state atcalculateps andp,4 using the fact that in the rarefaction zone

the right from a rarefaction wave moving to the left: the process is adiabatic and thgn = p1(ps/p1)*/" and
ps = pe(psa/ps)*/T. Thus we have the known initial states

(p1,v1, 1), (ps, ve, ps) and the solution in regions 3 and 4
given by (ps, vs, p3) and (py, v4, p4). The solution in each

of the fan regions aside the rarefaction zones has to be con-
where according to (94) structed in terms of the position and tirfie= (z — z¢)/t as

ta(r—1)-1/2 described below for regions 2 and 5.
VI —T1+¢l g
VE—1—cf g ' 1. Region one is defined by the condition- xy < &2,

At =
(1.,3) T—1
where according to (9Q),. is the velocity of the head
Here of the rarefaction wave traveling to the lefts =
C;r,l = cs(p1) = V/I'p1/(p1hy), (Ul._ ¢s1)/(1 —vics1). The yglyes of tlh.e physical
variables are known from the initial conditions:

(1+v)Af — (1 —wv)A7
(1 + Ul)AT + (1 — Ul)Ag_’

vs = (176)

- 177)
~ C5,(1,3)

pil
hi =14+ ————
P1 (F - 1) Pexact= P1, (183)
and N Vexact = V1, (184)
Cg3 = Cs(p3)
L Pexact= P1- (185)
is given by Eq. (81)
r—1 n 2. Region 2 is defined by the conditidgy,, < x — z¢ <
cf3(p3) = .o o K=-% (178) t&,2, where according to (919 is the characteristic
T (B) T+ P value again, but this time evaluated at the tail of the rar-
efaction wave, that i§;; = (v3 — ¢53)/(1 — v3¢s 3).
On the other hand the velocity of the gas in region 4 cor- In order to compute, we use (92)
responds to the velocity on the state at the left of a rarefaction
wave moving to the right (89 14w 1+w
9 ght (89) LAt - T2 A () = 0, (186)

11— 1— vy

(1 + UG)Ag - (1 - 'U6)AZ

(1+wve)Ag + (1 —vg)Ay’ (179)

Ve = where using (76), (94) and (95)
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— n +2(r=1)"1/2
. VI—-1+ Cs.(1,2) (187)
a.2) = r—1-c¢ ’
5,(1,2)
I'py p1 r

= h=1+=(=— 188

Cs,1 p1h17 1 + o1 r_1 ( )
vy — £+c,
chy= : 2= ¢ v = ——>2 (189)
— o€ 1+ 65725

where¢ = (z — x¢)/t. In this way, Eq. (186) is tran-
scendental and has to be solved equivalentlyvfoor
for c;jg using a root finder for each point of region 2.
We solve forc,, and construct, using (189). Finally
we calculatep, using Eq. (82):

1
P2 = 1
r—1
o (- )|
K= %. (190)
1

Finally we obtainps using

r
P2

P2 =pP1\ — .
P1

. Region 3 is defined by the conditiag,, < x — 2y <
t‘/contaci Where%OHtact: AO == 'Ug = 'U4. The SO|UtI0n
there reads

(191)

Pexact= P3, (2192)
Vexact = U3, (193)
Pexact = P3- (194)

. Region 4 is defined by the conditioWontact < © —

xo < t&5, Wwhere&s is the third characteristic value
calculated at the tail of rarefaction moving to the right,
and according to (905 = (v4 + ¢s5.4)/(1 + vacs 4).

In this region thus

Pexact= P4, (195)
Vexact = V4, (196)
Pexact= P4- (197)

. Region 5 is defined by the conditiat; < x — 2o <
t&hs, Wheredys = (vs + ¢s5,6)/(1 + vecs,6) according
to (90). In order to compute; we use (93)

1+U6

(v5) - 1

1+U5 _
7145

Ay =0 198
1—’05 — vg 6 ’ ( )

a

47

where according to (76), (94) and (95)

Co(P_1)-1/2
e VI —1+ C;(5,6) Ay (199)
G0 I'=1-¢ 56 ’
_ I'ps De r
=4 — he=1+Z2( — 200
6376 thG’ 6 +,06 (F—].)’ ( )
_ vs — & §—cy5
= _ = _ 50 201
S pw S A e (201)

$,5

where¢ = (x — xo)/t. Again (198) is a transcendental
equation either fows or for ¢ ;. Oncec, ; has been
calculated use (201) to construgt or directly solve
(198) forus. Itis possible to calculates using (82):

1
P5 = 1 K = p716*7
1 1 o Po
KL (.52 TI-1
(202)
and finally the pressure
0 r

= () . (203)

. Region 6 is defined by¢,5 < x — xg. In this region

the solution is simply

Pexact = P6, (204)
Vexact = V6, (205)
Pexact = P6- (206)

As an example we show in Fig. 11 the primitive variables
att = 0.25, for the initial parameters in Table II.

o0 ] 1 o 02 04
x x

FIGURE 11. Exact solution for the Rarefaction-Rarefaction case at
timet = 0.25 for the parameters in Table II.
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3.4.4.  Shock-Shock where W, , = 1/,/1—V2, is the Lorentz factor of the

We proceed as always, by establishing a relationship betweeisnhOCk moving to the left. In this particular case we dis-

the velocity in regions 3 and 4. We start by expressings mg_msh between the two values @f(;lependmg using the
. . . subindices 2 and 5. In order to obtaig in terms ofps we
the velocity of the gas on a region at the right from a shock

moving to the left, that is, according to (110) can proceed following these steps:

haWivy + V‘;.;,z (93 — p1) e The rest. mass density is given in termgegfusing the
= T Y (207) expression (120) as
haWi + (ps — p1) (¢+ )

U3

J2 p1W1

1 =psRo—1) +pi]+ VIps(20 —1) + p1]? +4Go[p3(o — 1) + pspi] (208)
p3 20[p3(o — 1) + p3pi] ’
(= ;i[pl(2a —1)+ps] + p%[ﬁ%(ﬂ —1) +pspi],  whereo = FE T (209)

e Onceps is given in terms ops it is possible to compute
enthalpy in region 3 a3 = 1 + o(ps/p3)-

in terms ofps and the known state in region 1 using

e Then from Eq. (115) we obtain (207).
2= (ps —p1) (210) Using the information of the shock moving to the right
2 hs _ ha’ we obtain the velocity at the left from the shock, thavis
p3 p1 .
. ] using (109)
where we choosé, to be the negative root since the
shock is moving to the left; herley = 1 + o (p1/p1). heWevs + V‘; (pa — pe)
. . . Vg = : s (212)
e Oncejs is obtained, the shock velocity can be found heWe + (pa — po) (W-35”6 + L )
from expression (112) in terms pf as 7 pette
_ pIWEvy — |jal\/53 + p? where W, s = 1/,/1 - V2, is the Lorentz factor of the

Vi2

(211)

32+ p2WR shock. In prder to obtain, in terms ofp, we need to perform
the following steps:

i — _ V2
o Finally we calculatdV » = 1/,/1 = Vi, and thusug e The rest mass density is given in termggfusing the

| expression (119) as

1 —[pa(20 —1) +ps] + /[pa(20 — 1) + pe]* + 4¢a0[pi (0 — 1) + pape]

1 . , (213)

P4 20[pi(c — 1) + paps]
1 oA T

G = —[pe(20 — 1) + ps] + —[p5(0c — 1) + paps], where o= ———. (214)
P6 P6 r-1

e Oncep, is given in terms op,, we are able to compute
enthalpy inregion4 as, =1 + . . -
PYInTes ! o(pa/p4) Vo OB + sl + o (216)

e Then Eq. (115) reads

2 _(p4 — Pe)
J5 = T Tha _ he (215) e Finally we calculatdV, 5 = 1/,/1 — 1/5%5 and in this

P4 P6 . . .
B . . . way we can obtaim, in terms ofp, with (212) and the
herehs = 1+0(ps/ps)- INnthis case, since the shock is known state in region 6.

moving to the right we choose thg to be the positive
root.

J2 + pEWE

According to the contact discontinuity condition =
e Oncejs is obtained, the shock velocity can be found v, = v*, we equate (207) and (212) and obtain a transcen-
from expression (111) dental equation fop*:
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Pexact = P3-

4. Region 4 is defined b§Veontact < = — 7o < tV; 5 and
the solution is

DPexact= P4,
Vexact = V4,
- ¢ Pexact = P4-

5. There is no region 5, only the shock wave traveling
with speedV 5.

o8 08 1 o 02 os
X X

FIGURE 12. Exact solution for a Shock-Shock case at titne 0.5 6. Finally region 6 is defined by the conditiorl 5 <

for the parameters in Table I1. x — . The exact solution is given by the initial values
at the chamber at the right:

hiWiv + %(p* — pl) DPexact= D6,
Wy =
Wi+ (o =) (Y22 4 o) Vexact = U6

heWeve + 2= (p* — pe) Pexact= Ps:

I =0, 217
heWs + (p* — pe) (M + #) (217) As an example we show in Fig. 12 the primitive variables
s pelVe att = 0.55, for the initial parameters in Table I1.

which has to be solved using a root finder.
Once this equation is solveghs and p, are automati- 4. Einal t
cally known, andvz andwv, can be calculated using (207) ™ Inal comments

an_d (21220){3 respdectzi\izly. Itis po_ssi:ale :/(\)/_cr?lchglaga?ndp4 . In this academic article we have described in detail the im-
using (208) and (213), respectively. With this information plementation of the exact solution of the 1D Riemann in

itis already possible to construct the solution in the Wh°|ethe newtonian and relativistic regimes, which according to

domain. . . I our experience is not presented in a straightforward enough
Up to this point we have the. kngwn mltlal states recipe in literature.
(p1,v1,p1) @nd (ps, vs, ps), the solution in regions 3 and The contents in this article can be used in various man-
4 given by (ps, vs, ps) and (pa, va, pa), together withVe» g specially to: i) test numerical solutions of the Newto-
andV; 5 which represent the velocities of propagation of therlian Riemann problem in basic courses of hydrodynamics,
shocks. i) test numerical implementations of codes solving hydro-
1. Region 1 is defined by the conditian— z < tV 2, dynamical relativistic equations, iii) understand the different
where the velocity of the shock is (211). The solution properties of the propagation of the different type of waves
there is that of the initial values of the variables on thedeveloping in a gas and the different conditions on the hydro-
left chamber: dynamical variables in each case.

It is also helpful because with our approach it is possible
to straightforwardly implement the exact solution, and this
Vexact = V1, will save some time to a student starting a career in astro-

physics involving hydrodynamical processes.

Pexact= P1,

Pexact= P1-

2. There is no region 2, only the shock wave traveling atAcknowledgments
speedV s.
) ) ) . This research is partly supported by grants: CIC-UMSNH-
3. Region 3 s defined by the conditioW. » <z — 20 < 49423 and CONACYT 106466. (J.P.C-P and F.D.L-C)
tVeontacy Where the velocity of the contact discontinu- 5cxnowledge support from the CONACYT scholarship pro-
ity is the characteristic valug’ = v evaluated in this gram.
regionVeontact= v3 = v4 = v*.
Pexact= P3,

Vexact = U3
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