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A handy exact solution for flow due to a stretching boundary with partial slip
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In this article we provide an exact solution to the nonlinear differential equation that describes the behaviour of a flow due to a stretching flat
boundary due to partial slip. For this, we take as a guide the search for an asymptotic solution of the aforementioned equation.
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1. Introduction

The flow due to a stretching boundary is important in many
engineering processes. For instance in the glass fibre draw-
ing, crystal growing, polymer industries [2], and extrusion
processes for the production of plastic sheets [2,3,8,9,10],
among many others. Unlike what happens with Newtonian
fluids (water, mercury, glycerine, etc.) which usually use
no slip boundary conditions, [7] (pages 353-355), there are
cases where partial slip between the fluid and the moving sur-
face may occur. Examples include emulsions, as mustard and
paints; solutions of solids in liquids finely pulverized, such as
the case of clay, and polymer solutions [4].

In these cases the boundary conditions are adequately de-
scribed by Navier’s condition, which states that the amount of
relative slip is proportional to local shear stress [4]. As afore-
mentioned, in this study we provide an exact solution to the
nonlinear differential equation that describes the behaviour of
a flow due to partial slip, and therefore a non Newtonian fluid
should be involved. Nevertheless for the sake of simplicity,
we will consider the adequate limit cases, in order to justify
the use of Newtonian equations for fluids.

For instance, the Newtonian approximation for Bingham
plastics (like the clay) amounts to consider fluids, in the limit
of small values of the so called, yield stress [1] (page. 233).
On the other hand, for the case of pseudo-plastic non New-
tonian fluids (generally, aqueous solutions of water solu-
ble polymers show this behaviour), their Newtonian limit
amounts to consider the limits for large values of shear rate
and apparent viscosity constant [1] (page. 233).

Although there are solutions to this problem [8,9,10], the
solving procedures are not easy to follow for undergradu-
ates in physics, mathematics and engineering. Therefore,
we propose a straightforward methodology, based on elemen-
tary differential and integral calculus, employing as a guide

the search for an asymptotic solution of the afore mentioned
problem. The systematic procedures used to determine qual-
itatively, the asymptotic behaviour for solutions of a differ-
ential equation, belong to the qualitative theory of nonlinear
differential equations [11] (page. 334). Unlike the above, this
study proposes an asymptotic analytical solution, which turns
out to be the exact solution of the problem.

2. Governing Equations

Consider a two dimensional stretching boundary (see Fig. 1).
Where the velocity of the boundary is approximately propor-
tional to the distanceX to the origin [6], so that

U = bX. (1)

Let (u, v) be the fluid velocities in the(X, Y ) directions,
respectively. In this case, the boundary conditions are ade-
quately described by Navier’s condition which states that the
amount of relative slip is proportional to local shear stress.

u(X, 0)− U = kν
∂u

∂Y
(X, 0), (2)

wherek is a proportional constant andν is the kinematic vis-
cosity of the bulk fluid.

The relevant equations for this case are Navier-Stokes

uuX + vuY +
pX

ρ
− ν(uXX + uY Y ) = 0, (3)

uvX + vvY +
pY

ρ
− ν(vXX + vY Y ) = 0, (4)

and continuity
uX + vY = 0, (5)

whereρ andp are density and pressure, respectively.
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FIGURE 1. Schematic showing a stretching boundary.

FIGURE 2. Source in front of a wall.

In order to satisfy the equation of incompressibility (5),
we will motivate a transformation, which contains implicitly
the functional form of the velocity field. We will see that
in this fashion, the motion equations are reduced to a single
ordinary nonlinear differential equation.

To this end, consider the case of a source of intensityQ
in front of a wall (axisX), as it is shown in Fig. 2 [1].

By symmetry arguments, it is expected that streamlines
pattern shown in Fig. 2 have, in general terms, a symmetry
similar to those in Fig. 1 asa increases.

From [1] it is possible to show that the value ofv compo-
nent, whena →∞, is

v(Y ) =
−Y Q

2πa2
,

noticing thatv < 0 and it is only a function ofY .
Using as a guide the above argument, we define a func-

tion y(x), such that

v ≈ −y(x), (6)

wherey(x) ≥ 0, 0 ≤ x < ∞ and

x = Y

√
b

ν
. (7)

From (5) and (6) we deduce that

uX = −vY ≈ yY (x) =

√
b

ν
y′(x),

that is

uX≈
√

b

ν
y′(x), (8)

where prime denotes differentiation with respect tox.
Sincey = y(x), after integrating (8), we obtain

u≈
√

b

ν
y′(x)X, (9)

(by choosing an arbitrary function ofx, zero).
In order to simplify the equations of motion, we introduce

the following constant of proportionality into (6)

v = −
√

bνy(x), (10)

and, therefore, (9) is rewritten as

u = by′(x)X. (11)

Thus, expressing velocity field according to (10), (11),
and (7); (5) is automatically satisfied. Next, we will show
that (3) adopts a simpler form under these assumptions.

By using (7), (10), and (11), (3) can be rewritten as

uby′(x) +

√
b

ν
bvXy′′(x)− px

ρ
− b2Xy′′′(x) = 0, (12)

where we have employed the chain rule from differential cal-
culus.

It should be noted thatpx = 0, since the fluid motion
is caused by the fluid being dragged along by the moving
boundary, therefore

uby′(x) +

√
b

ν
bvXy′′(x)− b2Xy′′′(x) = 0, (13)

substituting (10) and (11) into (13), we obtain

y′′′ − y′2 + yy′′ = 0. (14)

To deduce the boundary conditions of (14), we see that
v(Y = 0) = 0, (see Fig. 1); therefore, from (7) and (10), is
clear that

y(0) = 0, (15)

in the same way, from the conditionlim
Y→∞

u(X, Y ) = 0,

and (7) (see Fig. 1), we obtain the following boundary con-
dition

y′(∞) = 0. (16)

To conclude, by substituting (1) and (11) into the Navier’s
condition (2), we obtain

bXy′(0)− bX = kν
∂u

∂Y
(X, 0), (17)

by the chain rule we rewrite (17) as

bXy′(0)− bX = kν

(
∂u

∂x
(X, 0)

)(
dx

dY

)
, (18)
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after substituting (7) and (11) we get

y′(0) = 1 + Ky′′(0), (19)

where we have defined

K = k
√

bν. (20)

In the next section we will solve (14) with boundary con-
ditions (15), (16), and (18).

3. The Exact solution of a two dimensional
Viscous Flow Equation

In order to obtain an exact solution for (14) we take as a guide
the search for an asymptotic solution of the same equation.

Rewriting (14) in the form

y =
y′2 − y′′′

y′′
, (21)

and defining
y1 = y′, (22)

it is possible to express (21) as

y′′1 − y2
1 + yy′1 = 0, (23)

and the derivative of (21) as follows

y1 =
y′1(2y1y

′
1 − y′′′1 )− y′′1 (y2

1 − y′′1 )
y′21

. (24)

Equations (23) and (24) take the following limit forms
wheny1(∞) → 0 (boundary condition (16))

y′′1 + Ly′1 = 0, (25)

y′′21 − y′1y
′′′
1 = 0, (26)

(because the conditiony1(∞) → 0 implies thaty(∞) → L,
whereL is constant. Also from Fig. 1 and (10), it follows
thatv < 0 andL > 0).

Taking the square of (25) and substituting into (26), we
obtain

y′′′1 = L2y′1. (27)

In order to solve (27), we propose the following change
of variable

z = y′1, (28)

in such a way that (27) adopts the form

z′′ = L2z. (29)

Equation (29) has the known solution

z(x) = A exp(Lx) + B exp(−Lx), (30)

whereA andB are constants.

To avoid thatz → ∞, whenx → ∞ (from (16), (22),
and (28) is clear thatz → 0 for that limit), we chooseA = 0
so that (30) adopts the simpler form

z(x) = B exp(−Lx), (31)

also, from (28) and (31), we obtain

y′1 = B exp(−Lx), (32)

therefore, after integrating the above equation, we obtain

y1 = −B

L
exp(−Lx) + c1. (33)

The conditiony1(∞) = 0 (see (16) and (22)) leads to
c1 = 0, therefore

y1 = −B

L
exp(−Lx), (34)

after integrating (34), is obtained

y(x) =
B

L2
exp(−Lx) + c2. (35)

Sincey(0) = 0, thenc2 = −(B/L2), and (35) becomes

y(x) =
B

L2
(exp(−Lx)− 1). (36)

Finally, the conditiony(∞) → L is satisfied by choosing
B = −L3, so that

y(x) = L(1− exp(−Lx)). (37)

On the other hand, from (37), we deduce that

y′(0) = L2, (38)

and

y′′(0) = −L3. (39)

The substitution of (38) and (39) into (19) leads to a gen-
eral relation betweenK and the asymptotic form of the solu-
tion given byy = L

KL3 + L2 = 1. (40)

For the caseK = 0 [4,5], (40) and (37) adopt the form

L = 1, (41)

y(x) = 1− exp(−x), 0 ≤ x ≤ ∞, (42)

respectively.
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4. Discussion

The substitution of (37) into (14) reveals that (37) is, indeed,
an exact general solution not just an approximation; although
our process was aimed to find an asymptotic solution that
would satisfy boundary conditions (15), (16), and (19). As a
matter of fact, for the particular case of inviscid flowK = 0
((41) and (42)) was reported in [4,5] as a rare closed exact
solution for (14).

FIGURE 3. Functiony(x) for several values ofK.

FIGURE 4. Functiony′(x) for several values ofK.

FIGURE 5. Streamlines forK = 0.

It is noteworthy that (40) relates the asymptotic form of
the solutiony = L with the constantK, and the latter is re-
lated to the fluid viscosity (see (20)); so that, in principle, (40)
determines in advance the asymptotic value of the solution,
from the value of the viscosity. Similarly, (39) and (40) pro-
vide a general way to determine the value ofy′′(0) in terms
of K. These values are often difficult to calculate and in the
literature can be found tables that provide some values but
just for a few values ofK [4].

Figure 3 and Fig. 4 show functionsy(x) andy′(x) re-
spectively for various values ofK; these functions determine
the velocity field through (10) and (11). Figure 5 shows a
sketch for several streamlines whenK = 0.

5. Conclusion

An important task is to find analytic expressions that provide
a good description of the solution to the nonlinear differen-
tial equations like (14). For instance, the flow induced by a
stretching sheet is adequately described by (37) and (40). An
important result for practical applications it follows that (40)
relates the asymptotic form of the solutiony = L, with the
fluid viscosity, so that in principle (40) determines in advance
the asymptotic value of the solution from the value of the vis-
cosity.

This work showed, by means of a simple procedure, that
some nonlinear differential equations may be solved in exact
form taking as a guide the search for an asymptotic solution
of the same equation. Is clear that this procedure could be
useful, at least, to find approximate solutions for some equa-
tions.
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