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Variational approximation for wave propagation in continuum and discrete media
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We develop a variational approximation for wave propagation in continuum and discrete media based on the modulation of wave profiles
described by appropriate trial functions. We illustrate the method by considering an application to the theory of dislocation of materials.
We first consider the continuum approximation of the model and reproduce the exact traveling known solution. We then consider the fully
discrete non integrable model and obtain an approximate solution based on trial functions with functional form similar to the exact solution

of the continuum. The description of this discrete approximate solution is in terms of a discrete nonlinear dispersion relation between the
wave parameters. In this last situation we compare the numerical and variational solutions at the stationary case. We thus illustrate the usage
of a variational asymptotic approximation to study nonlinear problems and we contrast the differences and difficulties between continuum
and discrete problems.
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1. Introduction incident rays travel following the trajectory of shortest time,
and the brachistochrone or cycloid problem corresponding to
According to classical mechanics the description of physithe curve for the shortest descending time of a point mass.
cal variables, which describe a given physical problem, arerhese problems were initially studied by algebraic means and
well defined at each instant of time. Actually, the temporalprimitive (first) ideas of differential calculus. It was until the
evolution of a physical system is completely determined ifend of the XVIII century when Leonard Euler (1701-1783)
its state is known at a given initial time [1]. Mathematically gnd Joseph Louis Lagrange (1736-1813) set down the bases
this fact is expressed by a set of ordinary or partial differenof the modern calculus of variations that the optimization of

tial equations (equations of motion) subjected to certain provariable functions, called functionals, on an admissible set of
vided initial and/or boundary conditions. The classical idea issolutions was possible in a more systematic way.

to consider the physical variables involved and to formulate o _ :

temporal equations of motion to predict its temporal evoly- 1 "€ basic idea of variational calculus is that the func-
tion. tional (called the Lagrangian of the system) associated to the

A typical way to obtain classical mechanics systems is bfquat_ior) of motion, via the inverse problem of.the calculus
using Newton's laws. In particular, the second law of NeW_of variations, has an extreme value at the solution of the dy-

ton provides a second order ordinary differential equation fo,namlcal system. This extreme value is obtained when the so

the temporal evolution of position of a mass subjected to aﬁa"ed EuIer-Lag_ra_nge equation§ O.f the as;ogiated variati_onal
external force. A variety of examples in classical dynami_problem are satisfied [3,4]. Variational principles were first

cal systems in one independent variable (the position of th xplicitly used to study the propagation of water waves by

object) is given by mass-spring dynamical systems. In Cast uI:e ;n 1967 r[15]' The varlatlc(jjnlalt approx:Tac;tlon '3 ]Ehe con-
of several independent physical variables Newton’s laws pro—ex. ofwave pnenomena moduiates amplitude and frequency,
hich for the nonlinear case are related between each other

duce equations of motions described by partial differentia[g/ i di _ lati fth ’ )
equations, an example of this fact is given by the string’s y nonlinear dispersion refations, otthe propagating waves in

equation which corresponds to the wave, in general, nonlinQrder to extremize the corresponding Lagrangian of the sys-
ear equation. Numerical and asymptotic approximations ar em.
usually used to study the behavior of the solutions for the In this paper we develop the modulation theory of
equations of motion expressed, in general, by nonlinear difwhitham [6], which is based on the extremization of the
ferential equations. functional associated to the given equation of motion, for
A different approach to obtain the equation of motion continuum and discrete systems. This functional is given, via
for a physical system is by means of variational principlesthe inverse problem, by the averaging in the independent vari-
This method is based on the idea that the physical system hables of the physical problem of the Lagrangian for the equa-
to evolve through the trajectory of “minimal resistance” [2]. tions of motion of the system. The extremization in the mod-
Historical examples based on this minimal principle are theulation theory is in terms of a set of wave parameters generat-
problem of the minimal trajectory of a reflected ray in a dif- ing a family of solutions (admissible set of solutions), called
ferent medium, the Fermat'’s principle which establishes thatrial functions or anzats. Thus the Euler-Lagrange equations
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for the parameters generated by the proposed trial functiontherefore the Euler-Lagrange Eg. (1) is in general a second
will provide in general nonlinear coupled ordinary differen- order nonlinear ordinary differential equation fgtthus re-
tial equations whose solutions, joint with the proposed trialminding, in some sense, Newton’s second law of motion.
function, will correspond to the extreme (minimum) of the  The inverse problem of calculus of variation establishes
Lagrangian for the solution of the equations of motion [6]. that a physical system has a variational principle if there is a
That is, in the functional space generated by the trial funciagrangianL for the equations of motion such that the Euler-
tions we will variationally get the nearest asymptotic solutionLagrange equations for the action integral
to the “exact” one for the given equations of motion. This
variational approach has been employed in several works in B t
different contexts both in the continuum and discrete cases, L= / / Ldzdt,
see for example [7-11]. H R

We illustrate how the modulation theory works in contin-
uous and discrete problems by considering an application téalled the average Lagrangian, reproduce the equations of
the theory of dislocation of materials for the propagation ofmotion for the physical system [4]. For mechanical systems
fractures [12-14]. The equations of motion are based on & = 7 —V whereT" andV are the energy densities. We thus

double well potential given by thé* model [15]. can formulate a physical problem, expressed by equations of
motion, into a variational formulation by comparing and in-

tegrating the differential Eq. (2) with the given equations of
motion to get the appropriate Lagrangiarior the system.

h The inverse problem of calculus of variation for time de-
pendent continuum and discrete problems in one space di-
emension typically provides Lagrangians in the form:

2. Variational formulation

A functional is a rule that assigns a real number to eac
functiony («) on a well defined class of functions, called
admissible set of functions, which can be for example th
set of continuous functions in the intervl, b] or the set

of continuously differentiable functions ifu,b] satisfying L =Lt u,ua,ur), ©)
y(a) =y (b) = 0. o
In most of the applications the functionals are expresseé1 .
as L=1L (t, Up, Un—1, Un, un+1> ) (4)
b
J(y) = /L (z,y,y) dx respectively. Wherei, = (d/dt)u, andu = u(z,t),

u, = uy, (t) are assumed to satisfy the given continuum or

. . . discrete equations of motion.
with y € A. The integrandl. = L (x,y,y’) is called the d . . .
. . : - . We now consider the average Lagrangian for the contin-
Lagrangian of the equation of motion describing the applica- . . i
. . LT ; ; ; uum and discrete cases in the form:
tion, since it coincides with the Lagrangian of classical me-

a

chanics [2]. ta
Similar to calculus in real variables we require to find the = /dt / L (t,u, uy, uy) da, (5)
extreme values of the functional in order to optimize it. The

. t RCR
fundamental theorem that provides the extreme values states ! .

that if y is an extreme for the functional t

L= dt Z L (tau’ruunflaunaunJrl) s (6)
i n€RCZ

b

1) = [ L) s
2 whereR is the appropriate spatial region where the object un-
der study is allowed to move. We thus can come back to the

wherey (a) = y1, y (b) = y2 theny satisfies the ordinary corresponding equations of motion by considering the total

differential equation variationd L = 0 of the functionals (5) and (6)
d 0 0, _ ddL 9 0L 0L
oy~ oy =" @ A 0w | 0z0u Ou %
which is known as the Euler-Lagrange equation. It is re-and
marked that the Euler-Lagrange Eqg. (1) is obtained when d 0L oL
the total variation of the function equals zero, that.fs= 0, dt g, Oup =0. (®)
and is the variational analog of the condition in the derivative "
for critical points in differential calculus [3]. The chainrule  Inthe modulation theory of Whitham [6] we must assume
applied to the previous Eq. (1) gives that the equation (continuum or discrete) of motion posses
a family of solutions, called trial functions or anzats, de-
Lys+ Lyyy + Lyyy" — L, =0, (2) pending on a coherent vector of slowly varying parameters
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a=a(t)inthe formu = U (z — £ (¢), ¢, a) for the contin-  substitution ofu,, = U(n — £(t),t,a) in (11) and from the
uum andu,, = U (n — £ (t),t,a) for the discrete problem Poisson summation formula [20]

respectively, wherda/dt = a < 1. The modulation theory 0o

developed by Whitham reduces to the well known collective Z L (t, Un, Un—1, Un, un+1)

variables approach when the coupling between the coherent n=—oo

structure and its linear shedding radiation is neglected. This oo _

collective variables approach gives at first order the same re- = Z el (m, a,g, a) , (12)
sults as the modulation theory and it has been used widely by m=—oo

different authors in different applications (see the book of O. ~ .
M. Braun and Y. S. Kivshar [16]). However in some cases isVNereG is the Fourier transform of

important to considerer higherlorder approximations in order G=Gn— g(t),a,é,zi) = L(t, ttn, Un—1, Uiy Uy 1)

to get the appropriate interaction between the wave parame-

ters of the trial function. In most of the situations the linearin the variablez = n — £(¢). We must note that the last
radiation in the modulation theory provides a damping termexpression (12) has periodic terms far# 0 due to the fac-

in the equations for the wave parameters [17-19].
We thus substitute the trial functions

u=U(x—&(t),t,a)

and
Un :U(n_f(t)vtva)

tor e?™™¢ that comes from the shifted site — £(¢) in the
Poisson’s formula. These periodic terms correspond to an in-
ternal periodic potential generated for the lattice equations of
motion itself and are known as the Peierls-Nabarro (PN) po-
tential. We thus remark that this PN potential characterizes
lattice problems in contrast to the continuous ones. Also, in
the limit when the amplitude of the PN terms, called the PN

into the corresponding average Lagrangian (5) and (6) to obRotential barrier, go to zero we recover the limit of the con-

tain

ta [e'e)
Z:ﬂ/dt/ L(LU@mLa)J@(LLa)Jﬁ(mt@ﬂ)dr
tl -
ta

:/FO&Q&, 9)

ty

and

to 00
f:/dt Z L(t,un,un,l,un,unﬂ)
ty

n=-—00
ta
ty

respectively. The functional term

Z e2mImEQ (m,a,f,é) dt, (10)

m=—0oo

F (t,g,a) = 7L(t,U(x,t7a) U, (2,t,a)) dz

— 00

provides the spatial averaging of the Lagrangian the con-

tinuum media.
We now consider the higher modes of (12) to get, for the
average Lagrangian (12) to second order approximation in

the Poisson formula, a quadratic formégmanda:

L=A(@&E +B(af)éa

+C (a,€)a® + exp (2mi) G (a) (13)

where the coefficientsd (a,€), B(a,€) and C (a,§) are
those arising in the Poisson summation expansion of (12) to
second order. We thus obtain for the full discrete system a La-
grangian for a particle whose positigri¢) is moving in an
external periodic potentiatxp (27i&), created by the lattice
itself with internal degrees of freedom described by a vector
of parametera. We remark that in the continuum limit the
periodic termexp (27i¢) G (a) vanishes and a typical aver-
age Lagrangian, as the given by (9), is recovered.

In the modulation theory of Whitham after the averaging
of the Lagrangian we must take the total variatioh = 0
of the Lagrangians (9) and (10) to obtain ordinary differen-
tial equations for the parameters describing the trial function.
These ordinary differential equations correspond to the Euler-
Lagrange equations for the parametéranda in the trial
function.

tinuum. For discrete problems a typical Lagrangian takes the |, general however there will be linear radiation losses

form:
L=1 (t,un,un_l,umum_l) —T-V

1.2 1
- iu" D) (Ung1 — un)2 = V(un), (11)

where the term$1/2) (up4+1 — un)2 andV (u,) correspond

due to non integrability of the equations of motion or due
to non suitable trial functions. Figure 1 shows a typical
leading wave profile shedding linear radiation in a contin-
uum medium that comes from solving the Korteweg-de Vries
(KdV) equationu; + 6uu, + uge, = 0 for nonsoliton ini-

tial conditions [17]. The initial condition in this case evolves
to an exact coherent soliton solution in the completely inte-

to on-site and substrate interactions, respectively. Thus aftegrable KdV by shedding linear radiation.
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solutions in continuum and discrete media. In order to do this
with maneageble computations we consider the continuous
coherent tructure and discretes* model in the theory of dislocation materials

. and approximate traveling kink solutions. In the approxima-
tion we do not consider the linear shed radiation in order to
illustrate the computations and because in practice the linear
radiated waves represent small damping terms in the Euler-
Lagrange equations for the parameters in the trial functions.

RN

0.6

Ui

04t

a2t

1 3. Edge dislocation dynamics

radiation loss

Some mechanical properties of solids are modeled
by differential-difference equations. Pioneering works

-2 -20 -T0 0 10 20 1 by [12-14] on dislocations in metals established the well

* known Frenkel-Kontorova model as the governing equation.

FIGURE 1. Typical leading wave profile shedding linear radiation The Frenkel-Kontorova was the first model to explain in
in a continuum medium. simple terms the edge dislocation dynamics in a material at

o . ) atomic level. The main idea behind this model is to consider
The radiation losses should be included using conserveg semi-infinite plane of atoms inserted from one side to the

tion laws to balance the conserved quantities due to the imext due to a lateral force applied to a perfect rectangular
teraction between the solutions and the linear radiation diserystal lattice. After the systems relax to an equilibrium state
persed. We thus have to include the shed radiation to obtaig |ateral dislocation in the crystal lattice takes place. A layer
equations for the parameters in a closed form. of atoms perpendicular to the inserted plane due to the dislo-
The general idea to do this is to consider a conservedation divides the crystal into two different parts, see Fig. 2.
quantity by the Lagrangian, for example, the total energyrne atoms in the interface layer are subjected to an external
function E(u,u) and the average energ§(¢,a,£,a) we  substrate periodic potential, generated by the surrounding

then use the conservation law for the Lagrangian: atoms in the upper and lower layers of the crystal lattice, that
d d d is well approximated in the form:
9 (o) = e (wi) + 25 (ui). 4
g \W) = ggre (W) g (14) E,
¢s = (1 — COS (Oéoyn)) ;

whereF. is the energy of the leading wave or coherent struc- - 2d?
ture andE, is the energy taken by the dispersed radiation at,,

. ) . hereE,/2d? is the distance between the interface layer and
the tail of the leading wave (see Fig. 1 for example). We now o/ y

‘ > > ts the upper and lower layersy /7 is the transversal dis-
use thattr.(u,u) = E(¢, a,§, a) and the quantity tance between neighboring atoms apdenotes the relative
d _ displacement of theth atom with respect to its neighboring

F= %ET (u, u) , (15) atoms along the interface layer.

corresponding to the flux energy transferred between the co- PGS T

herent structure and the linear radiation. To close the equa- ™

tions we just need to compufé. For mechanical systenis

is given by a quadratic form (when a small radiation is as-

sumed) corresponding to an absorbed or dissipated potentia

at the boundary between the coherent structure and the radi

ation. To computé” we need to know the value of the radia-  interface ---

tion at the boundary and then to solve the equations of motion '2¥®"

for the shed waves. The boundary value is determined using

global balances of energy and a detail coupling between the

coherent structure and the radiation [21]. In principle it is al-

ways possible to develop the last analysis for the variational
approach. However it is a difficult matter to find appropriate
trial functions and to solve the linear equations for the radi-

ated terms because the leading profile should be coupled tc
the radiated wave in moving domains, see Fig. 1. y

In the following sections we illustrate how the modula- FiIGURE 2. Cross section at the molecular level of a 3D edge dislo-
tion theory approach works to approximate traveling wavecated material with a rectangular crystal structure.

= Periodic
ssubstrate
potential

Rev. Mex. Fis. B59(2013) 56-64



60 L. A. CISNEROS-AKE

Since the crystal lattice is rectangular in shape and due tarshere the primes have been removed for simplification. In
the external periodic potential produced by the neighboringhe limitd — oo and forC' = 1 we recover the well known
atoms, the dynamical equation for the atoms in the interfacé* continuum equation model
layer (which actually represents the fracture in the material) 3
obeys the Frenkel-Kontorova (FK) model: Ut = Ugg + U — U°. (19)

This last equation has exact traveling kink solutions. We

MY, =C (Yn—1—2Yn~+Yn+1) ——Odoéo sin (agyn), (16)  checkthis fact by considering = (z,t) = f (z — vt) f_;md
2 f — o = £1 when|z| = |z —vt| — co. We substitute
these conditions into Eq. (19) to obtain:

where the terny,,_1 — 2y,, + y,+1 IS obtained from the near-

est neighbor interaction in the rectangular crystal lattiae, _ d?f 1

denotes the same mass in all the atoms @nid the cou- = 422 02 —1 (f - f3> . (20)

pling factor (shown as springs in Fig. 2) between neighbor- We then separate variables to get:

ing atoms. The FK model supports kink solutions interacting

strongly with radiation losses [9,22]. 2= 1 <f2 _ 4) LA 21)
For relatively small displacements of the dislocation, v? —1 2

the external periodic potential, in the FK model is well The condition at infinity onf(z) gives A = 1/2(1—v2).

approximated by the double well bi-stablg potential: Again separation of variables produces:

¢ = —(A/2d*)y2 + (B/4d?)y: for appropriate fit pa-

rametersA and B in the form £, = —(A?/4B) and / dw K ds

oo = m+/B/A, see Fig. 3. In order to get a better under- /m = / NNk (22)

standing of the computations in the modulation theory, in- 0 20

stead of the periodic potential; in the FK model we con-

. A Integration of last expression gives the traveling kink so-
sider the double well potential given by thé model: g P g g

lution .
x — vt — xg
. 1 u (x,t) = o tanh () , (23)
my,,=C (Yn—1—2Yn+Yn+1) +$ (Ayn_Byfz) . (17 \/i\/ 1 —v?

whereo = +1 is the kink polarity and) < v < 1 the kink

We now consider the change of variablgs = y,,/B/A, velocity.

t' = t/A/m andC’ = C/A to obtain the non dimensional We reproduce in the next section the exact k.mk.SOIU'
system: tion (23) by means of the modulational approximation in the

continuum model (19).
. 1
Un =C(Un-1 = 2Yn + Yns1) + 5 (n—wvy), (18) 3.1. Modulation theory for the continuum model

We may see that the equation of motion (19) is obtained from
the Lagrangian

(oo}
_ 1 1 1 2
e 1 L= —up — zui— = (v -1 : 24
/ |:2ut 2“1, 4 ( ) d‘T? ( )
06k N %
w4 p . when the Euler-Lagrange equation
02| 1 d OL 0 0L oL
-+ — ——=0 25
< ol i dt Ouy + Ox Ou, Ou ’ (25)
=l 7] is satisfied.
'” " We now reproduce the exact kink solution found in the
A ] last section by using the modulation theory explained above.
5| ] To this end we consider the family of trial functions
EEaR i _ t
" u (z,t) = o tanh r=¢) , (26)
] 1 1 1 1 1 1 1 w (t)
-4 3 -2 1 ] 1 2 3 4 . . .
¥ generated by free variable parameters in posifiét) and

) . ) width w (t). The idea is to modulate the variation of these
FIGURE 3. External substrate interaction potentials. Dashed dot . .
curve: Periodic potentiab, — (Eo/2d?) (1 — cos (aoy)). Con- free parameters to recover the exact kink solution (23). We
tinuum curve: Double Wé|b4 potential ¢, —(A)2d%)y? + substitute (26) into the average Lagrangian (24) to obtain:

(B/4d*)y*. ForA = B = d = 1, By = —(A?/4B) and - 25, m®=6, 2 w )
ao =/ (B/A). L—3TU§ BT w T30 3 (27)
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We then take variations in the free parameters and find We finally explain in the next section the modulation the-

their Euler-Lagrange equations: ory for the discrete case and observe the new behavior of the
: modulational solution due to the PN potential. It is to be
5€ 4d & _ 0, (28)  remarked that the full discrete problem is not completely in-

3dtw tegrable so that no exact solution is available. This is actually

. ; another advantage of using the modulation theory.
5w:f(ﬂ276)w+gﬁz g g y
w

26 6 2. [ i
L 772 w? 2 +3w=0, (29) 3.2.  Modulation theory for the discrete model
w

where the symbof indicates variation. We may notice that The discrete lattice system (17) can be variationally obtained
Eq. (29) is a nonlinear second order ODEuinWe actually ~ from the average Lagrangian
have a stable critical point ifw at:

— 1, 1
-2 L= 5 Z_f(yn _yn—l)2_7

(va-1)", (32)

for fixed velocity¢ since the linearization of (29) im shows  when the Euler-Lagrange equations

a center for it. It can be shown numerically [15] that for initial

conditions close to (23) the equation of motion (19) radiates d oL 9oL _ 0 (33)
linear waves to adjust the initial condition to the exact travel- dt oy, oyn

ing kink. This fact is reflected in Eq. (29) as an exponential

damping term inw [22]. Thus the temporal evolution far  are satisfied.

is actually a spiral towards the critical point (30). Inthisway  Similar to the previous continuous case we develop our
the exact traveling kink solution is recovered at the criticalmodulation theory by considering as trial function the one

point of the modulation Egs. (28) and (29). suggested by the exact kink solution from the continuum
The Eq. (28) is now integrated twice to find model, that is
= vt + x9, 31
- ‘ ’ ey Yn (t) = o tanh <n€(t)> . (34)
wherev = £ (0) andzy = £ (0) are the initial velocity and o w (t)
position of the kink, respectively. Equations (30), (31) and
the anzats (26) recover the exact solution (23). We then substitute (34) into the average Lagrangian (32)

| to obtain:

L—W<§2;Ud2> > secﬁ(nw >+;Z]4 > (nﬁ)QseCﬁ(nw )

@ oo n— 5 0o n— f l
+ 25 n;m (n — &) secht (w > + n;oo sech (w > — 2coth <w> : (35)
We may notice that the leading term contribution of
> (n—¢) sech <H> :
n=—oo w

corresponding to its integral, is zero. We thus neglecfﬁb&erm. We now use the Poisson summation formula to find the
second order approximation of the infinite series in the average Lagrangian

. 2 .
I (€ 35 ) h @O+ 0.0 + fa (0,0, (36)
where
g n—¢\ 2 4 (1+7%w?)
f1 (w’ ) = ﬁ n;w SeCﬁ <w> ~ @ -+ SS'T(TI'ZU})COS (2’/T£), (37)
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2 _ 1 Y n—§&\ m—6
2 (w,§) = 5 n;m (n —€)° secht — )~
n?cos (2m€) | 3 (7% = 2+ 7n'w?) + (72 4 6 + m'w?) cosh (27%w) (38)
6sinh® (72w) -2 (1 + 37%w) sinh (27%w) ’
F? (w,€) = i sech ("=5) —2coth [ ) ~ 2w
’ n=-—oo w w
1 42 w?
— 2coth <w) + s (77w) cos (27€) . (39)
We take variations of the discrete kink's parameters and write down their Euler-Lagrange equations
9 — 1 2, W\ 2fu L — w2 f2 — 3 40
ff——ﬁ 5"‘@ fe +28wfy, —w fE — [, (40)
. 1 w : w? . :
Owsio =gy s = (€ g ) A4 26us + st - g2 (@1)

where the subindex indicates partial derivative with respect

to that variable of the indicated function. We notice that sim-

ilar to the continuum case the extreme of the average La-

grange (32) is reached at the critical point of (41) given by
w2

W ez W\ s _
d2 f ( 2d2> fu) fw O
We thus simplify the last expression using (37)-(39) to

(42)

obtain at first order in the Poisson summation formula the '+

discrete nonlinear dispersion relation

2 2
v (—1 +6g2 — — 04

o .
2d? w? sinh? (i)

) . (43)

For largew last expression recovers the dispersion rela-

tion of the continuum model

1.5 T T

L L
2 0.5 1

W

1.5

FIGURE 4. Continuum curve: Dispersion relation (43) for the dis-
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FIGURE 5. Comparison in the core region between the modulation

theory and the numerical solution in the stationary sfatev = 0

at¢ =0ford =0.9andC = A = B = 1. a) Numerical differ-
ence between the numerical and modulation solutions, b) graphs of
the numerical and modulation solutions..

e=1- (44)

2d?°

Figure 4 shows the comparison between the discrete dis-
persion relation (43) and the continuous one (44).

We finally consider the modulation approximation ob-
tained from the kink profile (34) and wave parameters ac-
cording to the nonlinear discrete dispersion relation (43) and
compare it with the exact kink solution in the discrete case
obtained by numerical means. To this end we consider the

crete case. Dashed curve: Dispersion relation (44) for the continustationary stat¢ = v = 0 at§ = 0 for the discrete sys-

ous case. In both casds= 0.9.

tem (18) in the form:
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0=C(yn—1—2Yn + Ynt1) for the wave parameters. We now solve (45) numerically by
using Newton’s method as follows:

1 )
=+ 22 (Ayn - Byi) = f(Yn—1,YnYns1,---) . (45)

We proceed in this way since in our modulation analysis

we neglected the PN effects and considered the steady state
| whereY"” = (...,yk_,,yk yk . ..) isthekth iterate and

Yk+1 _ Yk o A;lf (Yk> , (46)

Ae=Jf (V) |lyyr=| . . C —2C+d%(A—3B(yg)2) c . .|, (47)

is the jacobian of the functiofi at thekth iterate.

We then consider (34) as an initial iterate for Newton’slexplains the qualitative effects of the discreteness. Thus the
method (46) to obtain the full numerical solution at the steadymodulation theory gives a quasi-analytical description of the
state. Figure 5a) shows the difference in the core region besolution which presents a remarkable comparison with the
tween the numerical solutiogl"™ obtained from Newton’s full numerical solution of the problem at the steady state ob-
method and the modulation solutigff°® obtained from the tained from Newton's method.

trial function (34) and the dispersion relation (43)lat 0.9. The variational ideas presented in this work can be used
Figure 5b) corresponds to the profilgd™ andy™d. We ob-  in other continuum or discrete nonintegrable problems where
serve a remarkable comparison. there is no exact solution. For instance, the Galilean problem

We thus have shown how the variational approximationof a hanging chain which has a cosine hyperbolic solution in
produces solutions to nonintegrable discrete models. The dishe continuum. In the discrete version of this problem a simi-
creteg* model as presented here is not reported in the literakar phenomenon in the solution as the one described here can
ture and illustrates how to proceed in discrete media. be found.

We finally remark that this work can be helpful to people
interested in approximate solutions to nonlinear problems in
discrete and continuum media. This work is also developed to
We developed the modulation theory in continuum and disintroduce to students to more advanced papers that use varia-
crete systems. In the case of tiemodel, for edge disloca- tional approaches to get approximate solutions.
tions in materials, its discrete version is not integrable and no
analytical solution is available. We reproduced the exact kinkcknowledgments
solution of the continuum model and showed in the discrete
case that the variational approximation provides an extrem&he author thanks the financial support from COFAA-IPN,
solution for a kink profile similar to the exact solution of the IPN-CGPI-20130803 and Conacyt project 177246. Thanks
continuum counterpart. The nonlinear dispersion relation obare also expressed to the anonymous referees for their useful
tained for the discrete case is not reported in the literature ancbomments, which substantially improved this work, and to

professor Tim Minzoni for helpful discussions.
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