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We study the issues of average forces and the Ehrenfest theorem for a particle restricted to a semi-infinite interval by an impenetrable wall.
We consider and discuss two specific cases: (i) a free particle in an infinite step potential, and (ii) a free particle on a half-line. In each
situation, we show that the mean values of the position, momentum and force, as functions of time, verify the Ehrenfest theorem (the state
of the particle being a general wave packet that is a continuous superposition of the energy eigenstates for the Hamiltonian). However, the
involved force is not the same in each case. In fact, we have the usual external classical force in the first case and a type of nonlocal boundary
quantum force in the second case. In spite of these different forces, the corresponding mean values of these quantities give the same results.
Accordingly, the Ehrenfest equations in the two situations are equivalent. We believe that a careful and clear consideration of how the two
cases differ but, in the end, agree, is pertinent, and has not been included in the literature.
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1. Introduction

The problem of a Schrödinger particle of massM moving
in a one-dimensional step potential of finite height (or a po-
tential barrier) is one of the simplest problems in quantum
mechanics. In fact, this problem can be found in almost any
quantum mechanics textbook [1-3]. Let us assume that the
barrier is located atx = 0 and that the potential is defined
by V (x < 0) = 0 andV (x > 0) = V0. If the energy of
the particle is such thatε < V0, the particle penetrates some
distance into the barrier. If we want to restrict the move-
ment of the particle precisely to the semi-spacex ≤ 0 (the
half-line), we have two specific methods to achieve that re-
striction. The first method is to take the limit ofV0 → ∞
in the finite step potential. In this case, the (free) particle
lives on the entire real line, which is then forever restricted
to the half-line. We call this case “a particle-in-an-infinite-
step-potential”. The second method is to consider from the
beginning that the (free) particle has always lived on the half-
line. In this case, an external potential is not necessary to
restrict the particle; only boundary conditions are necessary.
We call this case “a particle-on-a-half-line”, and we only use
the Dirichlet boundary condition (u(x = 0) = 0) in this pa-
per.

The problem of a particle restricted to move on a semi-
infinite interval (either because there exists an infinite poten-
tial or because we put the particle on the half-line and neglect
the rest of the line) has been variously studied [4-16]. The
purpose of this paper is to examine and relate the two spe-
cific methods (mentioned above) to achieve the restriction of
the movement of a particle to a semi-infinite region (i.e., to a
half-line). We include in the discussion the issues of average
forces, and the time evolution of the mean values of the po-

sition and momentum operators (i.e., the Ehrenfest theorem).
Recently, we did a study similar to that in the present article
but for the system of a particle confined to a closed interval
(i.e., to a box) [17]. Because, in the present case, the relevant
spatial integration range for some matrix elements goes from
−∞ to 0, one could expect some complications in the evalu-
ation of these quantities. We also address this issue herein.

The outline of the paper is as follows. In Sec. 2, we
present some basic results for the problem of a particle in a
finite step potential. In Sec. 3, we examine the limiting pro-
cedure that permits us to obtain the mean value of the exter-
nal classical force (̂F = −dV (x)/dx) for the problem of the
particle-in-an-infinite-step-potential from the problem of the
particle in a finite step potential (the state of the particle be-
ing a stationary state). Then, we obtain an expression for the
mean value of̂F for the particle-in-an-infinite-step-potential
(the state of the particle being a complex general state). In
this section, we also calculate explicit general expressions for
the mean values of the position (X̂) and momentum (̂P ) op-
erators. We conveniently avoid the problems associated with
the integration range over the interval(−∞, 0] by consider-
ing certain generalized limits. Then, we confirm the Ehren-
fest theorem for a particle-in-an-infinite-step-potential (i.e.,
d〈X̂〉/dt = 〈P̂ 〉/M andd〈P̂ 〉/dt = 〈F̂ 〉). In Sec. 4, we
present the formal time derivatives of the mean values of the
position (̂x) and momentum operators (p̂) for a particle-on-a-
half-line. By using the Dirichlet boundary condition atx = 0
while also supposing that the wave function tends to zero at
x = −∞, we find the following results:d〈x̂〉/dt = 〈p̂〉/M
andd〈p̂〉/dt = b.t.+〈f̂〉, whereb.t. denotes a boundary term
andf̂ = −dϕ(x)/dx is the external classical force upon the
particle-on-a-half-line. Moreover, that boundary term can be
written as the mean value of a (nonlocal) quantity that we call
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the boundary quantum force,fB . Incidentally, by supposing
that the first spatial derivative of the wave function tends to
zero atx = −∞, theb.t. is simply equal to a certain quan-
tity evaluated atx = 0. By using the latter condition and
considering a wave packet that is a continuous superposition
of the energy eigenfunctions of the Hamiltonian describing a
particle-on-a-half-line, withϕ(x) = 0 (⇒ f̂ = 0), we obtain
the meaningful result that theb.t. is equal to the mean value
of the external classical force operator for a particle-in-an-
infinite-step-potential;i.e., we find thatd〈p̂〉/dt is equal to
〈F̂ 〉. Hence, the Ehrenfest theorem for a particle-on-a-half-
line is completed with the formulad〈p̂〉/dt = 〈fB〉. Note
that, throughout this paper, we use capital letters to denote the
operators in the particle-in-an-infinite-step-potential problem
and lowercase letters in the particle-on-a-half-line-problem.
Finally, some concluding remarks are given in Sec. 5.

2. Particle in a finite step potential

Let us first consider the following (external) finite step poten-
tial of heightV0:

V (x) = V0Θ(x) (−∞ < x < +∞), (1)

whereΘ(y) is the Heaviside step function (Θ(y < 0) = 0
andΘ(y > 0) = 1). Because the derivative ofΘ(y) is the
Dirac delta function (δ(y)), the external classical force upon
the particle (̂F = F (x) = −dV (x)/dx) can be written as
follows:

F (x) = −V0δ(x) (−∞ < x < +∞). (2)

The eigensolutions of the (eigenvalue) Schrödinger equa-
tion Ĥφk(x) = εkφk(x) for positive energies0 < εk < V0

can be written as follows:

φk(x) = Θ(−x)
[
exp(ikx) +

ik + αk

ik − αk
exp(−ikx)

]

+Θ(x)
2ik

ik − αk
exp(−αkx) (−∞ < x < +∞), (3)

wherek ≡ √
2Mεk/~ andαk ≡

√
2M(V0 − εk)/~ are real-

valued and positive quantities. The Hamiltonian operator

Ĥ = T̂ +V (x) =
1

2M
P̂ 2+V (x) = − ~2

2M

∂2

∂x2
+V (x) (4)

(whereT̂ is the kinetic energy operator and̂P = −i~∂/∂x
is the momentum operator) describes a particle living on the
whole real line,R. As usual, one assumes that this (self-
adjoint) operator (for a finiteV0) acts on continuously dif-
ferentiable functions belonging (as do their second deriva-
tives) to the well-known spaceL2(R) [18]. Thus, any eigen-
function of Ĥ, φk(x), and its derivative,φ′k(x), must be
continuous atx = 0. Therefore, atx = 0, we write
φk(0−)=φk(0+)≡φk(0) and φ′k(0−)=φ′k(0+) ≡ φ′k(0)

(whereφk(x±) ≡ lim
ε→0

φk(x ± ε), with ε > 0). Likewise,

the probability current density

jk(x) =
~
M

Im
[
φ̄k(x)

d

dx
φk(x)

]
(5)

(where the horizontal bar represents complex conjuga-
tion) verifies jk(0−) = jk(0+) ≡ jk(0). In addi-
tion, the probability density,%k(x) = |φk(x)|2, verifies
%k(0−)=%k(0+)≡%k(0). Note that,jk(x > 0) = 0; there-
fore, jk(0) = 0. However, the probability density does not
vanish atx = 0 (although the probability density in the region
x > 0 decreases rapidly asx increases). Thus, the potential
barrier of a finite height (atx = 0) is not strictly an impen-
etrable barrier [19,20]. In fact, the finite barrier atx = 0
represents a very simple type of point interaction. This type
of interaction can be modelled through boundary conditions
only (without any singular potential atx = 0); i.e., the cor-
responding (self-adjoint) Hamiltonian operator has the form
given in (4) (withx ∈ R− {0}), whereV in this case is just
the (bounded) finite step potential. This operator has in its
domain a general boundary condition that depends on four
(real) parameters [21]. Moreover, for each function belong-
ing to this domain, we obtain that the probability current den-
sity is continuous atx = 0.

As is well known, the standard formula to calculate the
mean value of an operator̂A in the normalized stateχ is
given by 〈Â〉χ = 〈χ, Âχ〉. By using the latter formula to
calculate the mean value of the force operatorF̂ (Eq. (2)) in
the stationary stateφk(x), the result is the following:

〈F̂ 〉φk
= 〈φk, F̂ φk〉

=

+∞∫

−∞
dxF (x) |φk(x)|2 = −V0%k(0). (6)

Obviously, φk(x) is not a normalized state (because of
its behaviour atx = −∞); i.e., φk(x) is not a square-
integrable function. In addition,φk(x) is not even normal-
izable; thus, it makes no sense to divide the right hand side
of (6) by 〈φk, φk〉 ∝ δ(0). Thus, we write the formula
〈F̂ 〉φk

= 〈φk, F̂ φk〉 (which gives us a finite result) as a mat-
ter of convenience only. Nevertheless, as we will see in the
next section, this choice has no impact on the results that we
obtain.

3. Particle-in-an-infinite-step-potential

The eigensolutions of the Hamiltonian operator (Eq. (4)) in
the potential

V (x) = lim
V0→∞

V0Θ(x) (−∞ < x < +∞), (7)

are obtained from Eq. (3). Clearly, ifV0 → ∞, all of the
eigenfunctions verify the resultφk(x) → 0 ≡ ψk(x) for
x ≥ 0 because

αk ≈
√

2MV0

~
→∞,
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and also

2ik

ik − αk
≈ 2i

√
εk

i
√

εk −
√

V0

≈ −2i

√
εk

V0
→ 0.

The latter result leads us to write the following:

φk(0+) (≡ φk(0)) ≈ −2i

√
εk

V0
⇒

ρk(0+)(≡ ρk(0)) = |φk(0)|2 ≈ 4εk

V0
. (8)

Likewise, to obtainφk(x) in the regionx < 0 (i.e., ψk(x)),
we need to use the following result:

ik + αk

ik − αk
≈ i

√
εk +

√
V0

i
√

εk −
√

V0

→ −1.

(Throughout this article, we use the approximation sign “≈”
in any expression in whichV0 À εk). Thus, the eigensolu-
tions of the Hamiltonian̂H with the potential given in Eq. (7)
have the form

ψk(x) = Θ(−x) [exp(ikx)− exp(−ikx)]

= Θ(−x)2i sin(kx) (−∞ < x < +∞), (9)

for the energiesεk → Ek = ~2k2/2M ∈ (0,∞) (Note:
we prefer to use the symbolEk in the case of the infi-
nite step potential). We have chosenk ∈ (0,∞) so that
exp(ikx) in (9) represents a plane wave moving to the right
and− exp(−ikx) represents a plane wave moving to the left
(i.e., the incident wave is all reflected, but the reflected wave
at x = 0 is shifted in phase from the incident atx = 0 by a
factor of−1). Note also thatψk(x) satisfies the “extended”
Dirichlet boundary conditionψk(x ≥ 0) = 0.

The corresponding mean value〈F̂ 〉ψk
= 〈ψk, F̂ψk〉 is

truly independent ofV0 (which is valid whenV0 tends to in-
finity). In effect, one obtains

〈F̂ 〉ψk
= lim

V0→∞
〈F̂ 〉φk

= lim
V0→∞

−V0ρk(0) = −4Ek (10)

(in which we used the results given in Eqs. (6) and (8),
with εk → Ek). More precisely, we should write
〈F̂ 〉ψk

= −4Ek |A(k)|2, whereA(k) is a complex-valued
function of the “momenta”k, which multiplies the right-hand
side of the solutionsφk(x) (Eq. (3)) and alsoψk(x) (Eq. (9)).
So, we may say that the average force upon the particle (in
a stationary state) when the particle hits the infinite wall at
x = 0 is proportional to−4Ek |A(k)|2. Incidentally, the spe-
cific result that〈F̂ 〉 in a stationary state is independent of the
heightV0 of one of the walls of a finite square well (when
V0 →∞), was obtained in Ref. 22.

Let us write an (assumed normalized) complex general
wave packetΨ = Ψ(x, t) of the following form:

Ψ(x, t) =

∞∫

0

dk√
2π

A(k) ψk(x)

× exp
(
−i

Ek

~
t

)
(−∞ < x < +∞), (11)

whereψk(x) is given by Eq. (9). By substituting Eq. (9)
into (11), we can also write the following:

Ψ(x, t)=Θ(−x)

∞∫

0

dk√
2π

A(k) uk(x) exp
(
−i

Ek

~
t

)
, (12)

where the functionsuk(x) are given by

uk(x) = 2i sin(kx). (13)

In the regionx ∈ (−∞, 0], uk(x) obviously coincides with
ψk(x) (Eq. (9)). The Hamiltonian for a free particle living
on the half-line is simplŷh ≡ T̂ (see Eq. (4)) and acts (es-
sentially) on the functionsu(x) ∈ L2((−∞, 0]) such that
(ĥu)(x) is also inL2((−∞, 0]) while obeying the Dirich-
let boundary condition,u(0) = 0. The eigenfunctions tôh
are precisely the functionsuk(x), and its eigenvalues are the
same as those of̂H.

The mean value of the force operator at timet in the state
given by Eq. (11),〈F̂ 〉Ψ = 〈Ψ, F̂Ψ〉, takes the form:

〈F̂ 〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (F̂ )(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (14)

where the matrix elements of̂F , (F̂ )(k, k′) = 〈ψk, F̂ψk′〉
= lim

V0→∞
〈φk, F̂ φk′〉, are given by the following (see Eq. (2)):

(F̂ )(k, k′) = lim
V0→∞

−V0φ̄k(0)φk′(0). (15)

Substituting the result of the left-hand side in (8) into Eq. (15)
(with εk;k′ → Ek;k′ ), we obtain the following noteworthy re-
sult:

(F̂ )(k, k′) = lim
V0→∞

−V0 2i

√
Ek

V0

× (−2i)
√

Ek′

V0
= −4

√
EkEk′ . (16)

Thus, by substituting Eq. (16) into (14), we can write a gen-
eral expression for the average value of the operatorF̂ when
V0 →∞:

〈F̂ 〉Ψ = −4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′ exp
[
i
(Ek − Ek′)

~
t

]
. (17)

Now let us check that the mean values of the position
(X̂ = x) and momentum (̂P = −i~∂/∂x) operators at time
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t for the general stateΨ verify the Ehrenfest theorem. The
expectation value of the position operator is the expression

〈X̂〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (X̂)(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (18)

where the matrix elements of̂X,

(X̂)(k, k′) = 〈ψk, X̂ψk′〉 =

+∞∫

−∞
dx ψ̄k(x) xψk′(x),

i.e.,

(X̂)(k, k′) =

0∫

−∞
dx ūk(x) xuk′(x),

are given by the following improper integral (in the ordinary
sense):

(X̂)(k, k′) = −4

∞∫

0

dxx sin(kx) sin(k′x). (19)

This (nonconvergent) integral can also be written in terms of
the Fourier cosine transform

Fc(k) ≡ Fc[f(x)] =

∞∫

0

dx f(x) cos(kx)

(k > 0) [23]:

(X̂)(k, k′) = −2 [Fc(k − k′)− Fc(k + k′)] , (20)

wheref(x) = x. (The latter function is not absolutely inte-
grable over[0,∞); thus, it follows that(X̂)(k, k′) is a diver-
gent quantity). However, if(X̂)(k, k′) is considered to be a
distribution, we obtain

(X̂)(k, k′) = lim
N→∞

−4

N∫

0

dxx sin(kx) sin(k′x)

=
8kk′

(k2 − k′2)2
, (21)

where we have used the following generalized limits:

lim
N→∞

cos [(k ± k′)N ] = 0,

and also
lim

N→∞
sin [(k ± k′)N ] = 0.

These two results are a consequence of the so-called
Riemann-Lebesgue Lemma,i.e.,

b∫

a

dx f(x)
{

cos(Nx)
sin(Nx)

}
= 0,

for N → ∞ (wheref(x) should be an absolutely integrable
function over the interval(a, b)) [24]. Clearly, becauseN is
very large,f(x) does not change significantly whilecos(Nx)
or sin(Nx) are producing cancelling areas [25]. Thus, the re-
sult (21) must be interpreted as

∞∫

0

∞∫

0

dk dk′
( )

(X̂)(k, k′)

=

∞∫

0

∞∫

0

dk dk′
( ) 8kk′

(k2 − k′2)2
, (22)

where we might have a function ofk and/ork′ inside the
parentheses. From Eqs. (18) and (22), we can write a general
expression for the average value of the operatorX̂:

〈X̂〉Ψ =
4~2

M

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′

(Ek − Ek′)
2 exp

[
i
(Ek − Ek′)

~
t

]
, (23)

where we also usedk =
√

2MEk/~, andk′ =
√

2MEk′/~.
Likewise, the mean value of the momentum operator is as
follows:

〈P̂ 〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (P̂ )(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (24)

where the matrix elements of̂P ,

(P̂ )(k, k′) = 〈ψk, P̂ψk′〉 = −i~
+∞∫

−∞
dx ψ̄k(x) ψ′k′(x),

i.e.,

(P̂ )(k, k′) =

0∫

−∞
dx ūk(x)u′k′(x),

are given by the following improper integral (in the ordinary
sense):

(P̂ )(k, k′) = i~ 4k′
∞∫

0

dx sin(kx) cos(k′x). (25)
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By also considering(P̂ )(k, k′) as a distribution, we obtain

(P̂ )(k, k′) = lim
N→∞

i~ 4k′
N∫

0

dx sin(kx) cos(k′x)

= i~
4kk′

k2 − k′2
. (26)

This result must be interpreted as

∞∫

0

∞∫

0

dk dk′
( )

(P̂ )(k, k′)

= i~
∞∫

0

∞∫

0

dk dk′
( ) 4kk′

k2 − k′2
. (27)

Now, from Eqs. (24) and (26), we can write a general expres-
sion for the average value of the operatorP̂ :

〈P̂ 〉Ψ = i~ 4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′

Ek − Ek′
exp

[
i
(Ek − Ek′)

~
t

]
. (28)

Note that the operatorŝX and P̂ act on functions that are
square-integrable onR and (generally) different from zero
only in the semi-spacex < 0.

Clearly, expressions (23) and (28) verify the expected re-
sult:

d

dt
〈X̂〉Ψ =

1
M
〈P̂ 〉Ψ. (29)

Likewise, from Eqs. (17) and (28), another desired result is
obtained:

d

dt
〈P̂ 〉Ψ = 〈F̂ 〉Ψ. (30)

In this manner, the Ehrenfest theorem for a particle-in-an-
infinite-step-potential has been explicitly confirmed for the
general stateΨ given by Eq. (11).

4. Particle-on-a-half-line

In this section, we begin by presenting the formal time deriva-
tives of the mean values of the position (x̂ = x) and momen-
tum (p̂ = −i~∂/∂x) operators for a particle-on-a-half-line
(x ∈ (−∞, 0] ≡ Ω). The formal computation of these deriva-
tives for a particle living in the entire real line lead us to the
standard Ehrenfest theorem (provided that the state and its
derivative tend to zero at infinity) [26]. For a particle moving
in a closed interval (i.e., in a box), a strictly formal study of
the quantitiesd〈x̂〉/dt andd〈p̂〉/dt as well their correspond-
ing boundary terms has been recently made [27].

Let ô be a time-independent operator (such asx̂ or p̂).
The time derivative of this operator’s mean value〈ô〉u =
〈u, ôu〉 in the normalized stateu = u(x, t) ∈ L2(Ω),

which evolves in time according to the Schrödinger equation
∂u/∂t = −iĥu/~ (the Hamiltonian operator is

ĥ = − ~2

2M

∂2

∂x2
+ ϕ(x), (31)

andϕ(x) is the external potential insideΩ), can be calculated
as follows:

d

dt
〈ô〉u =

〈
∂u

∂t
, ôu

〉
+

〈
u, ô

∂u

∂t

〉

=
i

~
〈ĥu, ôu〉 − i

~
〈u, ôĥu〉

=
i

~

(
〈ĥu, ôu〉 − 〈u, ĥôu〉

)
+

i

~
〈u, [ĥ, ô]u〉, (32)

where[ĥ, ô] = ĥô − ôĥ, as usual. In the case whereô = x̂,
the following results are obtained

〈ĥu, x̂u〉 − 〈u, ĥx̂u〉

= − ~2

2M

[
x

(
u

∂ū

∂x
− ū

∂u

∂x

)
− ūu

]∣∣∣∣
0

−∞
, (33)

and
〈u, [ĥ, x̂]u〉 = − i~

M
〈p̂〉u. (34)

For the (free) particle-on-a-half-line, we takeϕ(x) = 0.
Moreover, we impose the Dirichlet boundary condition,
u(0, t) = 0; however, we also expect thatu(−∞, t) tends
strongly to zero. These boundary conditions imply that the
boundary term in (33) is zero. Note that, with the Dirichlet
boundary condition atx = 0 (and, as usual, ignoring the ex-
act behaviour of the functions in question atx = −∞, i.e.,
by assuming that these are essentially normalized functions
in Ω), the operatorŝp and ĥ (in addition to x̂) are Hermi-
tian. Moreover,̂h is also self-adjoint; in fact, there exists a
one-parameter family of self-adjoint Hamiltonians (see, for
example, the pedagogical Refs. 7 and 28). However, the mo-
mentum operator is not self-adjoint and has no self-adjoint
extension [7]. After substituting Eqs. (33) and (34) into
Eq. (32) (withô = x̂), we obtain the expected result:

d

dt
〈x̂〉u =

1
M
〈p̂〉u. (35)

Likewise, in the case wherêo = p̂, the following results are
obtained:

〈ĥu, p̂u〉 − 〈u, ĥp̂u〉

= i~
~2

2m

(
∂u

∂x

∂ū

∂x
− ū

∂2u

∂x2

)∣∣∣∣
0

−∞
, (36)

and

〈u, [ĥ, p̂]u〉 = i~
〈

dϕ

dx

〉

u

= −i~〈f̂〉u. (37)

wheref̂ = −dϕ(x)/dx is the external classical force upon
the particle on the half-line. By substituting Eqs. (36)
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and (37) into Eq. (32) (witĥo = p̂) and after impos-
ing ϕ(x) = 0 (⇒ f̂ = 0) and the boundary conditions
u(0, t) = 0 andu(−∞, t) = 0, we obtain the following re-
sult:

d

dt
〈p̂〉u = − ~2

2M

∣∣∣∣
∂u

∂x

∣∣∣∣
2
∣∣∣∣∣

0

−∞
. (38)

If the wave function u = u(x, t) tends to zero for
x → −∞, at least as| x |− 1

2−ε with ε > 0 (and therefore
u ∈ L2(Ω)), then its derivative∂u(x, t)/∂x also tends to
zero there. Hence, relation (38) reduces to

d

dt
〈p̂〉u = − ~2

2M

∣∣∣∣
∂u

∂x

∣∣∣∣
2
∣∣∣∣∣
(x=0)

(39)

This specific result has been previously noted [15, 29]. No-
tice that the right-hand side of Eq. (38) can be written as the
mean value of the (nonlocal) quantum force

fB = fB(x, t) ≡ − ~2

2M

1
|u|2

∂

∂x

∣∣∣∣
∂u

∂x

∣∣∣∣
2

. (40)

Because

〈fB〉u =
∫

Ω

dx fB(x, t) |u(x, t)|2

is always equal to a certain quantity evaluated at one end (say,
x = 0) minus the same quantity evaluated at the other end
(x = −∞), fB can be considered a boundary quantum force.
Thus, in this case, the Ehrenfest theorem consists of Eq. (35)
and the following expression:

d

dt
〈p̂〉u = 〈fB〉u. (41)

Note that, for a particle-in-an-infinite-step-potential (i.e.,
u → Ψ, (x = 0) → (x = +∞)), the boundary term
in (36) is zero (i.e., 〈fB〉Ψ = 0). In fact, in the open in-
tervalΩ = (−∞,+∞), Ψ and its derivative∂Ψ/∂x tend to
zero forx → ±∞.

Let us write the wave packetu = u(x, t) in the following
form:

u(x, t) =

∞∫

0

dk√
2π

A(k)uk(x) exp
(
−i

Ek

~
t

)

(−∞ < x ≤ 0), (42)

where the eigenfunctionsuk(x) are given in Eq. (13).
Clearly, the general stateΨ(x, t) given in Eq. (11) can be
written as follows (see Eq. (12)):Ψ(x, t) = u(x, t)Θ(−x).
Hence, the mean values,〈X̂〉Ψ and〈P̂ 〉Ψ, are equal to〈x̂〉u

and〈p̂〉u, respectively. Thus, Eqs. (29) and (35) are equiv-
alent. Now, by substituting the wave packetu(x, t) into the
right-hand-side of Eq. (39), we obtain:

〈fB〉u = −4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′ exp
[
i
(Ek − Ek′)

~
t

]
. (43)

This result is precisely the mean value〈F̂ 〉Ψ for a particle-in-
an-infinite-step-potential (see Eq. (17)). This is an important
result of our paper. Consequently, Eqs. (30) and (41) are also
equivalent. Final note: we very recently learned of Ref. 30 in
which it was proved that the right-hand side of formula (39)
is equal to the mean value of the external classical force for
a particle-in-an-infinite-step-potential (F̂ = −dV (x)/dx).
However, in that reference, this specific result was directly
obtained by multiplying the Schrödinger equation forΨ by
∂Ψ̄/∂x, adding the respective complex conjugate relation,
and integrating each term of the resulting expression over a
small interval(−ε,+ε), ε → 0 [30].

5. Conclusions

We have studied the Ehrenfest theorem and the issue of aver-
age forces for a particle ultimately restricted to a semi-infinite
interval by an impenetrable wall in one dimension (inside the
latter region, our particle is a free particle after all). We have
noticed two ways to achieve that restriction. One of these
leads us to the particle-in-an-infinite-step-potential, and we
inevitably have the Dirichlet boundary condition (in our pa-
per, atx = 0). The other method leads us to the particle-
on-a-half-line, and the Dirichlet boundary condition is just
one more condition. In fact, there exists a one-parameter
family of boundary conditions for the (self-adjoint) Hamilto-
nian for a particle-on-a-half-line. In each situation, we have
shown that the mean values of the position, momentum and
force, as functions of time, verify an Ehrenfest theorem that
makes sense (the state of the particle being in each case a gen-
eral wave packet that is a continuous superposition of energy
eigenstates for the respective Hamiltonian). However, the in-
volved force is not the same in each case. In fact, we have
the usual external classical force in the first case and a type of
nonlocal boundary quantum force in the second case. In spite
of these differences, the corresponding mean values of these
quantities give the same results. Accordingly, the Ehrenfest
equations in the two situations are equivalent, and the inter-
nal consistency of the formalism of quantum mechanics is
assured. We hope that our article will be of genuine interest
to all those who are interested in the fundamental aspects of
quantum mechanics.
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