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We study the issues of average forces and the Ehrenfest theorem for a particle restricted to a semi-infinite interval by an impenetrable wall.
We consider and discuss two specific cases: (i) a free particle in an infinite step potential, and (ii) a free particle on a half-line. In each
situation, we show that the mean values of the position, momentum and force, as functions of time, verify the Ehrenfest theorem (the state
of the particle being a general wave packet that is a continuous superposition of the energy eigenstates for the Hamiltonian). However, the
involved force is not the same in each case. In fact, we have the usual external classical force in the first case and a type of nonlocal boundary
quantum force in the second case. In spite of these different forces, the corresponding mean values of these quantities give the same results.
Accordingly, the Ehrenfest equations in the two situations are equivalent. We believe that a careful and clear consideration of how the two
cases differ but, in the end, agree, is pertinent, and has not been included in the literature.
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1. Introduction sition and momentum operatois(, the Ehrenfest theorem).
Recently, we did a study similar to that in the present article

The problem of a Schdinger particle of mas8/ moving but for the system of a particle confined to a closed interval
in a one-dimensional step potential of finite height (or a po_(|.e., to a box) [17]. Because, in the present case, the relevant

tential barrier) is one of the simplest problems in quantumSpatial integration range for some matrix elements goes from

mechanics. In fact, this problem can be found in almost any~>° 0 0, one could expect some complications in the evalu-

quantum mechanics textbook [1-3]. Let us assume that th@tion of these quantities. We also address this issue herein.
barrier is located at = 0 and that the potential is defined The outline of the paper is as follows. In Sec. 2, we

by V(z < 0) = 0andV(z > 0) = Vo. Ifthe energy of  hresent some basic results for the problem of a particle in a

the particle is such that < Vo, the particle penetrates some finjte step potential. In Sec. 3, we examine the limiting pro-

distance into the barrier. If we want to restrict the move-ceqyre that permits us to obtain the mean value of the exter-

ment of the particle precisely to the semi-space: 0 (the g classical force{l = —dV (z)/dx) for the problem of the

half-line), we have two specific methods to achieve that rép g ticle-in-an-infinite-step-potential from the problem of the

striction. The first method is to take the limit 8 — oo particle in a finite step potential (the state of the particle be-

in the finite step potential. In this case, the (free) particlejyg 5 stationary state). Then, we obtain an expression for the

lives on the entire real line, which is then forever restrictedyean value of for the particle-in-an-infinite-step-potential

to the half-l_lne. We call this case “a partlcle-ln_-an-lnflmte- (the state of the particle being a complex general state). In

step-potential”. The second method is to consider from thenis section, we also calculate explicit general expressions for

peginning Fhat the (free) particle has aI_vvays lived on the halfine mean values of the positioA ] and momentum#®) op-

line. In this case, an external potential is not necessary t@rators. We conveniently avoid the problems associated with

restrict the particle; only boundary conditions are necessarype integration range over the intenfatoo, 0] by consider-

We call this case “a particle-on-a-half-line”, and we only usejng certain generalized limits. Then, we confirm the Ehren-

the Dirichlet boundary conditiony(z = 0) = 0) in this pa-  fest theorem for a particle-in-an-infinite-step-potentia. {

per. d(X)/dt = (P)/M andd(P)/dt = (F)). In Sec. 4, we
The problem of a particle restricted to move on a semipresent the formal time derivatives of the mean values of the

infinite interval (either because there exists an infinite potenposition ) and momentum operatorg)(for a particle-on-a-

tial or because we put the particle on the half-line and negledtalf-line. By using the Dirichlet boundary conditionzat= 0

the rest of the line) has been variously studied [4-16]. Thewhile also supposing that the wave function tends to zero at

purpose of this paper is to examine and relate the two spe: = —oo, we find the following resultsd(z)/dt = (p)/M

cific methods (mentioned above) to achieve the restriction oéndd(p) /dt = b.t.+(f), whereb.t. denotes a boundary term

the movement of a particle to a semi-infinite region.(toa andf = —dy(x)/dz is the external classical force upon the

half-line). We include in the discussion the issues of averaggarticle-on-a-half-line. Moreover, that boundary term can be

forces, and the time evolution of the mean values of the powritten as the mean value of a (honlocal) quantity that we call
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the boundary quantum forcé¢g. Incidentally, by supposing (where¢y(x+) = lim ¢ (x + €), with ¢ > 0). Likewise,
that the first spatial derivative of the wave function tends tothe probability currec;nqc density

zero atx = —oo, theb.t. is simply equal to a certain quan- A B d

tity evaluated atc = 0. By using the latter condition and Jr(x) = —Im [qbk(x)@g(x)} (5)
considering a wave packet that is a continuous superposition M dx

of the energy eigenfunctions of the Hamiltonian describing dwhere the horizontal bar represents complex conjuga-
particle-on-a-half-line, witho(z) = 0 (= f = 0), we obtain  tion) verifies j,(0—) = jx(0+) = jx(0). _In addi-
the meaningful result that tHet. is equal to the mean value tion, the probability densityg,(z) = |¢x(z)[*, verifies
of the external classical force operator for a particle-in-an<x(0—)=0k(0+)=0x(0). Note that,jx(z > 0) = 0; there-
infinite-step-potentialj.e., we find thatd(p)/dt is equal to ~ fore, jx(0) = 0. However, the probability density does not
(F). Hence, the Ehrenfest theorem for a particle-on-a-halfvanish atz = 0 (although the probability density in the region
line is completed with the formuld(p)/dt = (fg). Note =z > 0 decreases rapidly asincreases). Thus, the potential
that, throughout this paper, we use capital letters to denote tHearrier of a finite height (at = 0) is not strictly an impen-
operators in the particle-in-an-infinite-step-potential problenmgtrable barrier [19,20]. In fact, the finite barrierat= 0

and lowercase letters in the particle-on-a-half-line-problemrepresents a very simple type of point interaction. This type
Finally, some concluding remarks are given in Sec. 5. of interaction can be modelled through boundary conditions

only (without any singular potential at = 0); i.e., the cor-

responding (self-adjoint) Hamiltonian operator has the form
2. Particle in a finite step potential given in (4) (withz € R — {0}), whereV in this case is just

the (bounded) finite step potential. This operator has in its
Letus fiI’St Consider the fO||0Wing (eXtema|) f|n|te Step poten'domain a genera' boundary Condition that depends on four

tial of heightVy: (real) parameters [21]. Moreover, for each function belong-
ing to this domain, we obtain that the probability current den-
V(z) =VO(z) (—o00 <z < +o0), (1) sityis continuous at = 0.

As is well known, the standard formula to calculate the
mean value of an operatot in the normalized statg is
given by (4), = (x, Ax). By using the latter formula to
calculate the mean value of the force operdtdiEq. (2)) in
the stationary stateé (x), the result is the following:

where©(y) is the Heaviside step functio®(y < 0) = 0
and©(y > 0) = 1). Because the derivative ¢¥(y) is the
Dirac delta function{(y)), the external classical force upon
the particle ¢ = F(z) = —dV(z)/dz) can be written as

follows: . .
<F>¢k = <¢k7F¢k>
F(z) = —Vod(x) (—o0 <z < +00). 2 +o0
2
The eigensolutions of the (eigenvalue) Sifinger equa- - / da F(z) [fr(2)]” = —Voer(0). (6)
tion Hgbk(x) = exor(x) for positive energied < ¢ < Vp -
can be written as follows: Obviously, ¢r(z) is not a normalized state (because of
_ its behaviour atr = —o0); i.e, ¢x(x) is not a square-
o(z) = O(—2) |exp(ikz) + 7k -k exp(—ika) integrable function. In addition,(z) is not even normal-
-k izable; thus, it makes no sense to divide the right hand side
2ik of (6) by (¢, ¢r) o 6(0). Thus, we write the formula
+O(2) 72— o exp(—agz) (—oo <@ <+00), () (f), = (¢, Fey) (which gives us a finite result) as a mat-

ter of convenience only. Nevertheless, as we will see in the
wherek = /2Me;, /handay, = /2M (Vy — ) /harereal-  next section, this choice has no impact on the results that we
valued and positive quantities. The Hamiltonian operator ~ obtain.
h? o2

P24V(z) = ———+V(z) (4 3. Particle-in-an-infinite-step-potential

v - L
2M Ox2

H=T+V(z)= oYi
(where" is the Kinetic energy operator aritl — ihd)on ;I;}Zepitgeenr;isa?lunons of the Hamiltonian operator (Eq. (4)) in
is the momentum operator) describes a particle living on the

whole real line,R. As usual, one assumes that this (self- V(z)= lim VoO(z) (-o0o<z<+o0), (7)
adjoint) operator (for a finitd{)) acts on continuously dif- o
ferentiable functions belonging (as do their second deriva
tives) to the well-known spacé?(R) [18]. Thus, any eigen-
function of i, ¢, (z), and its derivativep, (), must be
continuous atr = 0. Therefore, atz = 0, we write
6k(0-)=¢x(0+)=¢x(0) and ¢},(0-)=¢},(0+) = }(0)

are obtained from Eq. (3). Clearly, f, — oo, all of the
eigenfunctions verify the result,(x) — 0 = () for
x > 0 because

~

ap ~

V2MVy
no
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and also whereyy(x) is given by Eq. (9). By substituting Eq. (9)
2%k 2i\/Ex into (11), we can also write the following:
. ~ -0
R N \/70 \/
The latter result leads us to write the followmg. U(z,t)=0(—1) / ﬂ A(K) ug () exp <—ib;:t> . (12)
27
0
1 (0+) (= ¢x(0)) ~ —2i V =
0 . .
A where the functions (z) are given by
€k
0+ pE ey 8
Pr(0H)(E £1(0)) = 64 0) Vo ®) ug(z) = 21 sin(kx). (13)
Likewise, to obtainy (x) in the regionz < 0 (i.e., ¥x(x)),
we need to use the following result: In the regionz € (—oc, 0], uk(z) obviously coincides with
, Yir(z) (E. (9)). The Hamiltonian for a free particle living
Z,k ton VetV 1. on the half-line is simplyx = 7' (see Eq. (4)) and acts (es-
th—ar Qe - \/70 sentially) on the functions(z) € £2?((—o0,0]) such that

(Throughout this article, we use the approximation sigri *  (hu)(z) is also in£2((—c0,0]) while obeying the Dirich-
in any expression in which > ;). Thus, the eigensolu- let boundary conditionu(0) = 0. The eigenfunctions ta
tions of the Hamiltoniarf! with the potential given in Eq. (7) are precisely the functions; (), and its eigenvalues are the
have the form same as those df .

Up(x) = O(—2) [expl(ike) — exp(—ika)] The mean value of the force operator at titnie the state

given by Eq. (11){F)y = (U, F'D), takes the form:
= O(—x)2i sin(kx) (—oco0 <z < +00), (9)

for the energies, — E, = h?k?/2M € (0,00) (Note: (Fyy = //dkdk’ A(k)AK) (B (k, k)
0 0

we prefer to use the symbdl in the case of the infi- 27
nite step potential). We have choséne (0,00) so that
exp(ikz) in (9) represents a plane wave moving to the right « [ (Ey — Ey) }
) . exp |[i——t|, (14)

and— exp(—ikx) represents a plane wave moving to the left h
(i.e., the incident wave is all reflected, but the reflected wave
atx = 0 is shifted in phase from the incidentat= 0 by a  where the matrix elements &f, (F)(k,k') = (¢y, Fvp)
factor of —1). Note also thaty (z) satisfies the “extended” = lim (¢, F'¢) ), are given by the following (see Eq. (2)):
Dirichlet boundary condition;,(z > 0) = 0. ) Vooo

The corresponding mean valyé’,, = (g, Fiy) is ~ . -
truly independent of/, (which is vglid%\l/}vhenvf) tends t(>) in- (F)(k, k) = Vflllinoo ~Voor(0)gr (0)- (15)
finity). In effect, one obtains
. ) . ) Substituting the result of the left-hand side in (8) into Eqg. (15)
(F)g, = V(1)1LI100<F>¢k = Vglinoo —Vopr(0) = —4E;,  (10) (With £4.4r — Ej.1/), we obtain the following noteworthy re-

(in which we used the results given in Eqgs. (6) and (8),sult:

with ¢, — Ex). More precisely, we should write . B,

(F)y, = —4Ey |A(k)|?, where A(k) is a complex-valued (BY(k, k') = lim —Vp2i A

function of the “momentak, which multiplies the right-hand Voo 0

side of the solutiongy () (Eq. (3)) and als@, (z) (Eq. (9)). N [ Er

So, we may say that the average force upon the particle (in x (=20) Vo 4V BB (16)

a stationary state) when the partlcle hits the infinite wall at

x = 0 is proportional to-4£}, |A(k)|*. Incidentally, the spe-  Thus, by substituting Eq. (16) into (14), we can write a gen-
cific result that{ ) in a stationary state is independent of the eral expression for the average value of the opet&tahen
height 1}, of one of the walls of a finite square well (when Vo — oc!

Vo — o0), was obtained in Ref. 22.

Let us write an (assumed normalized) complex general . 7 Oodk dk’ ,
wave packetl = ¥(x,t) of the following form: F = _4// o A(K)
I 0 0
\I’(I,t) \/% ( )d)k( ) X A /EkEk’ exp |:Z(E‘khE‘k/)t:| . (17)
X exp <_2Ekt) (—00 < & < +00), (11) ~ Now let us check that the mean values of the position
h (X = z) and momentum = —i%d/dx) operators at time

Rev. Mex. Fis. B59(2013) 84-90
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t for the general stat& verify the Ehrenfest theorem. The for N — oo (wheref(x) should be an absolutely integrable
expectation value of the position operator is the expression function over the intervala, b)) [24]. Clearly, becausé’ is
very large,f (x) does not change significantly whites(Nx)

dk dk/ o / orsin(Nz) are producing cancelling areas [25]. Thus, the re-
A(K') (X) (k. K) :
sult (21) must be interpreted as
X exp [zwt} , (18) s
h / / dk dk’ X)(k, k)
where the matrix elements &, 00
+20 7 Skk’
o o - = dk dk’ 22
() (ks K) = (0, Kepo) = / dar () g (), // gy
0 0
e, where we might have a function &f and/ork’ inside the
0 parentheses. From Egs. (18) and (22), we can write a general
(X)(k, k') = / dx ag(x) v up (x), expression for the average value of the operator
are given by the following improper integral (in the ordinary P 4h2 dk dk’ —
sense): - / / A(k)A(K')
Y N — ] 1 ! E E ’ E — E ’
(X)(k, k") = 4/dmx sin(kx) sin(k'z).  (19) o VR ~ exp [z( k . k )t} 7 (23)
0 (B — Ey)
This (nonconvergent) integral can also be written in terms of
the Fourier cosine transform where we also used = 2M Ey /h, andk’ = /2M Ey. /h.
oo Likewise, the mean value of the momentum operator is as
Fk) = Folf(0)) = [ do f(a) cos(ho) follows:
oo 00 ,
(k > 0) [23]: (P)g = // d";dk AR)AK) (P)(k, )
~ s
(X)(k, k) = =2[Fe(k — ') — Fo(k+ £1)], (20) 00
where f(z) = z. (The latter function ig not absolutely inte- X exp {Z(E’C_Ek)t} ’ (24)
grable overl0, co); thus, it follows that X)) (k, &’) is a diver- h
gent quantity). However, ifX)(k, k') is considered to be a
distribution, we obtain where the matrix elements &f,
N
(X)(k, k') = lim —4 / dz z sin(kz) sin(k'z) ) ) e
Ve (PYkok) = (v, Pins) = =it [ dodu(a) v (o),
/ — 00
_ B 21)
(k2 — k2) .
where we have used the following generalized limits:
lim cos[(k + k')N] = 0, ) /
N5 (P)(k, k) = / d ()l (),
and also e

lim sin[(k+ k' )N]=0.
N—o00

These two results are a consequence of the so-calledf€ given by the following improper integral (in the ordinary

Riemann-Lebesgue Lemmiz., sense):
b (Na)
cos(Nzx s
/dmf(x) { sin(Nx) } =0, (P)(k, k') = ih4k’/dw sin(kz) cos(k'z). (25)

0
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By also consideringP)(k, k') as a distribution, we obtain  which evolves in time according to the Sétinger equation

N du/dt = —ihu/h (the Hamiltonian operator is

(P)(k,k') = lim ih4k’/dw sin(kz) cos(k'z) P G 1
o AkK andy(z) is the external potential inside), can be calculated
=il (26)  asfollows:
This result must be interpreted as a.,. _ Ou . . Ou
g (6)a < ey ,0u> + <u,0 o
//dk k' () (P)(k, k) - %(ﬁu,éw - %(u,éﬁu)
00 P N ; .
00 00 Y =3 ((hu, ou) — (u, hou>> + ﬁ<u, [h, O]uy, (32)
:m//dkdk/o - 27) S
50 B where[h, 6] = ho — oh, as usual. In the case wheje= 1,
) the following results are obtained
Now, from Egs. (24) and (26), we can write a general expres-
sion for the average value of the operatar (hu, #u) — (u, hiu)
R s I K2 ou _Ou N 0
o =ins [ [0 200400 S {x <uax —uax> —uu] (39
v —00
0 0
VELE Ey,—FE and iR
’ - ! ~ Z
x5 _’“E’; exp [i( k - K )t] (28) (u, [, #u) = == (P (34)

. . _ For the (free) particle-on-a-half-line, we takgxz) = 0.
Note that the operator&” and P act on functions that are Moreover, we impose the Dirichlet boundary condition,
square-integrable ot and (generally) different from zero 4,0, ) = 0; however, we also expect that—oc, t) tends

only in the semi-space < 0. strongly to zero. These boundary conditions imply that the
Clearly, expressions (23) and (28) verify the expected repoundary term in (33) is zero. Note that, with the Dirichlet
sult: d 1 boundary condition at = 0 (and, as usual, ignoring the ex-
%QA(),I, = M@)\p‘ (29)  act behaviour of the functions in questionzat= —co, i.e.,

by assuming that these are essentially normalized functions

Likewise, from Egs. (17) and (28), another desired result ism Q), the operatorg and /, (in addition toz) are Hermi-
obtained: d . R tian. Moreover is also self-adjoint; in fact, there exists a
%<P>\p = (F)v. (30)  one-parameter family of self-adjoint Hamiltonians (see, for

In this manner, the Ehrenfest theorem for a particle-in-an-example’ the pedagogical Refs. 7 and 28). However, the mo-

infinite-step-potential has been explicitly confirmed for thementum operator is not self-adjoint and has no self-adjoint
general stat@ given by Eq. (11). extension [7]. After substituting Egs. (33) and (34) into

Eq. (32) (withé = %), we obtain the expected result:
d 1

4. Particle-on-a-half-line £<g:~>u = —(p)u. (35)

In this section, we begin by presenting the formal time deriva‘l_ikewise, in the case wher@= 5, the following results are
tives of the mean values of the positiah=¢ x) and momen-  4iained:

tum (p = —ihd/0z) operators for a particle-on-a-half-line

(z € (—o0,0] = Q). The formal computation of these deriva- (hu, pu) — (u, hpu)

tives for a particle living in the entire real line lead us to the 0

standard Ehrenfest theorem (provided that the state and its _ ihﬁ <3uau _ u<92u> (36)

derivative tend to zero at infinity) [26]. For a particle moving 2m \ Oz Ox ox2 )|

in a closed intervalife., in a box), a strictly formal study of

the quantitiesi(z) /dt andd(p)/dt as well their correspond- and A dy )

ing boundary terms has been recently made [27]. (u, [h, plu) =ik <d> = —ih{f)u. (37)
Let 6 be a time-independent operator (suchiasr p). T

The time derivative of this operator's mean val(®§, = wheref = —dy(z)/dz is the external classical force upon

(u,6u) in the normalized states = wu(x,t) € L23(), the particle on the half-line. By substituting Egs. (36)

Rev. Mex. Fis. B59(2013) 84-90



ON AVERAGE FORCES AND THE EHRENFEST THEOREM FOR A PARTICLE IN A SEMI-INFINITE INTERVAL

and (37) into Eq. (32) (withv = p) and after impos-
ing (z) = 0 (= f = 0) and the boundary conditions
u(0,t) = 0 andu(—o0,t) = 0, we obtain the following re-

sult:

910

d _n
T oM

ou

% (38)

If the wave functionu = w(z,t) tends to zero for
x — —o0, at least ag x |~z ¢ with ¢ > 0 (and therefore
u € L£%(Q)), then its derivativedu(z,t)/0z also tends to
zero there. Hence, relation (38) reduces to

d h? ?

ar P = a7

ou

r (39)

(2=0)

89

and (p),, respectively. Thus, Egs. (29) and (35) are equiv-
alent. Now, by substituting the wave packgtr, ¢) into the
right-hand-side of Eq. (39), we obtain:

oo 00

<fB>u:_4//
0 0

x \/ErEjp exp |:Z(EkhEk)t:| .

dk dk’'
2

A(K)A(K')

(43)

This result is precisely the mean val(ié>q, for a particle-in-
an-infinite-step-potential (see Eg. (17)). This is an important
result of our paper. Consequently, Egs. (30) and (41) are also
equivalent. Final note: we very recently learned of Ref. 30 in
which it was proved that the right-hand side of formula (39)

This specific result has been previously noted [15, 29]. NoiS equal to the mean value of the external classical force for
tice that the right-hand side of Eq. (38) can be written as thé particle-in-an-infinite-step-potential’( = —dV (z)/dz).

mean value of the (nonlocal) quantum force

R 1 9 2

oM [uf Or

ou

/B = fB(z,t) = e

(40)

Because

() = / dz f5(x,1) Ju(z, 1)
Q

However, in that reference, this specific result was directly

obtained by multiplying the Schdinger equation fod by

0¥ /0x, adding the respective complex conjugate relation,

and integrating each term of the resulting expression over a
small interval(—e, +¢), e — 0 [30].

5. Conclusions

We have studied the Ehrenfest theorem and the issue of aver-
age forces for a particle ultimately restricted to a semi-infinite

is always gqual rt]o acertain qua_ntlty e\;aluated atr:)ne T}nd (Sai¥|terval by an impenetrable wall in one dimension (inside the
@ = 0) minus the same quantity evaluated at the other enghyor region, our particle is a free particle after all). We have

(x = —o0), fB can be considered a boundary quantum force

noticed two ways to achieve that restriction. One of these

Thus, in this case, the Ehrenfest theorem consists of Eq. (334545 ys to the particle-in-an-infinite-step-potential, and we

and the following expression:

i) = ().

dt

Note that, for a particle-in-an-infinite-step-potentiale
u— U, (2 =0 — (r = +00)), the boundary term
in (36) is zero (e, (fs)y = 0). In fact, in the open in-
tervalQ? = (—oo, +00), ¥ and its derivative)¥ /0 tend to
zero forx — +oc.

Let us write the wave packet= u(z, t) in the following
form:

u(z,t) = Z\j% A(k) ug(z) exp (—i%t)

(41)

(oo <2 <0), (42)
where the eigenfunctions,,(x) are given in Eq. (13).
Clearly, the general staté(z,¢) given in Eqg. (11) can be
written as follows (see Eq. (12))(z,t) = u(z,t)O(—x).
Hence, the mean value&X )y and(P)y, are equal tdz),,

inevitably have the Dirichlet boundary condition (in our pa-
per, atx = 0). The other method leads us to the particle-
on-a-half-line, and the Dirichlet boundary condition is just
one more condition. In fact, there exists a one-parameter
family of boundary conditions for the (self-adjoint) Hamilto-
nian for a particle-on-a-half-line. In each situation, we have
shown that the mean values of the position, momentum and
force, as functions of time, verify an Ehrenfest theorem that
makes sense (the state of the particle being in each case a gen-
eral wave packet that is a continuous superposition of energy
eigenstates for the respective Hamiltonian). However, the in-
volved force is not the same in each case. In fact, we have
the usual external classical force in the first case and a type of
nonlocal boundary quantum force in the second case. In spite
of these differences, the corresponding mean values of these
quantities give the same results. Accordingly, the Ehrenfest
equations in the two situations are equivalent, and the inter-
nal consistency of the formalism of quantum mechanics is
assured. We hope that our article will be of genuine interest
to all those who are interested in the fundamental aspects of
guantum mechanics.
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