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A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and
evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel
function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the other uses a
parameter-dependent Gauss-Laguerre quadrature in the complex plane. Accurate results can be obtained with relatively small orders of
quadratures for the studied classes of functions.
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1. Introduction

Bessel function integrals involving a functionf(x),

I(ρ, ν) =

∞∫

0

f(x)Jν(ρx)dx, (1)

occur in many areas of science and engineering. Their nu-
merical evaluation continues to be of interest especially for
functions which decay slowly since care must be taken for
larger values of the argument,ρ, as the integrand begins to
oscillate rapidly [1–13]. The particular case whenf(x) pos-
sesses exponential behavior arises in many contexts.

One avenue of numerical approximation lies in recasting
this integral as a double integral using the integral represen-
tation of theν-order Bessel function of the first kind, [9]

Jν(x) =
xν

Γ(ν + 1
2 )
√

π2ν−1

1∫

0

(1− t2)ν−1/2

× cos(xt)dt, Re ν >
1
2
. (2)

Substituting this integral representation into Eq. (1) and
changing the order of integration yields

I(ρ, ν) =
ρν

Γ(ν + 1
2 )
√

π2ν−1

1∫

0

(1− t2)ν−1/2F (t)dt (3)

where

F (t) =

∞∫

0

xνf(x) cos(ρxt)dx. (4)

We take a fresh approach for the calculation of the second
integral or cosine transform. It is based on the introduction

of a parameter,α, and transformation into the complex plane
and has been previously employed to calculate sine trans-
forms of functions with explicit exponential dependence [14].
The introduction of the parameter is used to model the expo-
nential behavior of the function. We emphasize that the appli-
cability of this method for the transform of functions without
explicit exponential dependence has not been explored (as we
will do here).

Using Euler’s identity,F (t) may be re-written as

F (t) = Re

[ ∞∫

0

xνeαxf(x)e−(α−ıρt)xdx

]
. (5)

Transforming into the complex plane by setting
z = (α− ıρt)x in Eq. (5), yields

F (t) = Re

[
1

(α− ıρt)ν+1

×
∞∫

0

zνe
αz

α−ıρt f

(
z

α− ıρt

)
e−zdz

]
. (6)

The factore−z is the weight function for Gauss-Laguerre
quadrature. Thus Eq. (6) can be approximated by

F (t) ≈ Re

[
1

(α− ıρt)ν+1

×
N∑

j=1

zν
j e

αzj
α−ıρt f

( zj

α− ıρt

)
wj

]
(7)

wherezj and wj are the abscissae and weights of theN -
order Gauss-Laguerre quadrature. This methodology is ex-
pected to perform well when the functionf(x) possesses an
exponential-type behavior [14].
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The integrand of the outer integral over [0,1] is an even
function of t which allows us to rewrite the integral over
[-1,1] and multiply by a factor of one half. This integral is
now tailor made for the use of Gauss-Chebyshev quadratures
for ν = 0, 1 and Gauss-Jacobi quadratures forν ≥ 2 since
the factor(1 − t2)ν− 1

2 appearing in the integrand is the cor-
responding weight function of these quadratures.

Thus,

I(ρ, ν) =
ρν

Γ(ν + 1
2 )
√

π2ν

1∫

−1

(1− t2)ν− 1
2 F (t)dt (8)

I(ρ, ν) ≈ ρν

Γ(ν + 1
2 )
√

π2ν

M∑

k=1

F (tk)vk (9)

where thetk andvk are the abscissae and weights of theM -
order Gauss-Chebyshev (Jacobi) quadrature.

The purpose of this work is the numerical evaluation of
zero- and first-order Bessel function integrals by the proposed
methodology for trial functions with explicit exponential be-
havior. We will also examine if the methodology can be ex-
tended to other classes of functions without explicit exponen-
tial behavior and which decay slower for largerx. A study of
the convergence properties of the methodology with the order
of the quadratures is also presented along with an analysis of
the dependence of the method on the parameter.

2. Results and discussion

2.1. Zero-order Bessel function

Tables I and II give the six trial functions which were cho-
sen for study. Among these are included functions with and

without explicit exponential dependence. Thef1 gaussian-
type function is a common function which arises in many ap-
plications. Thef6 function has been previously studied with
regard to Bessel function integrals [1].

The results are grouped into two tables and are reported
as calculated values and the logarithm of the absolute value of
the relative error (E). Analytical expressions for the integrals
were obtained with the Mathematica 8.0.4.0 package [15].

The results in Table I are obtained from a
(N, M)=(15,15) quadrature order combination for thef1

function while(N, M)=(25,50) was used for the other func-
tions, for different values of the argumentρ. The Gauss-
Chebyshev quadrature of the first kind forν=0 has an an-
alytical expression withtk = cos((2k − 1)π/(2M)) and
vk = π/M .

The efficacy of the method depends on an appropriate se-
lection of the parameter,α, and this information is included
in the tables. It’s particular selection, whether constant or
ρ-dependent, was done on a trial and error basis seeking to
obtain good results. Thus reported values are not with the
optimumα for each point but ratherα’s which yield good re-
sults for the argumentsρ which are reported. Analysis of the
results withα will be presented later on.

Calculated values are reported to eight figures while cal-
culations for the relative error were carried out with all figures
using double precision calculations. The Gauss-Laguerre
quadratures used in this work have a precision of fifteen fig-
ures.

Table I shows that the gaussian function,f1, is the best
performing function (for smallerρ) especially when one con-
siders that a lower order quadrature [(15,15)] is used in this
case as compared to the other functions. The accuracy is ob-

TABLE I. Results forν = 0 using (N,M)=(15,15) order quadratures forf1 and (N,M)=(25,50) for the other functions witha=5 in all
functions. The first entry is the numerical approximation while the second is obtained from the analytical result.

ρ f1(x) = e−ax2
, α = 20 f2(x) = 1−e−ax

x
, α = 2ρ f3(x) = 1√

x2+a2
, α = 2ρ

Calculation Log[E] Calculation Log[E] Calculation Log[E]

0.5 0.39386722 -11.7 2.99822295 -9.8 0.42571191 -8.9

0.39386722 2.99822295 0.42571191

1.0 0.38660764 -13.9 2.31243834 -9.7 0.20511342 -8.6

0.38660764 2.31243834 0.20511342

2.0 0.35951379 -11.5 1.64723115 -9.5 0.10054505 -8.3

0.35951379 1.64723115 0.10054505

5.0 0.23336989 -11.2 0.88137359 -9.3 4.00323576 · 10−2 -8.0

0.23336989 0.88137359 4.00323580 · 10−2

10.0 0.10702824 -10.9 0.48121182 -9.0 2.00040106 · 10−2 -7.9

0.10702824 0.48121183 2.00040109 · 10−2

20.0 5.06682915 · 10−2 -4.1 0.24746646 -8.7 1.00005002 · 10−2 -7.8

5.06645355 · 10−2 0.24746646 1.00005003 · 10−2

50.0 2.66600457 · 10−2 -0.5 9.98340784 · 10−2 -8.3 4.00003194 · 10−3 -7.8

2.00403662 · 10−2 9.98340789 · 10−2 4.00003200 · 10−3
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TABLE II. Results forν = 0 using (N,M)=(25,50) order quadratures for thef4 andf5 functions and (25,100) for thef6 function, witha=5
in f4 andf5. Asterisked values correspond toa = 1 (∗∗) anda = 2 (∗). The first entry is the numerical approximation while the second is
obtained from the analytical result.

ρ f4(x) = x√
x2+a2

, α = 2ρ f5(x) = 1
x2+a2 , α = 2ρ f6(x) = x

(x2+1)
3
2

, α = 2ρ

Calculation Log[E] Calculation Log[E] Calculation Log[E]

0.5 0.164169968 -6.7 8.75333951 · 10−2 -10.1 0.60653553 -5.1

0.164169997 8.75333951 · 10−2 0.60653066

1.0 6.73793238 · 10−3 -5.7 4.20831092 · 10−2 -9.5 0.36787930 -6.4

6.73794700 · 10−3 4.20831092 · 10−2 0.36787944

2.0 2.26929113 · 10−5 -3.5 2.02252881 · 10−2 -8.9 0.13533528 -9.4

2.26999649 · 10−5 2.02252881 · 10−2 0.13533528

5.0 1.34758648 · 10−3 ∗∗ -5.7 8.01299232 · 10−3 -8.2 6.73794693 · 10−3 -8.0

1.34758940 · 10−3 ∗∗ 8.01299237 · 10−3 6.73794700 · 10−3

10.0 4.53858226 · 10−6 ∗∗ -3.5 4.00160577 · 10−3 -7.9 4.53998007 · 10−5 -5.5

4.53999298 · 10−6 ∗∗ 4.00160582 · 10−3 4.53999298 · 10−5

20.0 −5.2 · 10−10 ∗∗ - 2.00020015 · 10−3 -7.9 1.86490125 · 10−9 -1.0

1.0 · 10−10 ∗∗ 2.00020018 · 10−3 2.06115362 · 10−9

50.0 −1.4 · 10−10 ∗∗ - 5.00050038 · 10−3 ∗ -7.9 −1.2 · 10−10 -

3.9 · 10−24 ∗∗ 5.00050045 · 10−3 ∗ 1.9 · 10−22

TABLE III. Results forν = 0 using (N,M)=(60,100) order quadratures witha=5. The first entry is the numerical approximation while the
second is obtained from the analytical result. Asterisked values correspond toa = 1 (∗∗) anda = 2 (∗).

ρ f4(x) = x√
x2+a2

, α = 2ρ f5(x) = 1
x2+a2 , α = 2ρ f6(x) = x

(x2+1)
3
2

, α = 2ρ

Calculation Log[E] Calculation Log[E] Calculation Log[E]

0.5 0.16417000 -9.4 8.75333951 · 10−2 -14.0 0.60653067 -7.7

0.16417000 8.75333951 · 10−2 0.60653066

1.0 6.73794697 · 10−3 -8.3 4.20831092 · 10−2 -13.4 0.36787944 -10.3

6.73794700 · 10−3 4.20831092 · 10−2 0.36787944

2.0 2.26999492 · 10−5 -6.2 2.02252881 · 10−2 -12.8 0.13533528 -13.6

2.26999649 · 10−5 2.02252881 · 10−2 0.13533528

5.0 1.34758939 · 10−3 ∗∗ -8.3 8.01299237 · 10−3 -12.0 6.73794700 · 10−3 -11.9

1.34758940 · 10−3 ∗∗ 8.01299237 · 10−3 6.73794700 · 10−3

10.0 4.53998985 · 10−6 ∗∗ -6.2 4.00160582 · 10−3 -11.5 4.53999298 · 10−5 -9.5

4.53999298 · 10−6 ∗∗ 4.00160582 · 10−3 4.53999298 · 10−5

20.0 1.01503989 · 10−10 ∗∗ -1.8 2.00020018 · 10−3 -11.0 2.06112328 · 10−9 -4.8

1.03057681 · 10−10 ∗∗ 2.00020018 · 10−3 2.06115362 · 10−9

50.0 −5.9 · 10−13 ∗∗ - 5.00050045 · 10−3 ∗ -11.0 −6.6 · 10−14 -

3.9 · 10−24 ∗∗ 5.00050045 · 10−3 ∗ 1.9 · 10−22

served to decrease asρ increases and yields poor results for
ρ = 50. On the other hand, we numerically tested that greater
accuracy can be obtained for larger values ofρ by increasing
the order of the quadrature. For example, the (25,50) order
quadrature yielded a virtually exact result forρ = 20 while
for ρ = 50, the Log[E] value is -8.5.

Comparing the results forf2 andf3, one can gauge how
the method performs for functions with and without exponen-

tial dependence. One observes good results even up to larger
values ofρ for both types of functions. This suggests that
the method performs well even for functions without explicit
exponential dependence.

Table II contains more results for slower decaying func-
tions without exponential dependence. Reasonable results for
thef4 function are attainable for values ofρ up to ten. Note
that the larger values ofρ for thef4 function are witha = 1.
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FIGURE 1. Logarithm of the relative error versus order of the
Gauss-Chebyshev quadrature (M) for thef1 function witha = 5
at argumentρ = 5 usingα = 20. Different curves correspond to
different orders of Gauss-Laguerre quadratures; black (N=5); blue
(N=10); red (N=15).

FIGURE 2. Logarithm of the relative error versus order of the
Gauss-Chebyshev quadrature (M) for thef2 function witha = 5
at argumentρ = 5 usingα = 10. Different curves correspond to
different orders of Gauss-Laguerre quadratures; black (N=5); blue
(N=15); red (N=25); green (N=35).

This was done because the method performs poorly (with this
order of quadrature) when the result is very small (≤ 10−10).
Even with the use ofa = 1, one can observe that the values
for ρ = 20, and especiallyρ = 50, are extremely poor since
the values are small. Note alsoρ = 50 for f6. Thus the errors
for these points are not reported.

f6 proved to be a more difficult function to evaluate thus
a higher order Gauss-Chebyshev quadrature was used. The
method performs nicely for thef5 function throughout the
presented range ofρ. It should be noted that the last value is
with a = 2 due to difficulty with the numerical calculation of
the analytical result.

Table III contains the results for the same functions re-
ported in Table II but now with higher orders of quadrature.
Comparing the values in the two tables, one appreciates that
more accurate results are attainable with the use of higher or-
der quadratures. In particular, the result forf4 atρ = 10, and
especially atρ = 20, are now more reasonable in contrast to
those in Table II. Also,f6 at ρ = 10, 20 shows considerable
improvement.

We also testedf4 andf6 with increased (60,120) order
quadratures atρ = 20. The values of Log[E] are -6.3 and
-7.6 respectively, which illustrates that better approximations
at larger arguments can be obtained by increasing the order
of quadrature.

Next, we turn our attention to a study of the convergence
with respect to the orders of the quadratures. Figures 1 and
2 present plots of the logarithm of the relative error forf1

and f2 as a function of the order of the Gauss-Chebyshev
quadrature (M). Each curve represents a different order of
Gauss-Laguerre quadrature (N).

The plots show that increasing the order of the Gauss-
Chebyshev quadrature yields more accurate results up to a
certain point or plateau. Thereafter, increasing the order of
the Gauss-Chebyshev quadrature does not increase the accu-
racy of the result. On comparing the behavior of the different
curves, one observes that increasing the order of the Gauss-
Laguerre quadrature yields that the plateau is attained at a
higher precision of the result.

Figure 2 for thef2 function shows that the convergence
with respect to the order of the Gauss-Chebyshev is by no
means monotonic. It exhibits oscillatory behavior especially
for smaller orders of quadrature.

We now address the behavior of the method as a func-
tion of the parameter,α. Figures 3 and 4 present plots of
f2 andf6 for different values of the argument. These results
were obtained with(N, M)=(45,100) and (60,100) quadra-
tures which are larger than those used to generate Tables I
and II.

Important to note is that there exists an optimal value of
α (smallest error) which is centered around a range ofα for
each value ofρ. Second, the plots for different values ofρ
are very similar among them and are shifted to the right as
ρ increases. Thus optimal values ofα increase withρ. This
corroborates the use ofα = 2ρ for f2 andf6 in Tables 1-3.

FIGURE 3. Plot of the logarithm of the relative error as a function
of parameter,α for thef2 function with quadrature order (45,100),
a = 5, at different values ofρ; black (0.5); blue (1.0); red (2.0);
green (3.0).
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FIGURE 4. Plot of the logarithm of the relative error as a function
of parameter,α for thef6 function with quadrature order (60,100),
a = 5, at different values ofρ; black (0.5); blue (1.0); red (2.0);
green (3.0).

Figure 5 gives the dependence of the relative error with
different orders of quadratures for thef2 function. All curves
display a similarity in their behavior. However, what is most
important to observe is that the range ofα’s for which decent
results are obtained increases with the order of the quadra-
ture. Thus, the quality of the result obtained from higher-
order quadratures is less dependent on the selection of a par-
ticular value ofα.

2.2. First-order Bessel function

In this section we present the results for integrals of the form
in Eq. (1) withν = 1. The corresponding Gauss-Chebyshev
quadratures of the second kind have closed-form solutions
with

FIGURE 5. Plot of the logarithm of the relative error as a function
of parameter,α for thef2 function atρ = 5 with quadrature order:
black (25,25), blue (35, 35), red (45,45), green (55,55).

tk = cos
(

k

M + 1
π

)
and vk =

π

M + 1
sin2

(
k

M + 1
π

)
.

The results for six trial functions are included in Tables 4
and 5. These functions were selected based on their behav-
ior and the availability of analytical solutions. These results
show that the method performs well even for larger values of
the argument with a judicious choice of parameterα. The
error for thef1 andf3 functions atρ = 50 are not reported
since the calculated values are not close to the analytical re-
sults. However, it should be emphasized that these results for
f1 were obtained with a relatively small order of quadrature
[(15,15)]. The (25,50) order quadrature yielded a virtually
exact result forρ = 20 and a Log[E] value of -6.3 forρ = 50.
On the other hand, using a (60,120) order quadrature for the
f3 function gave Log[E] values of -4.4 atρ = 20 and -1.8 at
ρ = 50.

TABLE IV. Results forν = 1 using (N,M)=(15,15) order quadratures forf1 and (N,M)=(25,50) for the other functions witha=5 in all
functions. The first entry is the numerical approximation while the second is obtained from the analytical result.

ρ f1(x) = e−ax2
, α=20 f2(x) = e−ax3

, α=40 f3(x) = e−a
√

x, α=10

Calculation Log[E] Calculation Log[E] Calculation Log[E]

0.5 2.48443990 · 10−2 -11.1 3.83209123 · 10−2 -11.4 4.62000350 · 10−3 -4.5

2.48443990 · 10−2 3.83209123 · 10−2 4.61984160 · 10−3

1.0 4.87705755 · 10−2 -10.9 7.50420832 · 10−2 -11.4 8.45346240 · 10−3 -4.7

4.87705755 · 10−2 7.50420832 · 10−2 8.45328920 · 10−3

2.0 9.06346235 · 10−2 -10.8 0.13802496 -11.6 1.35523270 · 10−2 -4.6

9.06346235 · 10−2 0.13802496 1.35519560 · 10−2

5.0 0.14269904 -11.8 0.19831227 -12.0 1.85546210 · 10−2 -4.4

0.14269904 0.19831227 1.85538560 · 10−2

10.0 9.93262053 · 10−2 -10.3 0.10368762 -9.9 1.83166310 · 10−2 -5.4

9.93262053 · 10−2 0.10368762 1.83167120 · 10−2

20.0 5.00408351 · 10−2 -3.1 5.00937021 · 10−2 -8.9 1.49203923 · 10−2 -2.1

4.99999999 · 10−2 5.00937022 · 10−2 1.50463891 · 10−2

50.0 0.19 - 2.00024004 · 10−2 -7.7 6.45115243 · 10−3 -

2.0 · 10−2 2.00024000 · 10−2 9.39105075 · 10−3
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TABLE V. Results forν = 1 using (N,M)=(60,100) order quadratures witha=5 in all functions. The first entry is the numerical approximation
while the second is obtained from the analytical result.

ρ f4(x) = 1−e−ax

x
, α = 2ρ f5(x) = 1√

a2+x2
, α = 2ρ f6(x) = 1

x2+a2 , α = 2ρ

Calculation Log[E] Calculation Log[E] Calculation Log[E]

0.5 0.95012438 -10.8 0.36716600 -10.4 6.52218367 · 10−2 -12.1

0.95012438 0.36716600 6.52218367 · 10−2

1.0 0.90098049 -10.7 0.19865241 -10.1 3.91910773 · 10−2 -11.5

0.90098049 0.19865241 3.91910773 · 10−2

2.0 0.80741760 -10.7 9.99954600 · 10−2 -9.8 1.99962702 · 10−2 -11.0

0.80741760 9.99954600 · 10−2 1.99962702 · 10−2

5.0 0.58578644 -10.6 4.00000000 · 10−2 -9.4 8.00000000 · 10−3 -10.1

0.58578644 4.00000000 · 10−2 8.00000000 · 10−3

10.0 0.38196601 -10.4 2.00000000 · 10−2 -9.1 4.00000000 · 10−3 -9.6

0.38196601 2.00000000 · 10−2 4.00000000 · 10−3

20.0 0.21922359 -10.1 9.99999999 · 10−3 -8.8 2.00000000 · 10−3 -9.1

0.21922359 1.00000000 · 10−2 2.00000000 · 10−3

50.0 9.50124379 · 10−2 -9.7 3.99999999 · 10−3 -8.7 7.99999999 · 10−4 -8.8

9.50124379 · 10−2 4.00000000 · 10−3 8.00000000 · 10−4

The method performs better forf2 as compared tof3 for
the given order of quadrature. Even atρ = 50, the approxi-
mate value forf2 is a good one.

Note also that the results for the slower decaying func-
tions in Table V have been obtained using a larger order
quadrature, (60,100), as compared to Table IV [(15,15) and
(25,50)]. Overall, these results demonstrate that the method
yields good results for functions with and without exponen-
tial dependence.

Furthermore, one could also expect better results for the
same order of quadrature, if thez factor in Eq. (6) (ν = 1)
were incorporated into the weight function. Thus one could
use generalized Gauss-Laguerre quadratures from the weight
functionze−z in Eq. (7).

FIGURE 6. Plot of the logarithm of the relative error as a function
of parameter,α for thef1 function with quadrature order (15,15),
a = 5, at different values ofρ; black (0.5); blue (5.0); red (10.0).

The results from the method as a function ofα can be
compared and contrasted for thef1 andf6 functions in Figs.
6 and 7 (for different orders of quadrature). Fig. 6 for thef1

gaussian function shows that the general behavior is some-
what independent of the particular value ofρ and that there
is a wide range ofα-values which yield good results (logE≤
-10).

On the other hand, Fig. 7 for thef6 function illustrates
that the optimal values ofα are shifted asρ increases and
that the range ofα-values which give good results is now nar-
rower in comparison to thef1 function. Ideally, one would
wish for a broad range ofα-optimal values so that the method
is not overly sensitive to a slight variation in the parameter.
Thus,f1 fulfills these requirements to a larger extent thanf6.

FIGURE 7. Plot of the logarithm of the relative error as a function
of parameter,α for thef6 function with quadrature order (60,100),
a = 5, at different values ofρ; black (0.5); blue (5.0); red (10.0);
green(20.0).
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The convergence of the method as a function of the order
of the quadrature is not presented for brevity since these plots
are similar to those presented in the previous section for the
zero-order Bessel function.

3. Conclusions

A method for the numerical evaluation of Bessel function
integrals is presented and studied for zero- and first-order
Bessel functions. This method uses the integral represen-
tation of the Bessel function to formulate the Bessel func-
tion integral as a double integral; one which is amenable
to Gauss-Chebyshev quadrature while the other is a cosine
transform. This transform can be calculated with Gauss-
Laguerre quadratures if one uses a transformation into the
complex plane. The introduction of a parameter enables one
to correctly model the behavior of the function to be inte-

grated. The results for various trial functions with both ex-
ponential and non-exponential dependence shows that the
method performs well with relatively small orders of quadra-
ture and a judicious choice of the parameter. Notably, the
method performs the best for the gaussian-type trial function.
A numerical study of the convergence with respect to the or-
ders of quadrature is presented and the dependence of the
method on the parameter is also analyzed. A particular ben-
efit is that the method is based on standard Gaussian quadra-
ture which are readily available and easily implemented. The
method can also be applied to integrals with Bessel functions
of higher order with the use of the appropriate Gauss-Jacobi
quadrature.
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