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A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and
evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel
function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the other uses ¢
parameter-dependent Gauss-Laguerre quadrature in the complex plane. Accurate results can be obtained with relatively small orders ¢
quadratures for the studied classes of functions.
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1. Introduction of a parameteky, and transformation into the complex plane
o ) ) ) and has been previously employed to calculate sine trans-

Bessel function integrals involving a functigitz), forms of functions with explicit exponential dependence [14].
oo The introduction of the parameter is used to model the expo-
I(p,v) = /f(:v)J,,(p:c)dx, 1) nen_ti_al behgvior of the function. We emphasize _that tht_'—) appli-

/ cability of this method for the transform of functions without

explicit exponential dependence has not been explored (as we

occur in many areas of science and engineering. Their nuwill do here).
merical evaluation continues to be of interest especially for  Using Euler’s identity'(¢) may be re-written as
functions which decay slowly since care must be taken for o
larger values of the argument, as the integrand begins to v o —a—ipt)z
oscillate rapidly [1-13]. The particular case whgfx) pos- F(t) = Re /x ™ flz)e o dx]' )
sesses exponential behavior arises in many contexts. 0

One avenue of numerical approximation lies in recastinglransforming into the complex plane by setting
this integral as a double integral using the integral represen: = (o — 1pt)z in Eq. (5), yields
tation of thev-order Bessel function of the first kind, [9]

1 F(t) = Re
Ju(x) = T+ Dy /(1 — {2)r-1/2

0 X /z”eaufptf( i > e_Zdz]. (6)
1 o —pt
0

x cos(zt)dt, Rev > 5 (2)

Substituting this integral representation into Eq. (1) an
changing the order of integration yields

dThe factore™* is the weight function for Gauss-Laguerre
quadrature. Thus Eq. (6) can be approximated by

1
1
v F(t)~ Re| —————

_ P 2\w—1/2 (a0 —2pt)¥ L

I(p,v) = 1—t F()dt (3
(0.) F<v+;>ﬁ2v-lo/( PR @3) )
where . X;Zﬁ“ '”’f(a_zpt)“h] (7)
B(t) = /ny(x) cos(pat)dz. (4)  wherez; andw; are the abscissae and weights of fkie
0 order Gauss-Laguerre quadrature. This methodology is ex-

We take a fresh approach for the calculation of the secongected to perform well when the functigiiz) possesses an
integral or cosine transform. It is based on the introductiorexponential-type behavior [14].
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The integrand of the outer integral over [0,1] is an evenwithout explicit exponential dependence. Tfegaussian-
function of ¢ which allows us to rewrite the integral over type function is a common function which arises in many ap-
[-1,1] and multiply by a factor of one half. This integral is plications. Thefs function has been previously studied with
now tailor made for the use of Gauss-Chebyshev quadraturesgard to Bessel function integrals [1].

for v = 0,1 and Gauss-Jacobi quadratures #op 2 since The results are grouped into two tables and are reported
the factor(1 — ¢2)¥~= appearing in the integrand is the cor- as calculated values and the logarithm of the absolute value of
responding weight function of these quadratures. the relative error (E). Analytical expressions for the integrals
Thus, were obtained with the Mathematica 8.0.4.0 package [15].
y 1 The results in Table | are obtained from a
P

/(1 — tQ)V*%F(t)dt (8)  (IV,M)=(15,15) quadrature order combination for tifie
function while (N, M)=(25,50) was used for the other func-
tions, for different values of the argumept The Gauss-
N p ( Chebyshev quadrature of the first kind fer0 has an an-
Lp,v) ~ L(v+ 3)y/m2v ;F(tk)uk ) alytical expression witht;, = cos((2k — 1)7/(2M)) and
- v = /M.

where thel, andvy, are the abscissae and weights of e ) .
order Gauss-Chebyshev (Jacobi) quadrature. The efficacy of the method depends on an appropriate se-
and this information is included

The purpose of this work is the numerical evaluation of/€ction of the parametex, _
zero- and first-order Bessel function integrals by the propoself! the tables. It's particular selection, whether constant or
methodology for trial functions with explicit exponential be- p-dependent, was done on a trial and error basis see_klng to
havior. We will also examine if the methodology can be ex-obtain good results. Thus reported values are not with the

tended to other classes of functions without explicit exponen@Ptimuma for each point but rather’s which yield good re-
tial behavior and which decay slower for largerA study of sults for t.he argumenpswhlch are reported. Analysis of the
the convergence properties of the methodology with the ordei€Sults witha will be presented later on.

of the quadratures is also presented along with an analysis of C@lculated values are reported to eight figures while cal-
the dependence of the method on the parameter. culations for the relative error were carried out with all figures

using double precision calculations. The Gauss-Laguerre
guadratures used in this work have a precision of fifteen fig-
ures.

Table | shows that the gaussian functigh, is the best
performing function (for smallep) especially when one con-
Tables | and Il give the six trial functions which were cho- siders that a lower order quadrature [(15,15)] is used in this
sen for study. Among these are included functions with anase as compared to the other functions. The accuracy is ob-

1) = ro s v

y M

2. Results and discussion

2.1. Zero-order Bessel function

TABLE |. Results forv = 0 using (N,M)=(15,15) order quadratures fér and (N,M)=(25,50) for the other functions with=5 in all
functions. The first entry is the numerical approximation while the second is obtained from the analytical result.

" Fi(2) = " o = 20 flz) =" a=2p fa(z) = \/m;ﬁ,azzp
Calculation Log[E] Calculation Log[E] Calculation Logl[E]
0.5 0.39386722 -11.7 2.99822295 9.8 0.42571191 -8.9
0.39386722 2.99822295 0.42571191
1.0 0.38660764 -13.9 2.31243834 9.7 0.20511342 -8.6
0.38660764 2.31243834 0.20511342
2.0 0.35951379 -11.5 1.64723115 9.5 0.10054505 -8.3
0.35951379 1.64723115 0.10054505
5.0 0.23336989 -11.2 0.88137359 9.3 4.00323576 - 1072 -8.0
0.23336989 0.88137359 4.00323580 - 102
10.0 0.10702824 -10.9 0.48121182 9.0 2.00040106 - 1072 7.9
0.10702824 0.48121183 2.00040109 - 102
20.0 5.06682915 - 10~2 -4.1 0.24746646 -8.7 1.00005002 - 102 -7.8
5.06645355 - 102 0.24746646 1.00005003 - 102
50.0 2.66600457 - 1072 -0.5 9.98340784 - 1072 -8.3 4.00003194 - 1073 -7.8
2.00403662 - 102 9.98340789 - 102 4.00003200 - 1073
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TABLE Il. Results forr = 0 using (N,M)=(25,50) order quadratures for tfieand f5 functions and (25,100) for thg; function, witha=5
in f4 and f5. Asterisked values corresponddo= 1 (**) anda = 2 (*). The first entry is the numerical approximation while the second is

obtained from the analytical result.

p i) = =2 f5(2) = iz a=2p fﬁ(x)=ﬁ,a=2p
Calculation Log[E] Calculation Log[E] Calculation Log[E]
0.5 0.164169968 -6.7 8.75333951 - 102 -10.1 0.60653553 5.1
0.164169997 8.75333951 - 102 0.60653066
1.0 6.73793238 - 1073 5.7 4.20831092 - 1072 9.5 0.36787930 -6.4
6.73794700 - 103 4.20831092 - 1072 0.36787944
2.0 2.26929113 - 107° -35 2.02252881 - 1072 -8.9 0.13533528 9.4
2.26999649 - 10~° 2.02252881 - 1072 0.13533528
5.0 1.34758648 - 1073 ** -5.7 8.01299232 - 1073 -8.2 6.73794693 - 1073 -8.0
1.34758940 - 1073 ** 8.01299237 - 1073 6.73794700 - 1073
10.0 4.53858226 - 1076 ** -3.5 4.00160577 - 103 7.9 4.53998007 - 10~° -5.5
4.53999298 - 106 ** 4.00160582 - 103 4.53999298 - 10~
20.0 —5.2.10710 =~ - 2.00020015 - 1073 -7.9 1.86490125 - 10~° -1.0
1.0- 10710 == 2.00020018 - 10~3 2.06115362 - 10~°
50.0 —1.4-10710** - 5.00050038 - 1073 * -7.9 —-1.2.1071° -
3.9-10724 ** 5.00050045 - 1073 * 1.9-107%2

TABLE Ill. Results forr = 0 using (N,M)=(60,100) order quadratures with5. The first entry is the numerical approximation while the
second is obtained from the analytical result. Asterisked values correspand to(**) anda = 2 ().

p Jal@w) = s =2 f5(2) = iz a=2p fol@)=—Fpa=2
Calculation Log[E] Calculation Log[E] Calculation Log[E]
0.5 0.16417000 9.4 8.75333951 - 102 -14.0 0.60653067 7.7
0.16417000 8.75333951 - 1072 0.60653066
1.0 6.73794697 - 1073 -8.3 4.20831092 - 102 -13.4 0.36787944 -10.3
6.73794700 - 1073 4.20831092 - 1072 0.36787944
2.0 2.26999492 - 107° 6.2 2.02252881 - 1072 -12.8 0.13533528 -13.6
2.26999649 - 10~° 2.02252881 - 102 0.13533528
5.0 1.34758939 - 1073 ** -8.3 8.01299237 - 1073 -12.0 6.73794700 - 1073 -11.9
1.34758940 - 1073 ** 8.01299237 - 1073 6.73794700 - 1073
10.0 4.53998985 - 1076 ** -6.2 4.00160582 - 1073 -11.5 4.53999298 - 10~° -9.5
4.53999298 - 1076 ** 4.00160582 - 1073 4.53999298 - 10~°
20.0 1.01503989 - 10710 == -1.8 2.00020018 - 10~3 -11.0 2.06112328 - 107° 4.8
1.03057681 - 10710 ** 2.00020018 - 1073 2.06115362 - 107°
50.0 —5.9-10718 == - 5.00050045 - 1073 * -11.0 —6.6-107 -
3.9-1072 ** 5.00050045 - 1073 * 1.9-10722

served to decrease adncreases and yields poor results for tial dependence. One observes good results even up to larger
p = 50. On the other hand, we numerically tested that greatevalues ofp for both types of functions. This suggests that
accuracy can be obtained for larger valuep bf increasing the method performs well even for functions without explicit
the order of the quadrature. For example, the (25,50) ordezxponential dependence.

guadrature yielded a virtually exact result for= 20 while

. Table Il contains more results for slower decaying func-
for p = 50, the Log[E] value is -8.5. ying

tions without exponential dependence. Reasonable results for
Comparing the results faf; and f3, one can gauge how the f4 function are attainable for values pfup to ten. Note
the method performs for functions with and without exponen-that the larger values gffor the f, function are witha = 1.

Rev. Mex. Fis. E$9(2013) 115-121



118 J. L. LUNA, H. H. CORZO, AND R. P. SAGAR

LoslFl We also tested, and fs with increased (60,120) order

5 T s 3 0 1w  a M guadratures gb = 20. The values of Log[E] are -6.3 and
-7.6 respectively, which illustrates that better approximations
at larger arguments can be obtained by increasing the order
of quadrature.

2+

Next, we turn our attention to a study of the convergence

-5 with respect to the orders of the quadratures. Figures 1 and
2 present plots of the logarithm of the relative error for
-8 and f, as a function of the order of the Gauss-Chebyshev

quadrature (M). Each curve represents a different order of
-lop Gauss-Laguerre quadrature (N).

The plots show that increasing the order of the Gauss-

Chebyshev quadrature yields more accurate results up to a
. . certain point or plateau. Thereafter, increasing the order of

at argumenp = 5 usinga = 20. Different curves correspond to i
different orders of Gauss-Laguerre quadratures; black (N=5); bluethe Gauss-Chebyshev quadrf’;\ture does no't Increase .the accu-
(N=10); red (N=15). racy of the result. On comparing the behavior of the different
curves, one observes that increasing the order of the Gauss-
Laguerre quadrature yields that the plateau is attained at a
higher precision of the result.

FIGURE 1. Logarithm of the relative error versus order of the
Gauss-Chebyshev quadrature (M) for thefunction witha = 5

Log[E]

g 2 40 - 80 Figure 2 for thefs, function shows that the convergence
2 X&v\ with respect to the order of the Gauss-Chebyshev is by no
means monotonic. It exhibits oscillatory behavior especially
for smaller orders of quadrature.

-6 We now address the behavior of the method as a func-
tion of the parametery. Figures 3 and 4 present plots of
f2 and f for different values of the argument. These results

-10f were obtained witH IV, M)=(45,100) and (60,100) quadra-
tures which are larger than those used to generate Tables |

2 and Il.

FIGURE 2. Logarithm of the relative error versus order of the |mp0rtant to note is that there exists an 0pt|ma| value of

Gauss-Chebyshev quadrature (M) for thefunction witha = 5, (smallest error) which is centered around a range &dr

at argumenp = 5 usinga = 10. Different curves correspond 10 gach yvalue of. Second, the plots for different values of
different orders of Gauss-Laguerre quadratures; black (N=5); blue L : . :
(N=15); red (N=25): green (N=35). are very similar among them and are shifted to the right as

p increases. Thus optimal values@fncrease wittp. This

This was done because the method performs poorly (with thi§orroborates the use af= 2 for f, and fs in Tables 1-3.
order of quadrature) when the result is very smalll0—1°).
Even with the use ofi = 1, one can observe that the values
for p = 20, and especially = 50, are extremely poor since <
the values are small. Note alge= 50 for fs. Thus the errors - s w0 s
for these points are not reported. —
f6 proved to be a more difficult function to evaluate thus
a higher order Gauss-Chebyshev quadrature was used. Th -s|-
method performs nicely for thgs function throughout the
presented range @f It should be noted that the last value is
with a = 2 due to difficulty with the numerical calculation of
the analytical result.
Table 11l contains the results for the same functions re-
ported in Table Il but now with higher orders of quadrature.
Comparing the values in the two tables, one appreciates tha-'>|
more accurate results are attainable with the use of higher or-
der quadratures. In particular, the result fortp = 10,and  Fgyre 3. Plot of the logarithm of the relative error as a function
especially ap = 20, are now more reasonable in contrast to of parameterg for the f, function with quadrature order (45,100),
those in Table II. Alsofs atp = 10, 20 shows considerable o = 5, at different values of; black (0.5); blue (1.0); red (2.0);
improvement. green (3.0).
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Log[E] Log[E]

-10

-8F

FIGURE 4. Plot of the logarithm of the relative error as a function FIGURE 5. Plot of the logarithm of the relative error as a function
of parameterg for the fs function with quadrature order (60,100), ©f parameterq for the f, function atp = 5 with quadrature order:
a = 5, at different values op; black (0.5); blue (1.0); red (2.0); black (25,25), blue (35, 35), red (45,45), green (55,55).

green (3.0).

_ Figure 5 gives the dependence of the _relative error withfx, = cos (Mk; 177) and v, = M7:L 1 sin? (Mk+ 17r> .
different orders of quadratures for tiigfunction. All curves
display a similarity in their behavior. However, what is most The results for six trial functions are included in Tables 4
important to observe is that the rangendsd for which decent  and 5. These functions were selected based on their behav-
results are obtained increases with the order of the quadrger and the availability of analytical solutions. These results
ture. Thus, the quality of the result obtained from higher-show that the method performs well even for larger values of
order quadratures is less dependent on the selection of a pake argument with a judicious choice of parameter The
ticular value ofa. error for thef; and f3 functions atp = 50 are not reported
since the calculated values are not close to the analytical re-
sults. However, it should be emphasized that these results for
2.2. First-order Bessel function f1 were obtained with a relatively small order of quadrature
[(15,15)]. The (25,50) order quadrature yielded a virtually
In this section we present the results for integrals of the formexact result fop = 20 and a Log[E] value of -6.3 fop = 50.
in Eq. (1) withv = 1. The corresponding Gauss-ChebyshevOn the other hand, using a (60,120) order quadrature for the
guadratures of the second kind have closed-form solutiongs; function gave Log[E] values of -4.4 at= 20 and -1.8 at
with p = 50.

TABLE IV. Results forr = 1 using (N,M)=(15,15) order quadratures ffr and (N,M)=(25,50) for the other functions witt¥5 in all
functions. The first entry is the numerical approximation while the second is obtained from the analytical result.

P filz) = 67‘”2, a=20 fa(z) = 670&3, a=40 fa(z) = e~ VT o=10
Calculation Log[E] Calculation Log[E] Calculation Log[E]
0.5 2.48443990 - 1072 -11.1 3.83209123 - 1072 -11.4 4.62000350 - 1073 -4.5
2.48443990 - 102 3.83209123 - 1072 4.61984160 - 1073
1.0 4.87705755 - 1072 -10.9 7.50420832 - 1072 -11.4 8.45346240 - 1073 4.7
4.87705755 - 1072 7.50420832 - 102 8.45328920 - 1073
2.0 9.06346235 - 1072 -10.8 0.13802496 -11.6 1.35523270 - 1072 -4.6
9.06346235 - 1072 0.13802496 1.35519560 - 1072
5.0 0.14269904 -11.8 0.19831227 -12.0 1.85546210 - 1072 4.4
0.14269904 0.19831227 1.85538560 - 1072
10.0 9.93262053 - 1072 -10.3 0.10368762 -9.9 1.83166310 - 1072 5.4
9.93262053 - 102 0.10368762 1.83167120 - 1072
20.0 5.00408351 - 1072 3.1 5.00937021 - 1072 -8.9 1.49203923 - 1072 2.1
4.99999999 - 102 5.00937022 - 102 1.50463891 - 1072
50.0 0.19 - 2.00024004 - 1072 7.7 6.45115243 - 1073 -
2.0-1072 2.00024000 - 10~2 9.39105075 - 1073
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TABLE V. Results forr = 1 using (N,M)=(60,100) order quadratures with5 in all functions. The first entry is the numerical approximation
while the second is obtained from the analytical result.

0 falz) = 172—”,&:2/) fs(x) = m,a:2p fg(x):ﬁ,a:2p
Calculation Log[E] Calculation Logl[E] Calculation Log[E]
0.5 0.95012438 -10.8 0.36716600 -10.4 6.52218367 - 1072 -12.1
0.95012438 0.36716600 6.52218367 - 1072
1.0 0.90098049 -10.7 0.19865241 -10.1 3.91910773 - 1072 -11.5
0.90098049 0.19865241 3.91910773 - 1072
2.0 0.80741760 -10.7 9.99954600 - 102 -9.8 1.99962702 - 102 -11.0
0.80741760 9.99954600 - 102 1.99962702 - 1072
5.0 0.58578644 -10.6 4.00000000 - 102 -9.4 8.00000000 - 103 -10.1
0.58578644 4.00000000 - 102 8.00000000 - 103
10.0 0.38196601 -10.4 2.00000000 - 1072 -9.1 4.00000000 - 1073 -9.6
0.38196601 2.00000000 - 102 4.00000000 - 1073
20.0 0.21922359 -10.1 9.99999999 - 103 -8.8 2.00000000 - 10~? 9.1
0.21922359 1.00000000 - 102 2.00000000 - 1073
50.0 9.50124379 - 1072 9.7 3.99999999 - 10~3 -8.7 7.99999999 - 10~* -8.8
9.50124379 - 1072 4.00000000 - 1073 8.00000000 - 10~*
The method performs better fgs as compared tgs for The results from the method as a functioncotan be
the given order of quadrature. Evenmat 50, the approxi- compared and contrasted for tfieand fs functions in Figs.
mate value forfs is a good one. 6 and 7 (for different orders of quadrature). Fig. 6 for the

Note also that the results for the slower decaying func-gaussian function shows that the general behavior is some-
tions in Table V have been obtained using a larger ordewhat independent of the particular valueofnd that there
guadrature, (60,100), as compared to Table IV [(15,15) andk a wide range ofi-values which yield good result®gE <
(25,50)]. Overall, these results demonstrate that the method.0).
yields good results for functions with and without exponen-  On the other hand, Fig. 7 for thi function illustrates
tial dependence. that the optimal values of are shifted ap increases and

Furthermore, one could also expect better results for théhat the range ofi-values which give good results is now nar-
same order of quadrature, if thefactor in Eq. (6) f = 1)  rower in comparison to th¢; function. Ideally, one would
were incorporated into the weight function. Thus one couldwish for a broad range af-optimal values so that the method
use generalized Gauss-Laguerre quadratures from the weigistnot overly sensitive to a slight variation in the parameter.
functionze=* in Eq. (7). Thus, f; fulfills these requirements to a larger extent ttfan

Log[E]

| S S S E S S S S |

FIGURE 7. Plot of the logarithm of the relative error as a function
FIGURE 6. Plot of the logarithm of the relative error as a function of parameterq for the fs function with quadrature order (60,100),
of parameterq for the f; function with quadrature order (15,15), a = 5, at different values op; black (0.5); blue (5.0); red (10.0);
a = 5, at different values op; black (0.5); blue (5.0); red (10.0). green(20.0).
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The convergence of the method as a function of the ordegrated. The results for various trial functions with both ex-
of the quadrature is not presented for brevity since these plofgsonential and non-exponential dependence shows that the
are similar to those presented in the previous section for thenethod performs well with relatively small orders of quadra-
zero-order Bessel function. ture and a judicious choice of the parameter. Notably, the
method performs the best for the gaussian-type trial function.
A numerical study of the convergence with respect to the or-
ders of quadrature is presented and the dependence of the
A method for the numerical evaluation of Bessel functionmethod on the parameter is also analyzed. A particular ben-
integrals is presented and studied for zero- and first-ordegfit is that the method is based on standard Gaussian quadra-
Bessel functions. This method uses the integral represeriure which are readily available and easily implemented. The
tation of the Bessel function to formulate the Bessel funcMethod can also be applied to integrals with Bessel functions
tion integral as a double integral; one which is amenablef higher order with the use of the appropriate Gauss-Jacobi
to Gauss-Chebyshev quadrature while the other is a cosirgdadrature.
transform. This transform can be calculated with Gauss-

Laguerre quadratures if one uses a transformation into thg_ Acknowledgment
complex plane. The introduction of a parameter enables one
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